全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Prospects for Ferroelectrics: 2012–2022

DOI: 10.1155/2013/187313

Full-Text   Cite this paper   Add to My Lib

Abstract:

A review is given of more than a dozen subtopics within the general study of ferroelectrics, with emphasis upon controversies, unsolved problems, and prospects for the next decade, including pure science and industrial applications. The review emphasizes work over the past two years, from 2010 to 2012. 1. Introduction Ferroelectrics have undergone a minor renaissance in the past twenty years with the development of high-quality thin (<300?nm) oxide films, capable of performing switching at the 5?V standard logic level for silicon transistors [1, 2]. The general field of integrated ferroelectrics is not limited to memory devices entailing polarization reversal but includes such things as electrically controlled tunnel junctions, [3, 4] which are much more demanding in their thickness requirements (<7?nm), or electrocaloric cooling devices [5, 6], THz emitters [7, 8], resistive random access memories (RRAMS) [9, 10], photochromics [11], domain nanoelectronics [12, 13], flexible polymeric ferroelectrics [14, 15], and photovoltaics [16, 17]. At present there are perhaps 500 laboratories worldwide with R and D interests in ferroelectric films, and the present review is a rather personal viewpoint of what the most promising lines of investigation will be over the next decade. 2. Mott Field Effect Transistors (MOTTFETs) and Ferroelectric-Gated FETs In a typical computer memory the area of the chip is taken up primarily by the capacitors. Historically the capacitance was provided by a very thin silicon-oxide layer grown by exposing the Si chip to oxygen during processing. However, silicon oxide (mostly quartz) has a rather small dielectric constant (ca. 6.0), and hence the capacitance is small even for very thin films. Even using a high-dielectric material (most of which are ferroelectric oxides), the capacitors in a memory take up most of the chip area; in the jargon of the trade, the capacitors leave a large footprint [1]. A possible solution to this problem is to make the active memory element a programmable gate. For example, a ferroelectric gate (FE-FET) can exhibit a very small footprint [18, 19]. Although such FE-FETs have been actively researched for a decade or more, with noticeable progress in Tokyo, their defect is that the gate must be grounded during the READ operation, so that the gate charge is eventually dissipated. This problem can be circumvented by designing logic cells that are large (six transistors per bit—a so-called “6T” design) but have not been commercialized. A promising new direction in this area is to use the FET gate in materials

References

[1]  M. Dawber, K. M. Rabe, and J. F. Scott, “Physics of thin-film ferroelectric oxides,” Reviews of Modern Physics, vol. 77, pp. 1083–1130, 2005.
[2]  O. Auciello, J. F. Scott, and R. Ramesh, “The physics of ferroelectric memories,” Physics Today, vol. 51, no. 7, pp. 22–27, 1998.
[3]  V. Garcia, M. Bibes, L. Bocher, et al., “Ferroelectric control of spin polatization,” Science, vol. 327, no. 5969, pp. 1106–1119, 2010.
[4]  A. Chanthbouala, A. Crassous, V. Garcia, et al., “Solid-state memories based on ferroelectric tunnel junctions,” Nature Nanotechnology, vol. 7, pp. 101–104, 2012.
[5]  A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, “Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3,” Science, vol. 311, no. 5765, pp. 1270–1271, 2006.
[6]  A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, “Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 Pb Mg1/3Nb2/3O3-0.1 PbTiO3 near room temperature,” Applied Physics Letters, vol. 89, no. 24, Article ID 242912, 2006.
[7]  K. Takahashi, N. Kida, and M. Tonouchi, “Terahertz radiation by an ultrafast spontaneous polarization modulation of multiferroic BiFeO3 thin films,” Physical Review Letters, vol. 96, no. 11, Article ID 117402, pp. 1–4, 2006.
[8]  J. F. Scott, H. J. Fan, S. Kawasaki et al., “Terahertz emission from tubular Pb(Zr, Ti)O3 nanostructures,” Nano Letters, vol. 8, no. 12, pp. 4404–4409, 2008.
[9]  D. S. Jeong, R. Thomas, R. S. Katiyar et al., “Emerging memories: resistive switching mechanisms and current status,” Reports on Progress in Physics, vol. 75, no. 7, Article ID 076502, 2012.
[10]  R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Materials, vol. 6, no. 11, pp. 833–840, 2007.
[11]  J. Seidel, W. Luo, S. J. Suresha, et al., “Prominent electrochromism through vacancy-order melting in a complex oxide,” Nature Communications, vol. 3, article 799, 2012.
[12]  A. Gruverman, D. Wu, H. J. Fan, and J. F. Scott, “Vortex ferroelectric domains,” Journal of Physics Condensed Matter, vol. 20, no. 34, Article ID 342201, 2008.
[13]  G. Catalan, J. Seidel, J. F. Scott, and R. Ramesh, “Domain wall nanoelectronics,” Reviews of Modern Physics, vol. 84, pp. 119–156, 2012.
[14]  A. V. Bune, V. M. Fridkin, S. Ducharme et al., “Two-dimensional ferroelectric films,” Nature, vol. 391, no. 6670, pp. 874–877, 1998.
[15]  T. Furukawa, “Ferroelectric properties of vinylidene fluoride copolymers,” Phase Transitions, vol. 18, pp. 143–211, 1989.
[16]  D. Daranciang, M. Highland, H. Wen, et al., “Ultrafast photovoltaic response in ferroelectric nanolayers,” Physical Review Letters, vol. 108, no. 8, Article ID 087601, 8 pages, 2012.
[17]  R. M. Swanson, “Photovoltaics power up,” Science, vol. 324, no. 5929, pp. 891–892, 2009.
[18]  J. F. Scott and C. A. Paz De Araujo, “Ferroelectric memories,” Science, vol. 246, no. 4936, pp. 1400–1405, 1989.
[19]  E. Tokumitsu, R. I. Nakamura, and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FET's using PLZT/STO/Si(100) structures,” IEEE Electron Device Letters, vol. 18, no. 4, pp. 160–162, 1997.
[20]  R. Scherwitzl, P. Zubko, I. G. Lezama et al., “Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films,” Advanced Materials, vol. 22, no. 48, pp. 5517–5520, 2010.
[21]  C. Girardot, S. Pignard, F. Weiss, and J. Kreisel, “SmNiO3/NdNiO3 thin film multilayers,” Applied Physics Letters, vol. 98, Article ID 241903, 2011.
[22]  M. Lines and A. M. Glass, Theory and Application of Ferroelectrics and Related Materials, Clarendon Press, Oxford, UK, 1979.
[23]  M. Fiebig, “Revival of the magnetoelectric effect,” Journal of Physics D, vol. 38, no. 8, pp. R123–R152, 2005.
[24]  G. A. Smolensky, V. A. Isupov, and A. I. Agranovskaya, “A new group of ferroelectrics (with layered structure),” Soviet Physics Solid State, vol. 1, no. 1, pp. 149–150, 1959.
[25]  G. A. Smolensky, V. A. Isupov, and A. I. Agranovskaya, “Ferroelectrics of the oxygen-octahedral type with layered structure,” Soviet Physics Solid State, vol. 3, no. 3, pp. 651–655, 1961.
[26]  G. A. Smolensky, V. A. Isupov, and A. I. Agranovskaya, “New Ferroelectrics of a complex composition: 4,” Soviet Physics Solid State, vol. 2, no. 11, pp. 2651–2654, 1961.
[27]  T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A. P. Ramirez, “Cupric oxide as an induced-multiferroic with high-TC,” Nature Materials, vol. 7, no. 4, pp. 291–294, 2008.
[28]  T. Kimura, “A room-temperature multiferroic,” Nature conference, Aachen, Germany, June 2012.
[29]  W. Peng, N. Lemee, M. Karkut et al., “Spin-lattice coupling in multiferroic Pb (Fe1/2Nb1/2)O3 thin films,” Applied Physics Letters, vol. 94, no. 1, Article ID 012509, 2009.
[30]  R. Martinez, R. Palai, H. Huhtinen, J. Liu, J. F. Scott, and R. S. Katiyar, “Nanoscale ordering and multiferroic behavior in Pb (Fe1/2Ta1/2)O3,” Physical Review B, vol. 82, no. 13, Article ID 134104, 2010.
[31]  D. Sanchez, N. Ortega, A. Kumar, R. S. Katiyar, and J. F. Scott, “Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron tantalate—lead zirconate titanate (PFT/PZT),” AIP Advances, vol. 1, Article ID 042169, 2011.
[32]  D. N. Evans, J. N. Gregg, A. Kumar, D. Sanchez, R. S. Katiyar, and J. F. Scott, “Magnetoelectric switching at room temperature in a new multiferroic,” Nature Communications. In press.
[33]  R. Pirc, R. Blinc, and J. F. Scott, “Mesoscopic model of a system possessing both relaxor ferroelectric and relaxor ferromagnetic properties,” Physical Review B, vol. 79, no. 21, Article ID 214114, 2009.
[34]  A. Kumar, G. L. Sharma, R. S. Katiyar, R. Pirc, R. Blinc, and J. F. Scott, “Magnetic control of large room-temperature polarization,” Journal of Physics Condensed Matter, vol. 21, no. 38, Article ID 382204, 2009.
[35]  D. N. Astrov, “The magnetoelectric effect in antiferromagnets,” Soviet Physics JETP, vol. 11, pp. 708–709, 1960.
[36]  D. N. Astrov, “Magnetoelectric effect in chromium oxide,” Soviet Physics JETP, vol. 13, pp. 729–733, 1961.
[37]  B. I. Alshin, D. N. Astrov, and A. V. Tischen, “Magnetoelectric effect in BaCoF4,” JETP Letters, vol. 12, pp. 142–145, 1970.
[38]  D. N. Astrov, B. I. Alshin, R. V. Zorin, and L. A. Drobyshe, “Spontaneous magnetoelectric effect,” Soviet Physics JETP, vol. 28, pp. 1123–1127, 1969.
[39]  R. V. Zorin, A. V. Tischen, and D. N. Astrov, “2-dimensional magnetic ordering in BaMnF4,” Fizika Tverdovo Tela, vol. 14, pp. 3103–3107, 1972.
[40]  B. I. Alshin, D. N. Astrov, and R. V. Zorin, “Low-frequency magnetoelectric resonances in BaMnF4,” Zhurnal Eksperimenti Teoretische Fizik, vol. 63, pp. 2198–2204, 1972.
[41]  R. V. Zorin, D. N. Astrov, and B. I. Alshin, “Low-frequency magnetoelectric resonances in BaCoF4,” Zhurnal Eksperimenti Teoretische Fizik, vol. 62, pp. 1201–1120, 1972.
[42]  D. R. Tilley and J. F. Scott, “Frequency dependence of magnetoelectric phenomena in BaMnf4,” Physical Review B, vol. 25, no. 5, pp. 3251–3260, 1982.
[43]  E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Crystal Structure of pyroelectric paramagnetic barium cobalt fluoride, BaCoF4,” Journal of Chemical Physics, vol. 53, pp. 3279–3283, 1970.
[44]  C. Ederer and N. A. Spaldin, “Recent progress in first-principles studies of magnetoelectric multiferroics,” Current Opinion in Solid State and Materials Science, vol. 9, no. 3, pp. 128–139, 2005.
[45]  C. Ederer and N. A. Spaldin, “Electric-field-switchable magnets: the case of BaNiF4,” Physical Review B, vol. 74, no. 2, Article ID 020401, 2006.
[46]  E. L. Venturini and F. R. Morgenthaler, “AFMR versus orientation in weakly ferromagnetic BaMnF4,” AIP Conference Proceedings, vol. 24, pp. 168–169, 1975.
[47]  S. A. Kizhaev, Ioffe Institute, private communication, 1981.
[48]  S. A. Kizhaev and R. V. Pisarev, “Dielectric and magnetic properties of BaMnF4 at low temperatures,” Fizika Tverdogo Tela, vol. 26, pp. 1669–1674, 1984.
[49]  L. A. Prozorova, Kapitza Institute, private communication, 1981.
[50]  A. K. Zvezdin and A. P. Pyatakov, “Symmetry and magnetoelectric interactions in BaMnF4,” Low Temperature Physics, vol. 36, no. 6, Article ID 006006LTP, pp. 532–537, 2010.
[51]  R. R. Birss, “Magnetic symmetry and forbidden effects,” Americam Journal of Physics, vol. 32, no. 2, Article ID 142150, 1964.
[52]  J. F. Scott, “Phase transitions in BaMnF4,” Reports on Progress in Physics, vol. 42, no. 6, pp. 1055–1084, 1979.
[53]  D. L. Fox, D. R. Tilley, J. F. Scott, and H. J. Guggenheim, “Magnetoelectric phenomena in BaMnF4 and BaMn0.99Co0.01F4,” Physical Review B, vol. 21, no. 7, pp. 2926–2936, 1980.
[54]  D. L. Fox and J. F. Scott, “Ferroelectrically induced ferromagnetism,” Journal of Physics C, vol. 10, no. 11, pp. L329–L331, 1977.
[55]  J. F. Scott, “Mechanisms of dielectric anomalies in BaMnF4,” Physical Review B, vol. 16, no. 5, pp. 2329–2331, 1977.
[56]  G. A. Samara and J. F. Scott, “Dielectric anomalies in BaMnF4 at low temperatures,” Solid State Communications, vol. 21, no. 2, pp. 167–170, 1977.
[57]  O. Bonfim and G. Gehring, “Magnetoelectric effect in crystals,” Advances in Physics, vol. 29, pp. 731–769, 1980.
[58]  G. Catalan, “Magnetocapacitance without magnetoelectric coupling,” Applied Physics Letters, vol. 88, Article ID 102902, 2006.
[59]  J. F. Scott, “Electrical characterization of magnetoelectrical materials,” Journal of Materials Research, vol. 22, no. 8, pp. 2053–2062, 2007.
[60]  G. Catalan and J. F. Scott, “Magnetoelectrics: is CdCr2S4 a multiferroic relaxor?” Nature, vol. 448, no. 7156, pp. E4–E5, 2007.
[61]  D. Staresini?, P. Lunkenheimer, J. Hemberger, K. Biljakovi?, and A. Loidl, “Giant dielectric response in the one-dimensional charge-ordered semiconductor (NbSe4)3I,” Physical Review Letters, vol. 96, no. 4, Article ID 046402, 2006.
[62]  P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, “Relaxation dynamics and colossal magnetocapacitive effect in CdCr2S4,” Physical Review B, vol. 72, no. 6, Article ID 060103, 2005.
[63]  J. Hemberger, P. Lunkenheimer, R. Fichtl, H. A. Krug Von Nidda, V. Tsurkan, and A. Loidl, “Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4,” Nature, vol. 434, no. 7031, pp. 364–367, 2005.
[64]  S. Krohns, F. Schrettle, P. Lunkenheimer, V. Tsurkan, and A. Loidl, “Colossal magnetocapacitive effect in differently synthesized and doped CdCr2S4,” Physica B, vol. 403, no. 23-24, pp. 4224–4227, 2008.
[65]  J. Hemberger, P. Lunkenheimer, R. Fichtl, H. A. K. Von Nidda, V. Tsurkan, and A. Loidl, “Magnetoelectrics: is CdCr2S4 a multiferroic relaxor? (Reply),” Nature, vol. 448, no. 7156, pp. E5–E6, 2007.
[66]  S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, “Colossal magnetocapacitance and colossal magnetoresistance in HgCr2S4,” Physical Review Letters, vol. 96, no. 15, Article ID 157202, 2006.
[67]  H. Kliem and B. Martin, “Pseudo-ferroelectric properties by space charge polarization,” Journal of Physics Condensed Matter, vol. 20, no. 32, Article ID 321001, 2008.
[68]  N. Ortega, A. Kumar, R. S. Katiyar, and J. F. Scott, “Maxwell-Wagner space charge effects on the Pb(Zr,Ti)O3—CoFe2O4 multilayers,” Applied Physics Letters, vol. 91, no. 10, Article ID 102902, 2007.
[69]  E. L. Albuquerque and D. R. Tilley, “Mode mixing and dielectric function,” Solid State Communications, vol. 26, no. 11, pp. 817–821, 1978.
[70]  A. M. Glass, M. E. Lines, M. Eibschutz, F. S. L. Hsu, and H. J. Guggenheim, “Observation of anomalous pyroelectric behavior in BaNiF4 due to cooperative magnetic singularity,” Communications on Physics, vol. 2, no. 4, pp. 103–107, 1977.
[71]  T. J. Negran, “Measurement of the thermal diffusivity in BaMnF4 by means of its intrinsic pyroelectric response,” Ferroelectrics, vol. 34, pp. 285–289, 1981.
[72]  S. L. Hou and N. Bloembergen, “Paramagnetoelectric effects in NiSO4·6H2O,” Physical Review, vol. 138, pp. A1218–A1226, 1965.
[73]  P. Sciau, M. Clin, J. P. Rivera, and H. Schmid, “Magnetoelectric measurements on BaMnF4,” Ferroelectrics, vol. 105, pp. 201–206, 1990.
[74]  A. K. Zvezdin, G. P. Vorob'ev, and A. M. Kadomsteva, “Quadratic magnetoelectric effect and the role of the magnetocaloric effect in the magnetoelectric properties of multiferroic BaMnF4,” Journal of Experimental and Theoretical Physics, vol. 109, pp. 221–226, 2009.
[75]  J. M. Perez-Mato, Summer School on Multiferroics, Girona, Spain, 2008.
[76]  N. A. Benedek and C. J. Fennie, “Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling,” Physical Review Letters, vol. 106, no. 10, Article ID 107204, 2011.
[77]  E. T. Keve, S. C. Abrahams, and J. L. Bernstein, “Crystal structure of pyroelectric paramagnetic barium manganese fluoride, BaMnF4,” The Journal of Chemical Physics, vol. 51, no. 11, Article ID 4928, 9 pages, 1969.
[78]  C. Ederer and C. J. Fennie, “Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO3 versus BiFeO3,” Journal of Physics Condensed Matter, vol. 20, no. 43, Article ID 434219, 2008.
[79]  C. Ederer and N. A. Spaldin, “Origin of ferroelectricity in the multiferroic barium fluorides BaMF4: a first principles study,” Physical Review B, vol. 74, Article ID 024102, 2006.
[80]  J. F. Scott, “Phase transitions in BaMnF4,” Reports on Progress in Physics, vol. 42, no. 6, Article ID 1055, 1979.
[81]  D. E. Cox, S. M. Shapiro, R. J. Nelmes et al., “X-ray- and neutron-diffraction measurements on BaMnF4,” Physical Review B, vol. 28, no. 3, pp. 1640–1643, 1983.
[82]  A. Levstik, R. Blinc, P. Kadaba, S. Cizikov, I. Levstik, and C. Filipic, “Multiple phase transitions in BaMnF4,” Ferroelectrics, vol. 4, pp. 703–707, 1976.
[83]  M. Hidaka, T. Nakayama, J. F. Scott, and J. S. Storey, “Piezoelectric resonance study of structural anomalies in BaMnF4,” Physica B+C, vol. 133, no. 1, pp. 1–9, 1985.
[84]  J. F. Scott, F. Habbal, and M. Hidaka, “Phase transitions in BaMnF4: specific heat,” Physical Review B, vol. 25, no. 3, pp. 1805–1812, 1982.
[85]  M. Barthes-Regis, R. Almairac, P. St-Gregoire et al., “Temperature dependence of the wave vector of the incommensurate modulstion in two BaMnF4 crystals—neutron and X-ray measurements,” Journal de Physique Lettres, vol. 44, no. 19, pp. 829–835, 1983.
[86]  P. St. Gregoire, M. Barthes, R. Almairac et al., “On the incommensurate phase in BaMnF4,” Ferroelectrics, vol. 53, pp. 307–310, 1984.
[87]  B. B. Lavrencic and J. F. Scott, “Dynamical model for the polar-incommensurate transition in BaMnF4,” Physical Review B, vol. 24, no. 5, pp. 2711–2717, 1981.
[88]  A. Levstik, V. Bobnar, C. Filipi? et al., “Magnetoelectric relaxor,” Applied Physics Letters, vol. 91, no. 1, Article ID 012905, 2007.
[89]  A. Levstik, C. Filipi?, V. Bobnar et al., “0.3Pb(Fe1/2Nb1/2)O3-0.7Pb (Mg1/2W1/2)O3: a magnetic and electric relaxor,” Journal of Applied Physics, vol. 104, no. 5, Article ID 054113, 2008.
[90]  G. Nénert and T. T. M. Palstra, “Prediction for new magnetoelectric fluorides,” Journal of Physics Condensed Matter, vol. 19, no. 40, Article ID 406213, 2007.
[91]  R. Blinc, G. Tav?ar, B. Zemva, and J. F. Scott, “Electron paramagnetic resonance and Mossbauer study of antiferromagnetic K3Cu3Fe2F15,” Journal of Applied Physics, vol. 106, Article ID 023924, 2009.
[92]  R. Blinc, G. Tav?ar, B. ?emva et al., “Weak ferromagnetism and ferroelectricity in K3Fe5F15,” Journal of Applied Physics, vol. 103, Article ID 074114, 2008.
[93]  R. Blinc, B. Zalar, P. Cevc et al., “39K NMR and EPR study of multiferroic K3Fe5F15,” Journal of Physics Condensed Matter, vol. 21, no. 4, Article ID 045902, 2009.
[94]  A. Levstik, C. Filipic, and V. Bobnar, “Polarons in magnetoelectric (K3Fe3Cr2F15),” Journal of Apploed Physics, vol. 106, Article ID 073720, 2009.
[95]  R. Blinc, B. Zalar, P. Cevc et al., “39K NMR and EPR study of multiferroic K3Fe5F15,” Journal of Physics Condensed Matter, vol. 21, no. 4, Article ID 045902, 2009.
[96]  S. C. Abrahams, “Systematic prediction of new inorganic ferroelectrics in point group 4,” Acta Crystallographica Section B, vol. 55, no. 4, pp. 494–506, 1999.
[97]  S. C. Abrahams, “Structurally based predictions of ferroelectricity in 7 inorganic materials with space group Pba2 and two experimental confirmations,” Acta Crystallographica B, vol. 45, pp. 228–232, 1989.
[98]  K. Yamauchi and S. Picozzi, “Interplay between charge order, ferroelectricity, and ferroelasticity: tungsten bronze structures as a playground for multiferroicity,” Physical Review Letters, vol. 105, no. 10, Article ID 107202, 2010.
[99]  N. Yedukondalu, K. R. Babu, C. Bheemalingam, D. J. Singh, G. Vaitheeswaran, and V. Kanchana, “Electronic structure, optical properties, and bonding in alkaline-earth halofluoride scintillators: BaClF, BaBrF, and BaIF,” Physical Review B, vol. 83, no. 16, Article ID 165117, 7 pages, 2011.
[100]  J. F. Scott, “Raman spectra of BaClF, BaBrF, and SrClF,” The Journal of Chemical Physics, vol. 49, no. 6, pp. 2766–2769, 1968.
[101]  A. Kumar, R. S. Katiyar, R. N. Premnath, C. Rinaldi, and J. F. Scott, “Strain-induced artificial multiferroicity in Pb(Zr0.53Ti0.47)O3/Pb(Fe0.66W0.33)O3 layered nanostructure at ambient temperature,” Journal of Materials Science, vol. 44, no. 19, pp. 5113–5119, 2009.
[102]  A. Kumar, N. M. Murari, and R. S. Katiyar, “Investigation of dielectric and electrical behavior in Pb(Fe0.66W0.33)0.50Ti0.50O3 thin films by impedance spectroscopy,” Journal of Alloys and Compounds, vol. 469, no. 1-2, pp. 433–440, 2009.
[103]  W. Peng, N. Lemee, J. L. Dellis et al., “Epitaxial growth and magnetoelectric relaxor behavior in multiferroic 0.8Pb (Fe1/2Nb1/2)O3-0.2Pb (Mg1/2W1/2)O3 thin films,” Applied Physics Letters, vol. 95, no. 13, Article ID 132507, 2009.
[104]  J. F. Scott, R. Palai, A. Kumar et al., “New phase transitions in perovskite oxides: BiFeO3, SrSnO3, and Pb(Fe2/3W1/3)1/2Ti1/2O3,” Journal of the American Ceramic Society, vol. 91, no. 6, pp. 1762–1768, 2008.
[105]  A. Kumar, I. Rivera, R. S. Katiyar, and J. F. Scott, “Multiferroic Pb (Fe0.66W0.33)0.80Ti0.20O3 thin films: a room-temperature relaxor ferroelectric and weak ferromagnetic,” Applied Physics Letters, vol. 92, no. 13, Article ID 132913, 2008.
[106]  R. N. P. Choudhary, D. K. Pradhan, C. M. Tirado, G. E. Bonilla, and R. S. Katiyar, “Effect of la substitution on structural and electrical properties of Ba(Fe2/3W1/3)O3 nanoceramics,” Journal of Materials Science, vol. 42, no. 17, pp. 7423–7432, 2007.
[107]  A. Kumar, N. M. Murari, R. S. Katiyar, and J. F. Scott, “Probing the ferroelectric phase transition through Raman spectroscopy in Pb (Fe2/3W1/3)1/2Ti1/2O3 thin films,” Applied Physics Letters, vol. 90, no. 26, Article ID 262907, 2007.
[108]  R. N. P. Choudhary, D. K. Pradhan, C. M. Tirado, G. E. Bonilla, and R. S. Katiyar, “Impedance characteristics of Pb(Fe2/3W1/3)O3-BiFeO3 composites,” Physica Status Solidi, vol. 244, no. 6, pp. 2354–2366, 2007.
[109]  A. Kumar, N. M. Murari, and R. S. Katiyar, “Diffused phase transition and relaxor behavior in Pb(Fe2/3W1/3)O3 thin films,” Applied Physics Letters, vol. 90, no. 16, Article ID 162903, 2007.
[110]  R. N. P. Choudhury, C. Rodríguez, P. Bhattacharya, R. S. Katiyar, and C. Rinaldi, “Low-frequency dielectric dispersion and magnetic properties of La, Gd modified Pb(Fe1/2Ta1/2)O3 multiferroics,” Journal of Magnetism and Magnetic Materials, vol. 313, no. 2, pp. 253–260, 2007.
[111]  W. Peng, N. Lemée, J. Holc, M. Kosec, R. Blinc, and M. G. Karkut, “Epitaxial growth and structural characterization of Pb(Fe1/2Nb1/2)O3 thin films,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 11, pp. 1754–1757, 2009.
[112]  W. Peng, N. Lemee, and M. Karkut, “Spin-lattice coupling in multiferroic thin films,” Applied Physics Leters, vol. 94, Article ID 012509, 2009.
[113]  A. Kumar, R. S. Katiyar, C. Rinaldi, S. G. Lushnikov, and T. A. Shaplygina, “Glasslike state in PbFe1/2Nb1/2O3 single crystal,” Applied Physics Letters, vol. 93, no. 23, Article ID 232902, 2008.
[114]  M. Correa, A. Kumar, and R. S. Katiyar, “Observation of magnetoelectric coupling in glassy epitaxial Pb(Fe1/2Nb1/2)O3 thin films,” Applied Physics Leters, vol. 93, Article ID 192907, 2008.
[115]  D. Varshney, R. N. P. Choudhary, C. Rinaldi, and R. S. Katiyar, “Dielectric dispersion and magnetic properties of Ba-modified Pb(Fe 1/2Nb1/2)O3,” Applied Physics A, vol. 89, no. 3, pp. 793–798, 2007.
[116]  D. Varshney, R. N. P. Choudhary, and R. S. Katiyar, “Low frequency dielectric response of mechanosynthesized (Pb0.9Ba0.1) (Fe0.50Nb0.50)O3 nanoceramics,” Applied Physics Letters, vol. 89, no. 17, Article ID 172901, 2006.
[117]  K. H. Fischer and J. A. Hertz, Spin Glasses, Cambridge University Press, Cambridge, UK, 1991.
[118]  M. K. Singh, W. Prellier, M. P. Singh, R. S. Katiyar, and J. F. Scott, “Spin-glass transition in single-crystal BiFeO3,” Physical Review B, vol. 77, no. 14, Article ID 144403, 2008.
[119]  M. M. Parish and P. B. Littlewood, “Magnetocapacitance in nonmagnetic composite media,” Physical Review Letters, vol. 101, no. 16, Article ID 166602, 2008.
[120]  M. K. Singh, R. S. Katiyar, W. Prellier, and J. F. Scott, “The Almeida-Thouless line in BiFeO3: is bismuth ferrite a mean field spin glass?” Journal of Physics Condensed Matter, vol. 21, no. 4, Article ID 042202, 2009.
[121]  I. E. Dzyaloshinskii, “Magnetoelectric to multiferroic phase transitions,” Europhysics Letters, vol. 96, no. 1, Article ID 17001, 2011.
[122]  R. Pirc, R. Blinc, and J. F. Scott, “Mesoscopic model of a system possessing both relaxor ferroelectric and relaxor ferromagnetic properties,” Physical Review B, vol. 79, no. 21, Article ID 214114, 2009.
[123]  A. Kumar, G. L. Sharma, R. S. Katiyar, and J. F. Scott, “Magnetic control of large roomtemperature polarization,” Journal of Physics Condensed Matter, vol. 21, Article ID 382204, 2009.
[124]  M. Kempa, S. Kamba, M. Savinov et al., “Bulk dielectric and magnetic properties of PFW-PZT ceramics: absence of magnetically switched-off polarization,” Journal of Physics Condensed Matter, vol. 22, no. 44, Article ID 4453002, 2010.
[125]  D. Lee, Y. A. Park, S. M. Yang et al., “Suppressed magnetoelectric effect in epitaxially grown multiferroic Pb(Zr0.57Tix0.57)O3-Pb(Fe2/3W1/3)O3 solid-solution thin films,” Journal of Physics D, vol. 43, no. 45, Article ID 455403, 2010.
[126]  K. S. A. Butcher, T. L. Tansley, and D. Alexiev, “An instrumental solution to the phenomenon of negative capacitances in semiconductors,” Solid-State Electronics, vol. 39, no. 3, pp. 333–336, 1996.
[127]  P. Zubko, University of Geneva, Private Communication.
[128]  M. Ershov, H. C. Liu, L. Li, M. Buchanan, Z. R. Wasilewski, and A. K. Jonscher, “Negative capacitance effect in semiconductor devices,” IEEE Transactions on Electron Devices, vol. 45, no. 10, pp. 2196–2206, 1998.
[129]  R. Martínez, A. Kumar, R. Palai, J. F. Scott, and R. S. Katiyar, “Impedance spectroscopy analysis of Ba0.7Sr0.3TiO3/La0.7Sr0.3MnO3 heterostructure,” Journal of Physics D, vol. 44, no. 10, Article ID 105302, 2011.
[130]  A. Kumar, R. S. Katiyar, and J. F. Scott, “Positive temperature coefficient of resistivity and negative differential resistivity in lead iron tungstate-lead zirconate titanate,” Applied Physics Letters, vol. 94, Article ID 212903, 2009.
[131]  M. Dawber and J. F. Scott, “Negative differential resistivity and positive temperature coefficient of resistivity effect in the diffusion-limited current of ferroelectric thin-film capacitors,” Journal of Physics Condensed Matter, vol. 16, no. 49, pp. L515–L521, 2004.
[132]  A. Levstik, C. Filipi?, and J. Holc, “The magnetoelectric coefficients of Pb (Fe1/2Nb1/2)O3 and 0.8Pb (Fe1/2Nb1/2)O3 -0.2Pb (Mg1/2W1/2) O3,” Journal of Applied Physics, vol. 103, no. 6, Article ID 066106, 2008.
[133]  J. Ravez, “The inorganic fluoride and oxyfluoride ferroelectrics,” Journal de Physique III, vol. 7, no. 6, pp. 1129–1144, 1997.
[134]  S. C. Abrahams, J. Albertsson, and C. Svensson, “Structure of Pb5Cr3F19 at 295K,” Acta Crystallographica B, vol. 46, pp. 497–502, 1990.
[135]  S. Sarraute, J. Ravez, R. Von Der Mühll, G. Bravic, R. S. Feigelson, and S. C. Abrahams, “Structure of ferroelectric Pb5Al3F19 at 160 K, polarization Reversal and Relationship to Ferroelectric Pb5Cr3F19 at 295 K,” Acta Crystallographica Section B, vol. 52, no. 1, pp. 72–77, 1996.
[136]  E. Kroumova, M. I. Aroyo, J. M. Perrez-Mato, and M. R. Hundt, “Ferroelectric-paraelectric phase transitions with no group-supergroup relation between the space groups of both phases?” Acta Crystallographica B, vol. 57, pp. 599–601, 2001.
[137]  M. Lorient, R. VonderMuhll, J. Ravez, and A. Tressaud, “Etude de la transition de phase de (NH4) 3FeF6 par mesures dielectriques et de thermocourant,” Solid State Communications, vol. 36, no. 5, pp. 383–385, 1980.
[138]  M. Lorient, R. Von der Mühll, A. Tressaud, and J. Ravez, “Polarisation remanente dans les varietes de basse temperature de (NH4)3AlF6 ET (NH4)3FeF6,” Solid State Communications, vol. 40, no. 9, pp. 847–852, 1981.
[139]  R. . Blinc, P. Cevc, G. Tavcar, Z. Trontelj, V. V. Laguta, and J. F. Scott, “Magnetism in Pb5Cr3F19,” Physical Review B, vol. 85, Article ID 054419, 2012.
[140]  C. T. Nelson, P. Gao, J. R. Jokisaari, et al., “Domain dynamics during ferroelectric switching,” Science, vol. 334, no. 6058, pp. 968–971, 2011.
[141]  C. L. Jia, K. W. Urban, M. Alexe, D. Hesse, and I. Vrejoiu, “Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr, Ti)O3,” Science, vol. 331, no. 6023, pp. 1420–1423, 2011.
[142]  A. Fousková, “Increase in permittivity of ferroelectrics as a consequence of polarization reversal,” Journal of the Physical Society of Japan, vol. 20, no. 9, pp. 1625–1628, 1965.
[143]  A. Fouskova and V. Janousek, “Permittivity of rochelle salt during switching,” Czechoslovak Journal of Physics, vol. 12, no. 5, pp. 413–416, 1962.
[144]  J. Seidel, L. W. Martin, Q. He et al., “Conduction at domain walls in oxide multiferroics,” Nature Materials, vol. 8, no. 3, pp. 229–234, 2009.
[145]  A. Aird and E. K. H. Salje, “Sheet superconductivity in twin walls: experimental evidence of WO3-x,” Journal of Physics Condensed Matter, vol. 10, no. 22, pp. L377–L380, 1998.
[146]  J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, “Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films,” Advanced Materials, vol. 23, no. 45, pp. 5377–5382, 2011.
[147]  S. Farokhipoor and B. Noheda, “Conduction through 71 degrees domain walls in BiFeO3 thin films,” Physical Review Letters, vol. 107, no. 12, Article ID 127601, 2011.
[148]  J. Privratska and V. Janovec, “Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic magnetoelectric domains,” in Proceedings of the 3rd International Conference on Magnetoelectric Interaction Phenomena in Crystals (MEIPIC '96), Novgorod, Russia, September 1996.
[149]  J. Privratska and V. Janovec, “Pyromagnetic domain walls connecting antiferromagnetic non-ferroelastic magnetoelectric domains,” Ferroelectrics, vol. 204, no. 1–4, pp. 321–331, 1997.
[150]  M. Daraktchiev, G. Catalan, and J. F. Scott, “Landau theory of ferroelectric domain walls in magnetoelectrics,” Ferroelectrics, vol. 375, no. 1, pp. 122–131, 2008.
[151]  M. Daraktchiev, G. Catalan, and J. F. Scott, “Landau theory of domain wall magnetoelectricity,” Physical Review B, vol. 81, no. 22, Article ID 224118, 2010.
[152]  M. Molotskii, Y. Rosenwaks, and G. Rosenman, “Ferroelectric domain breakdown,” Annual Review of Materials Research, vol. 37, pp. 271–296, 2007.
[153]  A. Agronin, M. Molotskii, Y. Rosenwaks et al., “Dynamics of ferroelectric domain growth in the field of atomic force microscope,” Journal of Applied Physics, vol. 99, no. 10, Article ID 104102, 2006.
[154]  I. I. Naumov, L. Bellaiche, and H. Fu, “Unusual phase transitions in ferroelectric nanodisks and nanorods,” Nature, vol. 432, no. 7018, pp. 737–740, 2004.
[155]  I. I. Naumov and H. X. Fu, “Vortex-to-polarization phase transformation path in lead zirconate-titanate nanoparticles,” Physical Review Letters, vol. 98, Article ID 077603, 2007.
[156]  V. L. Ginzburg, A. A. Gorbatsevich, and Y. V. Kopaev, “On the problem of super diamagnetism,” Solid State Communications, vol. 50, pp. 339–343, 1984.
[157]  A. A. Gorbatsevich and Y. V. Kopaev, “Toroidal order in ferroelectric crystals,” Ferroelectrics, vol. 161, pp. 321–330, 1994.
[158]  B. B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, “Observation of ferrotoroidic domains,” Nature, vol. 449, no. 7163, pp. 702–705, 2007.
[159]  P. Paruch, T. Giamarchi, T. Tybell, and J. M. Triscone, “Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films,” Journal of Applied Physics, vol. 100, no. 5, Article ID 051608, 2006.
[160]  R. McQuaig, Atomic force microscopy of ferroelectric domains [Ph.D. thesis], Queens University Belfast, 2012.
[161]  D. J. Srolovitz and J. F. Scott, “Clock-model description of incommensurate ferroelectric films and of nematic-liquid-crystal films,” Physical Review B, vol. 34, no. 3, pp. 1815–1819, 1986.
[162]  S. Komineas, “Scattering of magnetic solitons in two dimensions,” Physica D, vol. 155, no. 3-4, pp. 223–234, 2001.
[163]  F. De Guerville, M. E. Marssi, I. Lukyanchuk, and L. Lahoche, “Ferroelectric domains in thin films and superlattices: results of numerical modeling,” Ferroelectrics, vol. 359, no. 1, pp. 14–20, 2007.
[164]  M. Axenides, S. Komineas, L. Perivolaropoulos, and M. Floratos, “Dynamics of nontopological solitons: Q balls,” Physical Review D, vol. 61, no. 8, Article ID 085006, pp. 1–11, 2000.
[165]  L. Baudry, I. A. Lukyanchuk, and A. Sene, “Inhomogeneous polarization switching in finite-size cubic ferroelectrics,” Ferroelectrics, vol. 427, pp. 34–40, 2012.
[166]  L. Baudry, I. A. Lukyanchuk, and A. Sene, “Switching properties of nano-scale multi-axial ferroelectrics: geometry and interface effects,” Integrated Ferroelectrics, vol. 133, pp. 96–102, 2012.
[167]  D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, “Magnetic domain-wall logic,” Science, vol. 309, no. 5741, pp. 1688–1692, 2005.
[168]  S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science, vol. 320, no. 5873, pp. 190–194, 2008.
[169]  G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, “Domain wall nanoelectronics,” Reviews of Modern Physics, vol. 84, pp. 119–156, 2012.
[170]  G. Catalan, H. Béa, S. Fusil et al., “Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3,” Physical Review Letters, vol. 100, no. 2, Article ID 027602, 2008.
[171]  G. A. Smolensky, V. A. Isupov, and A. I. Agranovskaya, “Ferroelectrics of the oxygen octahedral type with layered structure,” Soviet Physics, vol. 3, no. 3, pp. 651–655, 1961.
[172]  R. Palai, R. S. Katiyar, H. Schmid et al., “β phase and γ-β metal-insulator transition in multiferroic BiFeO3,” Physical Review B, vol. 77, no. 1, Article ID 014110, 2008.
[173]  G. Catalan and J. F. Scott, “Physics and applications of bismuth ferrite,” Advanced Materials, vol. 21, no. 24, pp. 2463–2485, 2009.
[174]  D. C. Arnold, K. S. Knight, F. D. Morrison, and P. Lightfoot, “Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic β phase,” Physical Review Letters, vol. 102, no. 2, Article ID 027602, 2009.
[175]  D. C. Arnold, K. S. Knight, G. Catalan et al., “The β-to-γ transition in BiFeO3: a powder neutron diffraction study,” Advanced Functional Materials, vol. 20, no. 13, pp. 2116–2123, 2010.
[176]  X. Martí, P. Ferrer, J. Herrero-Albillos et al., “Skin layer of BiFeO3 single crystals,” Physical Review Letters, vol. 106, no. 23, Article ID 236101, 2011.
[177]  M. Polomska, W. Kaczmarek, and Z. Pajak, “Electric and magnetic properties of (Bi1-XLaX)FeO3 solid solutions,” Physica Status Solidi A, vol. 23, no. 2, pp. 567–574, 1974.
[178]  A. Kumar, J. F. Scott, R. Martinez, G. Srinivasan, and R. S. Katiyar, “In-plane dielectric and magnetoelectric studies of BiFeO3,” Physica Status Solidi, vol. 309, pp. 1207–1212, 2012.
[179]  A. Kumar, J. F. Scott, and R. S. Katiyar, “Magnon raman spectroscopy and in-plane dielectric response in BiFeO3: relation to the polomska transition,” Physical Review B, vol. 85, Article ID 224410, 2012.
[180]  M. K. Singh, R. S. Katiyar, and J. F. Scott, “New magnetic phase transitions in BiFeO3,” Journal of Physics Condensed Matter, vol. 20, no. 25, Article ID 252203, 2008.
[181]  M. Cazayous, Y. Gallais, A. Sacuto, R. De Sousa, D. Lebeugle, and D. Colson, “Possible observation of cycloidal electromagnons in BiFeO3,” Physical Review Letters, vol. 101, no. 3, Article ID 037601, 2008.
[182]  J. F. Scott, M. K. Singh, and R. S. Katiyar, “Critical phenomena at the 140 and 200 K magnetic phase transitions in BiFeO3,” Journal of Physics Condensed Matter, vol. 20, no. 32, Article ID 322203, 2008.
[183]  R. Jarrier, X. Marti, J. Herrero-Albillos, et al., “Surface phase transitions in BiFeO3 below room temperature,” Physical Review B, vol. 85, Article ID 184104, 2012.
[184]  J. Herrero-Albillos, G. Catalan, J. A. Rodriguez-Velamazan, M. Viret, D. Colson, and J. F. Scott, “Neutron diffraction study of the BiFeO3 spin cycloid at low temperature,” Journal of Physics Condensed Matter, vol. 22, no. 25, Article ID 256001, 2010.
[185]  M. Tonouchi, “THz radiation by optically controlled depolarization in BiFeO3,” in Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz '10), Rome, Italy, September 2010.
[186]  L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM Journal of Research and Development, vol. 14, no. 1, pp. 61–65, 1970.
[187]  K. M. Rabe, M. Dawber, C. Lichtensteiger, C. H. Ahn, and J. M. Triscone, “Modern physics of ferroelectrics: essential background,” Topics in Applied Physics, vol. 105, pp. 1–30, 2007.
[188]  M. Dawber, C. Lichtensteiger, M. Cantoni et al., “Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices,” Physical Review Letters, vol. 95, no. 17, Article ID 177601, 4 pages, 2005.
[189]  J. Y. Jo, P. Chen, R. J. Sichel et al., “Nanosecond dynamics of ferroelectric/dielectric superlattices,” Physical Review Letters, vol. 107, no. 5, Article ID 055501, 2011.
[190]  R. Martínez, A. Kumar, R. Palai, R. S. Katiyar, and J. F. Scott, “Study of physical properties of integrated ferroelectric/ferromagnetic heterostructures,” Journal of Applied Physics, vol. 107, no. 11, Article ID 114107, 2010.
[191]  P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J. M. Triscone, “Interface physics in complex oxide heterostructures,” Annual Review of CondensedMatter Physics, vol. 2, pp. 141–165, 2011.
[192]  S. M. Nakhmanson, K. M. Rabe, and D. Vanderbilt, “Predicting polarization enhancement in multicomponent ferroelectric superlattices,” Physical Review B, vol. 73, no. 6, Article ID 060101, 2006.
[193]  A. Q. Jiang, J. F. Scott, H. B. Lu, and Z. Chen, “Phase transitions and polarizations in epitaxial BaTiO3/SrTiO3 superlattices studied by second-harmonic generation,” Journal of Applied Physics, vol. 93, pp. 1180–1185, 2003.
[194]  S. Ríos, A. Ruediger, A. Q. Jiang, J. F. Scott, H. Lu, and Z. Chen, “Orthorhombic strontium titanate in BaTiO3-SrTiO3 superlattices,” Journal of Physics Condensed Matter, vol. 15, no. 21, pp. L305–L309, 2003.
[195]  K. Johnston, X. Y. Huang, J. B. Neaton, and K. M. Rabe, “Unusual behavior of the polarization in BaTiO3/SrTiO3 superlattices,” Physical Review B, vol. 71, no. 10, Article ID 100103, 2005.
[196]  T. Shigenari, K. Abe, T. Takemoto et al., “Raman spectra of the ferroelectric phase of Sr Ti18O3: symmetry and domains below Tc and the origin of the phase transition,” Physical Review B, vol. 74, no. 17, Article ID 174121, 2006.
[197]  J. F. Scott, J. Bryson, M. A. Carpenter, J. Herrero-Albillos, and M. Itoh, “Elastic and anelastic properties of ferroelectric SrTi18O3 in the kHz-MHz regime,” Physical Review Letters, vol. 106, no. 10, Article ID 105502, 2011.
[198]  M. Takesada, M. Itoh, and T. Yagi, “Perfect softening of the ferroelectric mode in the isotope-exchanged strontium titanate of (SrTiO3)-18O studied by light scattering,” Physical Review Letters, vol. 96, no. 22, Article ID 227602, 2006.
[199]  M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, and J. M. Triscone, “New phenomena at the interfaces of very thin ferroelectric oxides,” Journal of Physics Condensed Matter, vol. 20, no. 26, Article ID 264015, 2008.
[200]  N. Reyren, S. Thiel, A. D. Caviglia et al., “Superconducting interfaces between insulating oxides,” Science, vol. 317, no. 5842, pp. 1196–1199, 2007.
[201]  S. A. Hayward, F. D. Morrison, S. A. T. Redfern et al., “Transformation processes in LaAlO3: neutron diffraction, dielectric, thermal, optical, and Raman studies,” Physical Review B, vol. 72, no. 5, Article ID 054110, 2005.
[202]  V. M. Fridkin, Photoferroelectrics, Springer, Berlin, Germany, 1979.
[203]  J. Seidel, P. Maksymovych, Y. Batra et al., “Domain wall conductivity in La-doped BiFeO3,” Physical Review Letters, vol. 105, no. 19, Article ID 197603, 2010.
[204]  D. Daranciang, M. Highland, H. Wen, et al., “Ultrafast photovoltaic response in ferroelectric nanolayers,” Physical Review Letters, vol. 108, no. 8, Article ID 087601, 2012.
[205]  N. Laman, M. Bieler, and H. M. Van Driel, “Ultrafast shift and injection currents observed in wurtzite semiconductors via emitted terahertz radiation,” Journal of Applied Physics, vol. 98, no. 10, Article ID 103507, 8 pages, 2005.
[206]  M. Alexe and D. Hesse, “Tip-enhanced photovoltaic effects in bismuth ferrite,” Nature Communications, vol. 2, no. 1, article 256, 2011.
[207]  A. Anikiev, L. G. Reznik, B. S. Umarov, and J. F. Scott, “Perturbed polariton spectra in optically damaged LiNbO3,” Ferroelectrics Letters, vol. 3, pp. 89–96, 1985.
[208]  L. G. Reznik, A. A. Anikiev, B. S. Umarov, and J. F. Scott, “Studies of optical damage in lithium niobate in the presence of thermal gradients,” Ferroelectrics, vol. 64, pp. 215–219, 1985.
[209]  L. Landau, “The theory of phase transitions,” Nature, vol. 138, no. 3498, pp. 840–841, 1936.
[210]  A. F. Devonshire, “Theory of BaTiO3,” Philosophical Magazine, vol. 40, no. 309, pp. 1040–1063, 1949.
[211]  A. F. Ermolov, A. P. Levanyuk, and A. S. Sigov, “Anomaly of high frequency sound absorption near the point of structurakl phase transitions in crystals with defects,” Fizika Tverdogo Tela, vol. 21, no. 12, pp. 3628–3633, 1979.
[212]  A. P. Levanyuk and A. S. Sigov, “The influence of defects on the properties of ferroelectrics and related materials near the point of a 2nd kind of phase transition,” Izvestia Akademii Nauk SSSR, vol. 45, no. 9, pp. 1640–1645, 1981.
[213]  A. I. Morozov and A. S. Sigov, “Point defect near the displacive phase transition,” Fizika Tverdogo Tela, vol. 25, no. 5, pp. 1352–1356, 1983.
[214]  Y. M. Kishinets, A. P. Levanyuk, A. I. Morozov, and A. S. Sigov, “Absorption coefficient and sound velocity anomalies in the vicinity of phase transitions of the 2nd kind in crystals with dislocations,” Fizika Tverdogo Tela, vol. 29, no. 2, pp. 601–604, 1987.
[215]  I. J. Fritz, “Ultrasonic attenuation and mechanism for the 250°K antiferrodistortive transition in BaMnF4,” Physical Review Letters, vol. 35, no. 22, pp. 1511–1514, 1975.
[216]  I. J. Fritz, “Ultrasonic velocity measurements near the 250°K phase transition in BaMnF4,” Physics Letters A, vol. 51, no. 4, pp. 219–220, 1975.
[217]  T. Chen, S.-J. Sheih, and J. F. Scott, “Temporal dependence of thermal self-focussing in ferroelectric Ba2NaNb5O15 and Ce+3:SrXBa1-XNb2O6,” Ferroelectrics, vol. 120, pp. 115–129, 1991.
[218]  V. Bobnar and Z. Kutnjak, “High-Temperature dielectric response of (1-x)PbMg1/3Nb2/3O3 -(x)PbTiO3: does burns temperature exist in ferroelectric relaxors?” Journal of Applied Physics, vol. 107, Article ID 084104, 2010.
[219]  J. F. Scott, “Comment on 'High-Temperature dielectric response of (1-x)PbMg1/3Nb2/3O3 –(x)PbTiO3: does burns temperature exist in ferroelectric relaxors?',” Journal of Applied Physics, vol. 108, no. 8, Article ID 086107, 2010.
[220]  K. Samanta, A. K. Arora, T. R. Ravindran, S. Ganesamoorthy, K. Kitamura, and S. Takekawa, “Raman spectroscopic study of structural transition in SrxBa1-xNb2O6,” Vibrational Spectroscopy, vol. 62, pp. 273–278, 2012.
[221]  J. Dec, private communication.
[222]  W. J. Burke, R. J. Pressley, and J. C. Slonczewski, “Raman scattering and phase transitions in stressed SrTiO3,” Solid State Communications, vol. 9, no. 2, pp. 121–124, 1971.
[223]  W. J. Burke and R. J. Pressley, “Stress induced ferroelectricity in SrTiO3,” Solid State Communications, vol. 9, no. 3, pp. 191–195, 1971.
[224]  S. L. Qiu, M. Dutta, H. Z. Cummins, J. P. Wicksted, and S. M. Shapiro, “Extension of the Lifshitz-point concept to first-order phase transitions: incommensurate NaNO2 in a transverse electric field,” Physical Review B, vol. 34, no. 11, pp. 7901–7910, 1986.
[225]  N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, “Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films,” Physical Review Letters, vol. 80, no. 9, pp. 1988–1991, 1998.
[226]  S. P. P. Jones, D. M. Evans, M. A. Carpenter et al., “Phase diagram and phase transitions in ferroelectric tris-sarcosine calcium chloride and its brominated isomorphs,” Physical Review B, vol. 83, no. 9, Article ID 094102, 2011.
[227]  J. F. Scott, “Dielectrics,” Encyclopedia of Applied Physics, vol. 5, pp. 25–35, 1993.
[228]  K. Lee, M. Lee, K. S. Lee, and A. R. Lim, “1H NMR study of the phase transitions of trissarcosine calcium chloride single crystals at low temperature,” Journal of Physics and Chemistry of Solids, vol. 66, no. 10, pp. 1739–1743, 2005.
[229]  H. Haga, A. Onodera, H. Yamashita, and Y. Shiosaki, “New phase transition in ferroelectric tris-sarcosine calcium chloride at low temperature,” Journal of the Physical Society of Japan, vol. 62, pp. 1857–1859, 1993.
[230]  R. B. Laughlin, G. G. Lonzarich, P. Monthoux, and D. Pines, “The quantum criticality conundrum,” Advances in Physics, vol. 50, no. 4, pp. 361–365, 2001.
[231]  E. Fradkin and S. A. Kivelson, “Electron nematic phases proliferate,” Science, vol. 327, no. 5962, pp. 155–156, 2010.
[232]  S. Rowley, R. Smith, and M. Dean, “Ferromagnetic and ferroelectric quantum phase transitions,” Physica Status Solidi B, vol. 247, pp. 469–475, 2010.
[233]  J. F. Scott, R. Pirc, A. Levstik, C. Filipic, and R. Blinc, “Resolving the quantum criticality paradox in O-18 isotopic SrTiO3,” Journal of Physics Condensed Matter, vol. 18, no. 16, pp. L205–L208, 2006.
[234]  W. Windsch, H. Braeter, U. Gutteck, B. Malige, and B. Milsch, “The concentration dependence of the ferroelectric transition temperature of the solid solution of TSCC and TSCB,” Solid State Communications, vol. 42, no. 12, pp. 839–842, 1982.
[235]  H. Suzuki, S. Naher, T. Shimoguchi, M. Mizuno, A. Ryu, and H. Fujishita, “X-ray diffraction measurement below 1 K,” Journal of Low Temperature Physics, vol. 128, no. 1-2, pp. 1–7, 2002.
[236]  S. E. Rowley, L. J. Spalek, R. P. Smith et al., “Ferroelectric quantum criticality,” Nature. In press.
[237]  S. E. Rowley, R. Smith, M. L. Sutherland, P. Alireza, S. S. Saxena, and G. G. Lonzarich, “Quantum criticality and unconventional order in magnetic and dielectric material,” Journal of Physics: Conference Series, vol. 400, Article ID 032048, 2012.
[238]  A. V. Bune, V. M. Fridkin, S. Ducharme et al., “Two-dimensional ferroelectric films,” Nature, vol. 391, no. 6670, pp. 874–877, 1998.
[239]  R. Gaynutdinov, S. Yudin, S. Ducharme, and V. Fridkin, “Homogeneous switching in ultrathin ferroelectric films,” Journal of Physics Condensed Matter, vol. 24, no. 1, Article ID 015902, 2012.
[240]  L. Zhang, “Field induced phase transition and dielectric energy density in PVDF terpolymers,” Europhysics Letters, vol. 91, Article ID 47001, 2010.
[241]  J. F. Scott, “Switching of ferroelectrics without domains,” Advanced Materials, vol. 22, no. 46, pp. 5315–5317, 2010.
[242]  M. J. Highland, T. T. Fister, M. I. Richard et al., “Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3,” Physical Review Letters, vol. 105, no. 16, Article ID 167601, 2010.
[243]  J. F. Scott, “Lattice perturbations in CaWO4 and CaMoO4,” The Journal of Chemical Physics, vol. 48, no. 2, pp. 874–878, 1968.
[244]  J. F. Scott, “Dipole-dipole interactions in tungstates,” The Journal of Chemical Physics, vol. 49, no. 1, pp. 98–100, 1968.
[245]  W. Ma and L. E. Cross, “Flexoelectricity of barium titanate,” Applied Physics Letters, vol. 88, Article ID 232902, 2006.
[246]  W. Ma and L. E. Cross, “Flexoelectric effect in ceramic lead zirconate titanate,” Applied Physics Letters, vol. 86, no. 7, Article ID 072905, 2005.
[247]  A. K. Tagantsev, “Piezoelectricity and flexoelectricity in crystalline dielectrics,” Physical Review B, vol. 34, no. 8, pp. 5883–5889, 1986.
[248]  P. Zubko, G. Catalan, P. R. L. Welche, A. Buckley, and J. F. Scott, “Strain gradient induced polarization in SrTiO3,” Physical Review Letters, vol. 99, Article ID 167601, 2007.
[249]  J. Hong, G. Catalan, J. F. Scott, and E. Artacho, “The flexoelectricity of barium and strontium titanates from first principles,” Journal of Physics Condensed Matter, vol. 22, no. 11, Article ID 112201, 2010.
[250]  R. Resta, “Towards a bulk theory of flexoelectricity,” Physical Review Letters, vol. 105, no. 12, Article ID 127601, 2010.
[251]  J.-W. Hong and D. Vanderbilt, “First-principles theory of frozen-ion flexoelectricity,” Physical Review B, vol. 84, no. 18, Article ID 180101, 2011.
[252]  H. Zhou, J. Hong, Y. Zhang, F. Li, Y. Pei, and D. Fang, “External uniform electric field removing flexoelectric effect in epitaxial ferroelectric thin films,” Europhysics Letters, vol. 99, no. 4, Article ID 47003.
[253]  D. Lee, A. Yoon, S. Y. Jang et al., “Giant flexoelectric effect in ferroelectric epitaxial thin films,” Physical Review Letters, vol. 107, no. 5, Article ID 057602, 2011.
[254]  H. Lu, C. W. Bark, D. E. De los Ojos et al., “Mechanical writing of ferroelectric polarization,” Science, vol. 336, no. 6077, pp. 59–61, 2012.
[255]  L. E. Cross, “Relaxor ferroelectrics,” Ferroelectrics, vol. 76, no. 3-4, pp. 241–267, 1987.
[256]  M. D. Glinchuk, “Relaxor ferroelectrics: from cross superparaelectric model to random field theory,” British Ceramic Transactions, vol. 103, no. 2, pp. 76–82, 2004.
[257]  R. Pirc and R. Blinc, “Spherical random-bond-random-field model of relaxor ferroelectrics,” Physical Review B, vol. 60, no. 19, pp. 13470–13478, 1999.
[258]  R. Pirc and R. Blinc, “Vogel-Fulcher freezing in relaxor ferroelectrics,” Physical Review B, vol. 76, no. 2, Article ID 020101, 2007.
[259]  Z. Kutnjak, J. Petzelt, and R. Blinc, “The giant electromechanical response in ferroelectric relaxors as a critical phenomenon,” Nature, vol. 441, no. 7096, pp. 956–959, 2006.
[260]  J. Dec, W. Kleemann, and V. V. Shvartsman, “From mesoscopic to global polar order in the uniaxial relaxor ferroelectric Sr0.8Ba0.2Nb2O6,” Applied Physics Letters, vol. 100, no. 5, Article ID 052903, 2012.
[261]  J. F. Scott, “Absence of true critical exponents in relaxor ferroelectrics: the case for defect dynamics,” Journal of Physics Condensed Matter, vol. 18, no. 31, pp. 7123–7134, 2006.
[262]  W. Kleemann, J. Dec, V. V. Shvartsman, Z. Kutnjak, and T. Braun, “Two-dimensional ising model criticality in a three-dimensional uniaxial relaxor ferroelectric with frozen polar nanoregions,” Physical Review Letters, vol. 97, no. 6, Article ID 065702, 2006.
[263]  D. Pajic, Z. Jaglicic, M. Jagodic et al., “Low temperature magnetic behaviour of PZT-PFW bulk multiferroic ceramics,” Journal of Physics Conference Series, vol. 303, Article ID 012065, 2011.
[264]  H. Zheng, J. Wang, S. E. Lofland et al., “Multiferroic BaTiO3-CoFe2O4 nanostructures,” Science, vol. 303, no. 5658, pp. 661–663, 2004.
[265]  C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, “Multiferroic magnetoelectric composites: historical perspective, status, and future directions,” Journal of Applied Physics, vol. 103, no. 3, Article ID 031101, 2008.
[266]  C. Israel, N. D. Mathur, and J. F. Scott, “A one-cent room-temperature magnetoelectric sensor,” Nature Materials, vol. 7, no. 2, pp. 93–94, 2008.
[267]  Z. Hu, M. Tian, B. Nysten, and A. M. Jonas, “Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories,” Nature Materials, vol. 8, no. 1, pp. 62–67, 2009.
[268]  K. Asadi, H. J. Wondergem, R. S. Moghaddam et al., “Organic ferroelectric opto-electronic memories,” Materials Today, vol. 14, no. 12, pp. 592–599, 2011.
[269]  T. J. Reece, S. Ducharme, A. V. Sorokin, and M. Poulsen, “Nonvolatile memory element based on a ferroelectric polymer Langmuir-Blodgett film,” Applied Physics Letters, vol. 82, no. 1, pp. 142–144, 2003.
[270]  M.-Y. Li, N. Stingelin, J. Jasper et al., “Processing and low voltage switching of organic ferroelectric phase-separated bistable diodes,” Advanced Functional Materials, vol. 22, no. 12, pp. 2750–2757, 2012.
[271]  P. Kobeko and J. Kurtschatov, “Pielectric (sic) properties of Rochelle salt crystals,” Zeitschrift für Physik, vol. 66, no. 3-4, pp. 192–205, 1930.
[272]  Y. Liu, X.-P. Peng, X.-J. Lou, and H. Zhou, “Intrinsic electrocaloric effect in ultrathin ferroelectric capacitors,” Applied Physics Letters, vol. 100, Article ID 192902, 2012.
[273]  C. Israel, S. Kar-Narayan, and N. D. Mathur, “Eliminating the temperature dependence of the response of magnetoelectric magnetic-Field sensors,” IEEE Sensors Journal, vol. 10, no. 5, pp. 914–917, 2010.
[274]  S. Kar-Narayan and N. D. Mathur, “Direct and indirect electrocaloric measurements using multilayer capacitors,” Journal of Physics D, vol. 43, no. 3, Article ID 032002, 2010.
[275]  S. Kar-Narayan and N. D. Mathur, “Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials,” Applied Physics Letters, vol. 95, no. 24, Article ID 242903, 2009.
[276]  C. Israel, S. Kar-Narayan, and N. D. Mathur, “Converse magnetoelectric coupling in multilayer capacitors,” Applied Physics Letters, vol. 93, no. 17, Article ID 173501, 2008.
[277]  Q. M. Zhang, V. Bharti, and X. Zhao, “Giant electrostriction and relaxor ferroelectric behavior in electron- irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer,” Science, vol. 280, no. 5372, pp. 2101–2104, 1998.
[278]  S. G. Lu, B. Ro?i?, Q. M. Zhang et al., “Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect,” Applied Physics Letters, vol. 97, no. 16, Article ID 162904, 2010.
[279]  S. Prosandeev, I. Ponomareva, and L. Bellaiche, “Electrocaloric effect in bulk and low-dimensional ferroelectrics from first principles,” Physical Review B, vol. 78, no. 5, Article ID 052103, 2008.
[280]  Y. Liu, Y. Zhang, M.-J. Chen, Q. N. Chen, and J. Li, “Biological ferroelectricity discovered in aorta walls by piezo force microscopy,” Physical Review Letters, vol. 108, Article ID 078103, 2012.
[281]  T. Li and K. Zeng, “Piezoelectric properties and surface potential of green abalone shell studied by scanning probe microscopy techniques,” Acta Materialia, vol. 59, no. 9, pp. 3667–3679, 2011.
[282]  A. Heredia, V. Meunier, I. K. Bdikin et al., “Nanoscale ferroelectricity in crystalline γ-glycine,” Advanced Functional Materials, vol. 22, no. 14, pp. 2996–3003, 2012.
[283]  J. F. Scott, “Electrocaloric materials,” Annual Review of Materials Research, vol. 41, pp. 229–240, 2011.
[284]  R. Plumlee, Sandia Laboratories Report SC-RR-67-730, 1967.
[285]  X. Lou, X. Hu, M. Zhang, S. A. T. Redfern, E. A. Kafadaryan, and J. F. Scott, “Nano-shorts,” Reviews on Advanced Materials Science, vol. 10, no. 3, pp. 197–204, 2005.
[286]  X. Lou, X. Hu, M. Zhang, F. D. Morrison, S. A. T. Redfern, and J. F. Scott, “Phase separation in lead zirconate titanate and bismuth titanate during electrical shorting and fatigue,” Journal of Applied Physics, vol. 99, no. 4, Article ID 044101, 2006.
[287]  R. Waser, R. Dittmann, C. Staikov, and K. Szot, “Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges,” Advanced Materials, vol. 21, no. 25-26, pp. 2632–2663, 2009.
[288]  D. S. Jeong, R. Thomas, R. S. Katiyar et al., “Emerging memories: resistive switching mechanisms and current status,” Reports on Progress in Physics, vol. 75, Article ID 076502, 2012.
[289]  P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, “Ferroelectric Schottky diode,” Physical Review Letters, vol. 73, no. 15, pp. 2107–2110, 1994.
[290]  A. Q. Jiang, C. Wang, K. J. Jin et al., “A resistive memory in semiconducting BiFeO3 thin-film capacitors,” Advanced Materials, vol. 23, no. 10, pp. 1277–1281, 2011.
[291]  B. Noheda, private communication.
[292]  P. Paruch, A. B. Posadas, M. Dawber, C. H. Ahn, and P. L. McEuen, “Polarization switching using single-walled carbon nanotubes grown on epitaxial ferroelectric thin films,” Applied Physics Letters, vol. 93, no. 13, Article ID 132901, 2008.
[293]  S. Kawasaki, G. Catalan, H. J. Fan, and J. F. Scott, “Conformal oxide coating of carbon nanotubes,” Applied Physics Letters, vol. 92, Article ID 053109, 2008.
[294]  A. Kumar, S. G. Shivareddy, M. Correa et al., “Ferroelectric-carbon nanotube memory devices,” Nanotechnology, vol. 23, no. 16, Article ID 165702, 2012.
[295]  F. Mendoza, A. Kumar, R. Martinez et al., “Conformal coating of ferroelectric oxides on carbon nanotubes,” Europhysics Letters, vol. 97, no. 2, Article ID 27001, 2012.
[296]  Y. Zheng, X. N. Guang, C.-T. Toh, C.-Y. Tan, K. Yao, and B. ?zyilmaz, “Graphene field-effect transistors with ferroelectric gating,” Physical Review Letters, vol. 105, Article ID 166602, 2010.
[297]  F. D. Morrison, Y. Luo, I. Szafraniak, et al., “Ferroelectric nanotubes,” Reviews of Advances in Materials Science, vol. 4, pp. 114–122, 2003.
[298]  J. Hong, G. Catalan, D. N. Fang, E. Artacho, and J. F. Scott, “Topology of the polarization field in ferroelectric nanowires from first principles,” Physical Review B, vol. 81, no. 17, Article ID 172101, 2010.
[299]  V. L. Gurevuch and A. K. Tagantsev, “Second sound in ferroelectrics,” Journal of Experimental and Theoretical Physics, vol. 67, no. 1, pp. 206–212, 1988.
[300]  B. Hehlen, L. Arzel, A. K. Tagantsev et al., “Brillouin-scattering observation of the TA-TO coupling in SrTiO3,” Physical Review B, vol. 57, no. 22, pp. R13989–R13992, 1998.
[301]  A. Koreeda, R. Takano, and S. Saikan, “Second sound in SrTiO3,” Physical Review Letters, vol. 99, no. 26, Article ID 265502, 2007.
[302]  E. Courtens, B. Hehlen, E. Farhi, and A. K. Tagantsev, “Optical mode crossings and the low temperature anomalies of SrTiO3,” Zeitschrift fur Physik B-Condensed Matter, vol. 104, no. 4, pp. 641–642, 1997.
[303]  P. A. Fleury, J. F. Scott, and J. M. Worlock, “Soft phonon modes and the 110°K phase transition in SrTiO3,” Physical Review Letters, vol. 21, no. 1, pp. 16–19, 1968.
[304]  R. Blinc, V. V. Laguta, B. Zalar, M. Itoh, and H. Krakauer, “17O quadrupole coupling and the origin of ferroelectricity in isotopically enriched BaTiO3 and SrTiO3,” Journal of Physics Condensed Matter, vol. 20, no. 8, Article ID 085204, 2008.
[305]  J. F. Scott, M. A. Carpenter, and E. K.-H. Salje, “Domain wall damping and elastic softening in SrTiO3, evidence for polar twin walls,” Physical Review Letters, vol. 109, no. 18, Article ID 187601, 2012.
[306]  M. Bartkowiak, private communication.
[307]  M. Bartkowiak, G. J. Kearley, M. Yethiraj, and A. M. Mulders, “Symmetry of ferroelectricphase of (SrTiO3)-18O determined by ab initio calculations,” Physical Review B, vol. 83, no. 6, Article ID 064102, 2011.
[308]  E. Y. Tsymbal, A. Gruverman, V. Garcia, M. Bibes, and A. Barthelemy, “Ferroelectric and multiferroic tunnel junctions,” MRS Bulletin, vol. 37, no. 2, pp. 138–143, 2012.
[309]  M. Bibes and A. Barthélémy, “Multiferroics: towards a magnetoelectric memory,” Nature Materials, vol. 7, no. 6, pp. 425–426, 2008.
[310]  A. Chanthbouala, A. Crassous, V. Garcia, et al., “Solid-state memories based on ferroelectric tunnel junctions,” Nature Nanotechnology, vol. 7, no. 2, pp. 101–104, 2012.
[311]  M. Gajek, M. Bibes, S. Fusil et al., “Tunnel junctions with multiferroic barriers,” Nature Materials, vol. 6, no. 4, pp. 296–302, 2007.
[312]  L. E. Hueso, J. M. Pruneda, V. Ferrari et al., “Transformation of spin information into large electrical signals using carbon nanotubes,” Nature, vol. 445, no. 7126, pp. 410–413, 2007.
[313]  R. E. Cohen, “Origin of ferroelectricity in perovskite oxides,” Nature, vol. 358, no. 6382, pp. 136–138, 1992.
[314]  N. A. Hill, “Why are there so few magnetic ferroelectrics?” Journal of Physical Chemistry B, vol. 104, no. 29, pp. 6694–6709, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133