全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Conductivity and Complex Electrical Formalism of the Iron-Doped PbLaTiO3 Ferroelectric Relaxor

DOI: 10.1155/2013/231302

Full-Text   Cite this paper   Add to My Lib

Abstract:

Polycrystalline perovskite nanomaterials (Pb0.88La0.12) O3 were prepared by sol-gel reaction method. The crystal structure examined by X-ray powder diffraction indicates that the material was single phase with pseudocubic structure. EDX and SEM studies were carried out in order to evaluate the quality and purity of the compounds. The crystal symmetry, space group, and unit cell dimensions were determined from Cell-Ref software, whereas crystallite size was estimated from Scherrer’s formula. A correlation between grain size and diffuse character for the samples has been observed. Dielectric studies exhibit a diffuse phase transition characterized by a strong temperature and frequency dispersion of the permittivity and a relaxor behaviour. We have observed that dielectric constant decreases and ac conductivity increases with the frequency. The dielectric relaxation has been modeled using the Curie-Weiss and modified Curie-Weiss laws. The calculated activation energy for % and 3% was between 0.91–2.1?eV and 0.425–1.08?eV, respectively. The relaxation times were estimated from the Arrhenius law. 1. Introduction Perovskite-structured ferroelectric crystals have the general formula ABO3, where A is mono- or divalent ion with large radius and low valence, while B is a tetra- or pentavalent ion with small radius and high valence [1]. Among the perovskite-type oxides, titanate ceramics have been considered as interesting materials for room temperature applications, mainly due to their interesting dielectric properties [2]. Lead titanate (PbTiO3), with a very high Curie temperature of 490°C, belongs to a most important perovskite family due to its remarkable ferroelectric and piezoelectric features in polycrystalline form [3]. The phase transition behavior in PbTiO3 single crystal is relatively simple; it exhibits a single transition from paraelectric with cubic phase to ferroelectric with tetragonal phase [4]. It has been observed that substitution of any suitable ions at the Pb and/or Ti site of lead titanate results in substantial modification in their electrical properties so as to make them suitable for a wide variety of industrial applications. The doping subsistent can either occupy A-site, B-site, or both, as a donor or an acceptor, based on chemical valence with respect to the original ions. The electrical properties of the ceramics are a result of different contributions from various components and processes in the materials. The charge transport can take place via modes, such as dipole reorientation, charge displacement, and space charge formalism [5].

References

[1]  Z. Zhang, P. Wu, L. Lu, and C. Shu, “Electronic properties of A-site substituted lead zirconate titanate: density functional calculations,” Physical Review B, vol. 76, Article ID 125102, 2007.
[2]  C. H. Ahn, J. M. Triscone, and J. Mannhart, “Electric field effect in correlated oxide systems,” Nature, vol. 424, no. 6952, pp. 1015–1018, 2003.
[3]  C. Chandler, C. Roger, and M. H. Smith, “Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors,” Chemical Reviews, vol. 93, no. 3, pp. 1205–1241, 1993.
[4]  G. Sheng, J. X. Zhang, Y. L. Li et al., “Domain stability of PbTiO3 thin films under anisotropic misfit strains: phase-field simulations,” Journal of Applied Physics, vol. 104, no. 5, Article ID 054105, 2008.
[5]  S. Sen, R. N. P. Choudhary, A. Tarafdar, and P. Pramanik, “Impedance spectroscopy study of strontium modified lead zirconate titanate ceramics,” Journal of Applied Physics, vol. 99, no. 12, Article ID 124114, 2006.
[6]  V. R. Palkar, J. John, and R. Pinto, “Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films,” Applied Physics Letters, vol. 80, no. 9, p. 1628, 2002.
[7]  P. Venkateswarlu, A. Laha, and S. B. Krupanidhi, “AC properties of laser ablated La-modified lead titanate thin films,” Thin Solid Films, vol. 474, no. 1-2, pp. 1–9, 2005.
[8]  L. H. Omari, S. Sayouri, T. Lamcharfi, and L. Hajji, “Study of the dielectric behaviour of PLFT ceramics,” Physical Chemistry News, vol. 64, pp. 6–11, 2012.
[9]  A. Shukla, R. N. P. Choudhary, and A. K. Thakur, “Effect of Mn4+ substitution on thermal, structural, dielectric and impedance properties of lead titanate,” Journal of Materials Science: Materials in Electronics, vol. 20, no. 8, pp. 745–755, 2009.
[10]  D. K. Pradhan, B. K. Samantray, and R. N. P. Choudhary, “Complex impedance studies on a layered perovskite ceramic oxide—NaNdTiO4,” Materials Science and Engineering B, vol. 116, no. 1, pp. 7–13, 2005.
[11]  O. Raymonds, R. Font, J. Portelles, and J. M. Siqueiros, “Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors—part II: impedance spectroscopy characterization,” Journal of Applied Physics, vol. 97, no. 8, Article ID 084108, 8 pages, 2005.
[12]  D. C. Sinclair and A. R. West, “Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance,” Journal of Applied Physics, vol. 66, no. 8, p. 3850, 1989.
[13]  L. H. Omari, Materials science and industrials processes [Doctoral thesis], Faculty of Science Dhar Mahraz, Fès, Morocco, 2009.
[14]  M. Kumar and K. L. Yadav, “Study of dielectric, magnetic, ferroelectric and magnetoelectric properties in the PbMnxTi1?xO3 system at room temperature,” Journal of Physics: Condensed Matter, vol. 19, no. 24, Article ID 242202, 2007.
[15]  L. H. Omari, S. Sayouri, T. Lamcharfi et al., “Comportement magnétoélectrique dans les céramiques PbTiO3 dopées au Fe et/ou La,” Journal of Catalysis and Materials Environment, vol. 7, pp. 405–409, 2009.
[16]  L. H. Omari and S. Sayouri, élaboration et Caractérisation de Céramique PbLaFeTiO3, Editions Universitaires Européennes, 2011.
[17]  B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, Mass, USA, 2nd edition, 1978.
[18]  H. P. Klung and L. B. Alexander, X-Ray Diffraction Procedures, Wiley, New York, NY, USA, 1974.
[19]  J. K. Lee, K. S. Hong, C. K. Kim, and S. E. Park, “Phase transitions and dielectric properties in A-site ion substituted (Na1/2Bi1/2)TiO3 ceramics (A=Pb and Sr),” Journal of Applied Physics, vol. 91, no. 7, p. 4538, 2002.
[20]  B. K. Barick, R. N. P. Choudhary, and D. K. Pradhan, “Phase transition and electrical properties of lanthanum-modified sodium bismuth titanate,” Materials Chemistry and Physics, vol. 132, no. 2-3, pp. 1007–1014, 2012.
[21]  S. Yun, J. Shi, and X. Qian, “Defect-dipole-induced two important macroscopic effects: the dielectric relaxation and the ferroelectric aging in hybrid-doped (Ba,Ca)TiO3 ceramics,” Materials Chemistry and Physics, vol. 133, no. 1, pp. 487–494, 2012.
[22]  I. A. Santos and J. A. Eiras, “Phenomenological description of the diffuse phase transition in ferroelectrics,” Journal of Physics: Condensed Matter, vol. 13, no. 50, pp. 11733–11740, 2001.
[23]  M. Kellati, S. Sayouri, N. El Moudden, M. Elaatmani, A. Kaal, and M. Taibi, “Structural and dielectric properties of La-doped lead titanate ceramics,” Materials Research Bulletin, vol. 39, no. 6, pp. 867–872, 2004.
[24]  M. Kellati, N. El Moudden, A. Kaal, A. Elghazouali, and S. Sayouri, “Preparation and characterization of sol-gel derived La-doped PbTiO3 ceramics,” Annales de Chimie: Science des Materiaux, vol. 27, no. 1, pp. 43–50, 2002.
[25]  K. Limame, M. Kellati, and S. Sayouri, “Relaxation and transport mechanisms in (Pb.79La.21Ti.95)O3 ceramic,” Moroccan Journal of Condensed Matter, vol. 6, no. 1, 2005.
[26]  J. d. L. S. Guerra, M. H. Lente, and J. A. Eiras, “Microwave dielectric dispersion process in perovskite ferroelectric systems,” Applied Physics Letters, vol. 88, Article ID 102905, 3 pages, 2006.
[27]  S. K. Rout, A. Hussian, J. S. Lee, I. W. Kim, and S. I. Woo, “Impedance spectroscopy and morphology of SrBi4Ti4O15 ceramics prepared by soft chemical method,” Journal of Alloys and Compounds, vol. 477, no. 1-2, pp. 706–711, 2009.
[28]  S. Anwar, P. R. Sagdeo, and N. P. Lalla, “Ferroelectric relaxor behavior in hafnium doped barium-titanate ceramic,” Solid State Communications, vol. 138, no. 7, pp. 331–336, 2006.
[29]  N. Vittayakorn, G. Rujijanagul, X. Tan, M. A. Marquardt, and D. P. Cann, “The morphotropic phase boundary and dielectric properties of the xPb(Zr1/2Ti1/2)O3-(1?x)Pb(Ni1/3Nb2/3)O3 perovskite solid solution,” Journal of Applied Physics, vol. 96, no. 9, pp. 5103–5110, 2004.
[30]  H. T. Martirena and J. C. Burfoot, “Grain-size and pressure effects on the dielectric and piezoelectric properties of hot-pressed PZT-5,” Ferroelectrics, vol. 7, no. 1, pp. 151–152, 1974.
[31]  V. M. Gurevich, Electric Conductivity of Ferroelectrics, Moskva, New York, NY, USA, 1969.
[32]  S. Miga and K. Wojcik, “Investigation of the diffuse phase transition in PLZT X/65/35 ceramics, ,” Ferroelectrics, vol. 100, no. 1, pp. 167–173, 1987.
[33]  W. D. Kingery, Introduction to Ceramics, Wiley, New York, NY, USA, 1960.
[34]  V. M. Gurevich, Electrical Conductivity of Ferroelectrics, Moskva, New York, NY, USA, 1969.
[35]  E. J. Abram, D. C. Sinclair, and A. R. West, “A strategy for analysis and modelling of impedance spectroscopy data of electroceramics: doped lanthanum gallate,” Journal of Electroceramics, vol. 10, no. 3, pp. 165–177, 2003.
[36]  W. Cao and R. Gerhardt, “Calculation of various relaxation times and conductivity for a single dielectric relaxation process,” Solid State Ionics, vol. 42, no. 3-4, pp. 213–221, 1990.
[37]  R. Gerhardt, “Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity,” Journal of Physics and Chemistry of Solids, vol. 55, no. 12, pp. 1491–1506, 1994.
[38]  M. Tomozawa, J. Cordaro, and M. Singh, “Low frequency dielectric relaxation from complex impedance and complex electric ‘modulus’,” Journal of Materials Science, vol. 14, no. 8, pp. 1945–1951, 1979.
[39]  A. R. James, S. Priya, K. Uchino, and K. Srinivas, “Dielectric spectroscopy of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Journal of Applied Physics, vol. 90, no. 7, pp. 3504–3508, 2001.
[40]  I. M. Hodge, M. D. Ingram, and A. R. West, “Impedance and modulus spectroscopy of polycrystalline solid electrolytes,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 74, no. 2, pp. 125–143, 1976.
[41]  A. Molak, M. Paluch, S. Pawlus, J. Klimontko, Z. Ujma, and I. Gruszka, “Electric modulus approach to the analysis of electric relaxation in highly conducting (Na0.75Bi0.25)(Mn0.25Nb0.75)O3 ceramics,” Journal of Physics D, vol. 38, no. 9, pp. 1450–1460, 2005.
[42]  J. T. C. Irvine, D. C. Sinclair, and A. R. West, “Electroceramics: characterization by impedance spectroscopy,” Advanced Materials, vol. 2, no. 3, pp. 132–138, 1990.
[43]  M. A. Alim, “Admittance-frequency response in zinc oxide varistor ceramics,” Journal of the American Ceramic Society, vol. 72, no. 1, pp. 28–32, 1989.
[44]  B. Behera, P. Nayak, and R. N. P. Choudhary, “Impedance spectroscopy study of NaBa2V5O15 ceramic,” Journal of Alloys and Compounds, vol. 436, no. 1-2, pp. 226–232, 2007.
[45]  J. Maier, “Defect chemistry and ion transport in nanostructured materials—part II: aspects of nanoionics,” Solid State Ionics, vol. 157, no. 1–4, pp. 327–334, 2003.
[46]  R. Bharati, R. A. Singh, and B. M. Wanklyn, “On electrical transport in CoWO4 single crystals,” Journal of Materials Science, vol. 16, no. 3, pp. 775–779, 1981.
[47]  M. A. L. Nobre and S. J. Lanfredi, “Phase transition in sodium lithium niobate polycrystal: an overview based on impedance spectroscopy,” Journal of Physics and Chemistry of Solids, vol. 62, no. 11, pp. 1999–2006, 2001.
[48]  A. R. West, D. C. Sinclair, and N. Hirose, “Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy,” Journal of Electroceramics, vol. 1, no. 1, pp. 65–71, 1997.
[49]  W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, Wiley, New York, NY, USA, 1976.
[50]  A. S. Nowick and B. S. Berry, An Elastic Relaxation in Crystalline Solids, chapter 2, Academic Press, New York, NY, USA, 1972.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133