This review highlights the use of the X-ray absorption spectroscopy (XAS) as a local structural tool for selected atoms in several host materials. The main characteristics of XAS to be element-sensitive and its applicability to all states of matter, including crystalline solids and amorphous and liquid states, permit an in-depth study of the structural properties of a large variety of materials. This includes intercalation materials where a host structure can accommodate guest species. Host guest equilibria are at the basis of a large variety of technological applications; in particular they have been used for energy storage, ion-exchange membranes, electrochromism, and analytical sensing. A selection of XAS experiments conducted in the field of batteries, mainly on cathodes, and applications in the field of metal hexacyanoferrates and double layered hydroxides are outlined. 1. Introduction Since the discovery of X-rays by Rontgen [1] over 100 years ago in his laboratory in Wurzburg, X-rays have provided a nondestructive testing of a wide variety of materials. X-ray methods cover many techniques based on scattering, emission, and absorption properties of the X-ray radiation. X-ray diffraction probes the order of matter at the atomic level and X-ray crystallography is essential in relating the atomic structure of solids to their functions and physical properties. A review on high energy X-ray diffraction from glasses and liquids has been published in this journal [2] recently. X-ray emission spectroscopy makes possible the determination of the chemical composition of samples by simply looking at the emitted X-ray fluorescent lines and nowadays is one of the most useful analytical techniques [3]. The absorption property of X-rays has been used in analytical techniques based on contrast, like imaging and tomography. Owing to today’s X-ray sources by which X-rays are generated by relativistic electrons or positrons in international laboratories, in storage rings machines, the beam intensity is trillions of times more brilliant with respect to traditional X-ray sources, offering unprecedented advantages. It is therefore possible to verify the existence of fine structures in X-ray absorption spectra and, once a theory has been formulated [4, 5], the X-ray absorption fine structure (XAFS) (XAFS is another term used nowadays. The general preference is to use either XAS or XAFS to refer to the entire spectrum, which comprises the XANES (near the edge spectrum, within 30?eV or so), and EXAFS to refer to the extended part. Therefore XAS = XAFS = XANES + EXAFS)
References
[1]
W. C. Rontgen, “On a new kind of rays,” Nature, vol. 1369, no. 53, pp. 274–276, 1896.
[2]
C. J. Benmore, “A review of high energy X-ray diffraction from glasses and liquids,” ISRN Materials Science, vol. 2012, Article ID 852905, 19 pages, 2012.
[3]
M. West, A. T. Ellis, P. J. Potts et al., “Atomic spectrometry update-X-ray fluorescence spectrometry,” Journal of Analytical Atomic Spectrometry, vol. 26, no. 10, pp. 1919–1963, 2011.
[4]
D. E. Sayers, E. A. Stern, and F. W. Lytle, “New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray-absorption fine structure,” Physical Review Letters, vol. 27, no. 18, pp. 1204–1207, 1971.
[5]
E. A. Stern, “Theory of the extended x-ray-absorption fine structure,” Physical Review B, vol. 10, no. 8, pp. 3027–3037, 1974.
[6]
D. C. Koningsberger and R. Prins, “X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES,” in Chemical Analysis, vol. 92, John Wiley & Sons, New York, NY, USA, 1988.
[7]
E. A. Stern and S. M. Heald, “Basic principles and applications of EXAFS,” in Handbook of Synchrotron Radiation, E. E. Koch, Ed., pp. 995–1014, North-Holland, Amsterdam, The Netherlands, 1983.
[8]
G. Bunker, Introduction to XAFS: A Practical Guide to X-Ray Absorption Fine Structure Spectroscopy, Cambridge University Press, Cambridge, UK, 2010.
[9]
F. Hippert, E. Geissler, J. L. Hodeau, E. Lelièvre-Berna, and J. R. Regnard, Neutron and X-Ray Spectroscopy, Springer, Amsterdam, The Netherlands, 2006.
[10]
J. J. Rehr and R. C. Albers, “Theoretical approaches to X-ray absorption fine structure,” Reviews of Modern Physics, vol. 72, no. 3, pp. 621–892, 2000.
[11]
A. Filipponi, “EXAFS for liquids,” Journal of Physics, vol. 13, no. 7, pp. R23–R60, 2001.
[12]
X. Carrier, E. Marceau, H. Carabineiro, V. Rodríguez-González, and M. Che, “EXAFS spectroscopy as a tool to probe metal-support interaction and surface molecular structures in oxide-supported catalysts: application to Al2O3-supported Ni(II) complexes and ZrO2-supported tungstates,” Physical Chemistry Chemical Physics, vol. 11, no. 35, pp. 7527–7539, 2009.
[13]
R. C. Nelson and J. T. Miller, “An introduction to X-ray absorption spectroscopy and its in situ application to organometallic compounds and homogeneous catalysts,” Catalysis Science & Technology, vol. 2, no. 3, pp. 461–470, 2012.
[14]
H. D. Dewald, “Use of EXAFS to probe electrode-solution interfaces,” Electroanalysis, vol. 3, no. 3, pp. 145–155, 1991.
[15]
I. Ascone, R. Fourme, and S. S. Hasnain, “X-ray absorption spectroscopy and structural genomics,” Journal of Synchrotron Radiation, vol. 10, no. 1, pp. 1–111, 2003.
[16]
“Synchrotron radiation in inorganic and bioinorganic chemistry,” Coordination Chemistry Reviews, vol. 249, no. 1-2, pp. 1–272, 2005.
[17]
J. Als-Nielsen and D. McMorrow, Elements of Modern X-Ray Physics, John Wiley & Sons, Chichester, UK, 2nd edition, 2011.
[18]
F. de Groot, G. Vankó, and P. Glatzel, “The 1s X-ray absorption pre-edge structures in transition metal oxides,” Journal of Physics, vol. 21, no. 10, Article ID 104297, 2009.
[19]
T. E. Westre, P. Kennepohl, J. G. DeWitt, B. Hedman, K. O. Hodgson, and E. I. Solomon, “A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes,” Journal of the American Chemical Society, vol. 119, no. 27, pp. 6297–6314, 1997.
[20]
A. Manceau, A. I. Gorshkov, and V. A. Drits, “Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: part I. Information from XANES spectroscopy,” American Mineralogist, vol. 77, no. 11-12, pp. 1133–1143, 1992.
[21]
G. Giuli, S. G. Eeckhout, E. Paris, C. Koeberl, and G. Pratesi, “Iron oxidation state in impact glass from the K/T boundary at Beloc, Haiti, by high-pressure XANES spectroscopy,” Meteoritics and Planetary Science, vol. 40, no. 11, pp. 1575–1580, 2005.
[22]
Z. Y. Wu, D. C. Xian, T. D. Hu et al., “Quadrupolar transitions and medium-range-order effects in metal K-edge x-ray absorption spectra of 3d transition-metal compounds,” Physical Review B, vol. 70, no. 3, Article ID 033104, pp. 1–33104, 2004.
[23]
T. Yamamoto, “Assignment of pre-edge peaks in K-edge x-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole?” X-Ray Spectrometry, vol. 37, no. 6, pp. 572–584, 2008.
[24]
L. R. Sharpe, W. R. Heineman, and R. C. Elder, “EXAFS spectroelectrochemistry,” Chemical Reviews, vol. 90, no. 5, pp. 705–722, 1990.
[25]
M. Newville, “IFEFFIT: interactive XAFS analysis and FEFF fitting,” Journal of Synchrotron Radiation, vol. 8, no. 2, pp. 322–324, 2001.
[26]
M. Benfatto, S. D. Longa, and C. R. Natoli, “The MXAN procedure: a new method for analysing the XANES spectra of metalloproteins to obtain structural quantitative information,” Journal of Synchrotron Radiation, vol. 10, no. 1, pp. 51–57, 2003.
[27]
Y. Joly, “X-ray absorption near-edge structure calculations beyond the muffin-tin approximation,” Physical Review B, vol. 63, no. 12, Article ID 125120, pp. 1251201–12512010, 2001.
[28]
E. Stavitski and F. M. F. de Groot, “The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges,” Micron, vol. 41, no. 7, pp. 687–694, 2010.
[29]
A. Filipponi, A. Di Cicco, and C. R. Natoli, “X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory,” Physical Review B, vol. 52, no. 21, pp. 15122–15134, 1995.
[30]
A. Filipponi and A. Di Cicco, “X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. II. Data analysis and applications,” Physical Review B, vol. 52, no. 21, pp. 15135–15149, 1995.
[31]
A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Physical Review B, vol. 58, no. 12, pp. 7565–7576, 1998.
[32]
J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, “Theoretical X-ray absorption fine structure standards,” Journal of the American Chemical Society, vol. 113, no. 14, pp. 5135–5140, 1991.
[33]
N. Binsted, R. W. Strange, and S. S. Hasnain, “Constrained and restrained refinement in EXAFS data analysis with curved wave theory,” Biochemistry, vol. 31, no. 48, pp. 12117–12125, 1992.
[34]
S. Tomi, B. G. Searle, A. Wander et al., “New tools for the analysis of EXAFS: the DL EXCURV package,” CCLRC Technical Report DL-TR-2005-001.
[35]
J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, and K. Jorissen, “Parameter-free calculations of X-ray spectra with FEFF9,” Physical Chemistry Chemical Physics, vol. 12, no. 21, pp. 5503–5513, 2010.
[36]
P. Conti, S. Zamponi, M. Giorgetti, M. Berrettoni, and W. H. Smyrl, “Multivariate curve resolution analysis for interpretation of dynamic Cu k-edge X-ray absorption spectroscopy spectra for a Cu doped V2O5 lithium battery,” Analytical Chemistry, vol. 82, no. 9, pp. 3629–3635, 2010.
[37]
B. K. Lavine and J. Workman Jr., “Chemometrics,” Analytical Chemistry, vol. 85, no. 2, pp. 705–714, 2013.
[38]
J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” Nature, vol. 414, no. 6861, pp. 359–367, 2001.
[39]
J. B. Goodenough and Y. Kim, “Challenges for rechargeable Li batteries,” Chemistry of Materials, vol. 22, no. 3, pp. 587–603, 2010.
[40]
M. Winter and R. J. Brodd, “What are batteries, fuel cells, and supercapacitors?” Chemical Reviews, vol. 104, no. 10, pp. 4245–4269, 2004.
[41]
M. S. Whittingham, “Lithium batteries and cathode materials,” Chemical Reviews, vol. 104, no. 10, pp. 4271–4301, 2004.
[42]
B. L. Ellis, K. Tae Lee, and L. F. Nazar, “Positive electrode materials for Li-ion and Li-batteries,” Chemistry of Materials, vol. 22, no. 3, pp. 691–714, 2010.
[43]
J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, “Three-dimensional battery architectures,” Chemical Reviews, vol. 104, no. 10, pp. 4463–4492, 2004.
[44]
J. Mc Breen, W. E. O’Grady, and K. I. Pandya, “EXAFS: a new tool for the study of battery and fuel cell materials,” Journal of Power Sources, vol. 22, no. 3-4, pp. 323–340, 1988.
[45]
M. F. Toney and J. McBreen, “In situ synchrotron x-ray techniques for determining atomic structure at electrode/electrolyte interfaces,” Electrochemical Society Interface, vol. 2, no. 1, pp. 22–31, 1993.
[46]
M. Balasubramanian, X. Sun, X. Q. Yang, and J. McBreen, “In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries,” Journal of Power Sources, vol. 92, no. 1-2, pp. 1–8, 2001.
[47]
J. B. Leriche, S. Hamelet, J. Shu et al., “An electrochemical cell for operando study of lithium batteries using synchrotron radiation,” Journal of the Electrochemical Society, vol. 157, no. 5, pp. A606–A610, 2010.
[48]
J. B. Leriche, S. Hamelet, J. Shu et al., “An electrochemical cell for operand study of lithium batteries using synchrotron radiation,” Journal of the Electrochemical Society, vol. 157, no. 5, pp. A606–A610, 2010.
[49]
P. Shearing, Y. Wu, S. J. Harris, and N. Brandon, “In situ X-ray spectroscopy and imaging of battery materials,” Electrochemical Society Interface, vol. 20, no. 3, pp. 43–47, 2011.
[50]
N. A. Chernova, M. Roppolo, A. C. Dillon, and M. S. Whittingham, “Layered vanadium and molybdenum oxides: batteries and electrochromics,” Journal of Materials Chemistry, vol. 19, no. 17, pp. 2526–2552, 2009.
[51]
J. Wong, F. W. Lytle, R. P. Messmer, and D. H. Maylotte, “K-edge absorption spectra of selected vanadium compounds,” Physical Review B, vol. 30, no. 10, pp. 5596–5610, 1984.
[52]
C. Cartier, A. Tranchant, M. Verdaguer, R. Messina, and H. Dexpert, “X-ray diffraction and X-ray absorption studies of the structural modifications induced by electrochemical lithium intercalation into V2O5,” Electrochimica Acta, vol. 35, no. 5, pp. 889–898, 1990.
[53]
E. Prouzet, C. C. Dit Moulin, F. Villain, and A. Tranchant, “Electrochemical intercalation of lithium into vanadium pentaoxide: an in situ X-ray absorption study,” Journal of the Chemical Society, vol. 92, no. 1, pp. 103–109, 1996.
[54]
R. Tossici, R. Marassi, M. Berrettoni, S. Stizza, and G. Pistoia, “Study of amorphous and crystalline Li1+xV3O8 by FTIR, XAS and electrochemical techniques,” Solid State Ionics, vol. 57, no. 3-4, pp. 227–234, 1992.
[55]
R. Tossici, R. Marassi, M. Berrettoni, S. Stizza, and G. Pistoia, “Electrochemical, ZAS and FTIR study of lithium intercalation in Na1+xV3O3,” Solid State Ionics, vol. 67, no. 1-2, pp. 77–83, 1993.
[56]
P. E. Stallworth, S. Kostov, M. L. DenBoer, S. G. Greenbaum, and C. Lampe-Onnerud, “X-ray absorption and magnetic resonance spectroscopic studies of LixV6O13,” Journal of Applied Physics, vol. 83, no. 3, pp. 1247–1255, 1998.
[57]
Y. Piffard, F. Leroux, D. Guyomard, J. L. Mansot, and M. Tournoux, “The amorphous oxides MnV2O6 + δ ( ) as high capacity negative electrode materials for lithium batteries,” Journal of Power Sources, vol. 68, no. 2, pp. 698–703, 1997.
[58]
S. Passerini, D. B. Le, W. H. Smyrl et al., “XAS and electrochemical characterization of lithiated high surface area V2O5 aerogels,” Solid State Ionics, vol. 104, no. 3-4, pp. 195–204, 1997.
[59]
M. Giorgetti, S. Passerini, W. H. Smyrl, S. Mukerjee, X. Q. Yang, and J. McBreen, “In situ X-ray absorption spectroscopy characterization of V2O5 xerogel cathodes upon lithium intercalation,” Journal of the Electrochemical Society, vol. 146, no. 7, pp. 2387–2392, 1999.
[60]
A. N. Mansour, P. H. Smith, W. M. Baker, M. Balasubramanian, and J. McBreen, “A comparative in situ x-ray absorption spectroscopy study of nanophase V2O5 aerogel and ambigel cathodes,” Journal of the Electrochemical Society, vol. 150, no. 4, pp. A403–A413, 2003.
[61]
A. N. Mansour, P. H. Smith, W. M. Baker, M. Balasubramanian, and J. McBreen, “In situ XAS investigation of the oxidation state and local structure of vanadium in discharged and charged V2O5 aerogel cathodes,” Electrochimica Acta, vol. 47, no. 19, pp. 3151–3161, 2002.
[62]
C. Rossignol and G. Ouvrard, “General behavior upon cycling of LiNiVO4 as battery electrode,” Journal of Power Sources, vol. 97-98, pp. 491–493, 2001.
[63]
M. Giorgetti, S. Passerini, W. H. Smyrl, and M. Berrettoni, “Evidence of bilayer structure in V2O5 xerogel,” Inorganic Chemistry, vol. 39, no. 7, pp. 1514–1517, 2000.
[64]
M. Giorgetti, M. Berrettoni, S. Passerini, and W. H. Smyrl, “Absorption of polarized X-rays by V2O5-based cathodes for lithium batteries: an application,” Electrochimica Acta, vol. 47, no. 19, pp. 3163–3169, 2002.
[65]
M. Giorgetti, S. Passerini, M. Berrettoni, and W. H. Smyrl, “XAS investigation on polyvalent cation intercalation in V2O5 aerogels,” Journal of Synchrotron Radiation, vol. 6, no. 3, pp. 743–745, 1999.
[66]
W. H. Smyrl, S. Passerini, M. Giorgetti, F. Coustier, M. M. Fay, and B. B. Owens, “Electrochemical and synchrotron XAS studies of lithium intercalation into vanadium pentoxide aerogels and nanocomposites,” Journal of Power Sources, vol. 97-98, pp. 469–472, 2001.
[67]
M. Giorgetti, S. Passerini, W. H. Smyrl, and M. Berrettoni, “Identification of an unconventional zinc coordination site in anhydrous ZnxV2O5 aerogels from x-ray absorption spectroscopy,” Chemistry of Materials, vol. 11, no. 8, pp. 2257–2264, 1999.
[68]
E. Frabetti, G. A. Deluga, W. H. Smyrl, M. Giorgetti, and M. Berrettoni, “X-ray absorption spectroscopy study of Cu0.25V2O5 and Zn0.25V2O5 aerogel-like cathodes for lithium batteries,” Journal of Physical Chemistry B, vol. 108, no. 12, pp. 3765–3771, 2004.
[69]
M. Giorgetti, S. Mukerjee, S. Passerini, J. McBreen, and W. H. Smyrl, “Evidence for reversible formation of metallic Cu in Cu0.1V2O5 xerogel cathodes during intercalation cycling of Li+ ions as detected by X-ray absorption spectroscopy,” Journal of the Electrochemical Society, vol. 148, no. 7, pp. A768–A774, 2001.
[70]
M. Giorgetti, M. Berrettoni, and W. H. Smyrl, “Doped V2O5-based cathode materials: where does the doping metal go? An X-ray absorption spectroscopy study,” Chemistry of Materials, vol. 19, no. 24, pp. 5991–6000, 2007.
[71]
H. C. Choi, Y. M. Jung, and S. B. Kim, “Characterization of the electrochemical reactions in the Li 1+xV3O8/Li cell by soft X-ray absorption spectroscopy and two-dimensional correlation analysis,” Applied Spectroscopy, vol. 57, no. 8, pp. 984–990, 2003.
[72]
M. Balasubramanian, X. Sun, X. Q. Yang, and J. McBreen, “In situ X-ray absorption studies of a high-rate LiNi0.85Co0.15O2 cathode material,” Journal of the Electrochemical Society, vol. 147, no. 8, pp. 2903–2909, 2000.
[73]
M. Balasubramanian, J. McBreen, K. Pandya, and K. Amine, “Local structure of dilute gallium ions in LiNi0.908Co0.085Ga0.003O2 cathode material in situ X-ray absorption study,” Journal of the Electrochemical Society, vol. 149, no. 9, pp. A1246–A1249, 2002.
[74]
M. Balasubramanian, X. Sun, X. Q. Yang, and J. McBreen, “In situ X-ray absorption studies of a high-rate LiNi0.85Co0.15O2 cathode material,” Journal of the Electrochemical Society, vol. 147, no. 8, pp. 2903–2909, 2000.
[75]
D. P. Abraham, R. D. Twesten, M. Balasubramanian et al., “Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells,” Journal of the Electrochemical Society, vol. 150, no. 11, pp. A1450–A1456, 2003.
[76]
W. S. Yoon, K. Y. Chung, J. McBreen, D. A. Fischer, and X. Q. Yang, “Electronic structural changes of the electrochemically Li-ion deintercalated LiNi0.8Co0.15Al0.05O2 cathode material investigated by X-ray absorption spectroscopy,” Journal of Power Sources, vol. 174, no. 2, pp. 1015–1020, 2007.
[77]
A. N. Mansour, L. Croguennec, G. Prado, and C. Delmas, “In situ XAS study of LixNi0.7Fe0.15Co0.15O2 cathode material,” Journal of Synchrotron Radiation, vol. 8, no. 2, pp. 866–868, 2001.
[78]
H. C. Choi, S. Y. Lee, S. B. Kim et al., “Local structural characterization for electrochemical insertion-extraction of lithium into CoO with X-ray absorption spectroscopy,” Journal of Physical Chemistry B, vol. 106, no. 36, pp. 9252–9260, 2002.
[79]
C. H. Chen, B. J. Hwang, C. Y. Chen et al., “Soft X-ray absorption spectroscopy studies on the chemically delithiated commercial LiCoO2 cathode material,” Journal of Power Sources, vol. 174, no. 2, pp. 938–943, 2007.
[80]
A. Kotani and S. Shin, “Resonant Inelastic X-ray scattering for electrons in solids,” Reviews of Modern Physics, vol. 73, no. 1, pp. 203–246, 2001.
[81]
H. M. Hollmark, L. C. Duda, M. Dahbi, I. Saadoune, T. Gustafsson, and K. Edstr?m, “Resonant soft X-ray emission spectroscopy and X-ray absorption spectroscopy on the cathode material LiNi0.65Co0.25Mn0.1O2,” Journal of the Electrochemical Society, vol. 157, no. 8, pp. A962–A966, 2010.
[82]
L. Maugeri, A. Iadecola, B. Joseph et al., “Local structure of LiCoO2 nanoparticles studied by Co K-edge X-ray absorption spectroscopy,” Journal of Physics Condensed Matter, vol. 24, no. 33, Article ID 335305, 2012.
[83]
W. S. Yoon, K. Y. Chung, K. H. Oh, and K. B. Kim, “Changes in electronic structure of the electrochemically Li-ion deintercalated LiMn2O4 system investigated by soft X-ray absorption spectroscopy,” Journal of Power Sources, vol. 119–121, pp. 706–709, 2003.
[84]
H. W. Chan, J. G. Duh, and J. F. Lee, “Valence change by in situ XAS in surface modified LiMn2O4 for Li-ion battery,” Electrochemistry Communications, vol. 8, no. 11, pp. 1731–1736, 2006.
[85]
B. J. Hwang, Y. W. Tsai, R. Santhanam et al., “Evolution of local electronic and atomic structure of Co-doped LiMn2O4 cathode material for lithium rechargeable batteries,” Journal of Power Sources, vol. 123, no. 2, pp. 206–215, 2003.
[86]
J. Bare?o, M. Balasubramanian, S. H. Kang et al., “Long-range and local structure in the layered oxide Li1.2Co 0.4Mn0.4O2,” Chemistry of Materials, vol. 23, no. 8, pp. 2039–2050, 2011.
[87]
S. Mukerjee, X. Q. Yang, X. Sun, S. J. Lee, J. McBreen, and Y. Ein-Eli, “In situ synchrotron X-ray studies on copper-nickel 5 V Mn oxide spinel cathodes for Li-ion batteries,” Electrochimica Acta, vol. 49, no. 20, pp. 3373–3382, 2004.
[88]
A. Deb, U. Bergmann, S. P. Cramer, and E. J. Cairns, “In situ X-ray absorption spectroscopic study of Li1.05 Ni0.35 Co0.25 Mn0.4 O2 cathode material coated with LiCoO2,” Journal of the Electrochemical Society, vol. 154, no. 6, pp. A534–A541, 2007.
[89]
U. Lafont, C. Locati, W. J. H. Borghols et al., “Nanosized high voltage cathode material LiMg0.05Ni0.45Mn1.5O4: structural, electrochemical and in situ investigation,” Journal of Power Sources, vol. 189, no. 1, pp. 179–184, 2009.
[90]
C. Rumble, T. E. Conry, M. Doeff, E. J. Cairns, J. E. Penner-Hahn, and A. Deb, “Structural and electrochemical investigation of Li (Ni0.4 Co0.15 Al0.05 Mn0.4)O2 cathode material,” Journal of the Electrochemical Society, vol. 157, no. 12, pp. A1317–A1322, 2010.
[91]
W. S. Yoon, M. Balasubramanian, K. Y. Chung et al., “Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy,” Journal of the American Chemical Society, vol. 127, no. 49, pp. 17479–17487, 2005.
[92]
M. Oishi, T. Fujimoto, Y. Takanashi et al., “Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure,” Journal of Power Sources, vol. 222, pp. 45–51, 2013.
[93]
A. Deb, U. Bergmann, S. P. Cramer, and E. J. Cairns, “In situ x-ray absorption spectroscopic study of the Li[Ni1/3Co1/3Mn1/3]O2 cathode material,” Journal of Applied Physics, vol. 97, no. 11, Article ID 113523, pp. 1–11, 2005.
[94]
M. G. Kim, H. J. Shin, J. H. Kim, S. H. Park, and Y. K. Sun, “XAS investigation of inhomogeneous metal-oxygen bond covalency in bulk and surface for charge compensation in Li-ion battery cathode Li[Ni1/3Co1/3Mn1/3]O2 Material,” Journal of the Electrochemical Society, vol. 152, no. 7, pp. A1320–A1328, 2005.
[95]
T. Okumura, T. Fukutsuka, K. Matsumoto et al., “Role of local and electronic structural changes with partially anion substitution Lithium manganese spinel oxides on their electrochemical properties: X-ray absorption spectroscopy study,” Dalton Transactions, vol. 40, no. 38, pp. 9752–9764, 2011.
[96]
C. S. Johnson, J. S. Kim, A. Jeremy Kropf, A. J. Kahaian, J. T. Vaughey, and M. M. Thackeray, “The role of Li2MO2 structures (M = metal ion) in the electrochemistry of (x)LiMn0.5Ni0.5O2· (1-x)Li2TiO3 electrodes for lithium-ion batteries,” Electrochemistry Communications, vol. 4, no. 6, pp. 492–498, 2002.
[97]
C. S. Johnson, J. S. Kim, A. J. Kropf, A. J. Kahaian, J. T. Vaughey, and M. M. Thackeray, “Structural and electrochemical evaluation of (1-x)Li2TiO3·(x)LiMn0.5Ni0.5O 2 electrodes for lithium batteries,” Journal of Power Sources, vol. 119-121, pp. 139–144, 2003.
[98]
J. R. Croy, M. Balasubramanian, D. Kim, S. H. Kang, and M. Thackeray, “Designing high-capacity, lithium-ion cathodes using X-ray absorption spectroscopy,” Chemistry of Materials, vol. 23, no. 24, pp. 5415–5424, 2011.
[99]
N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai, and S. Komaba, “Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2,” Journal of the American Chemical Society, vol. 133, no. 12, pp. 4404–4419, 2011.
[100]
A. R. Armstrong, M. Holzapfel, P. Novák et al., “Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2,” Journal of the American Chemical Society, vol. 128, no. 26, pp. 8694–8698, 2006.
[101]
O. Haas, A. Deb, E. J. Cairns, and A. Wokaun, “Synchrotron X-ray absorption study of LiFePO4 electrodes,” Journal of the Electrochemical Society, vol. 152, no. 1, pp. A191–A196, 2005.
[102]
A. Deb, U. Bergmann, E. J. Cairns, and S. P. Cramer, “X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell,” Journal of Synchrotron Radiation, vol. 11, no. 6, pp. 497–504, 2004.
[103]
K. Inoue, S. Fujieda, K. Shinoda, S. Suzuki, and Y. Waseda, “Chemical state of Iron of LiFePO4during charge-discharge cycles studied by in-situ X-ray absorption spectroscopy,” Materials Transactions, vol. 51, no. 12, pp. 2220–2224, 2010.
[104]
M. Nakayama, S. Goto, Y. Uchimoto, M. Wakihara, and Y. Kitajima, “Changes in electronic structure between cobalt and oxide ions of lithium cobalt phosphate as 4.8-V positive electrode material,” Chemistry of Materials, vol. 16, no. 18, pp. 3399–3401, 2004.
[105]
Y. S. Hong, S. R. Kwang, J. P. Yong, G. K. Min, M. L. Jay, and H. C. Soon, “Amorphous FePO4 as 3 V cathode material for lithium secondary batteries,” Journal of Materials Chemistry, vol. 12, no. 6, pp. 1870–1874, 2002.
[106]
M. Giorgetti, M. Berrettoni, S. Scaccia, and S. Passerini, “Characterization of sol-gel-synthesized LiFePO4 by multiple scattering XAFS,” Inorganic Chemistry, vol. 45, no. 6, pp. 2750–2757, 2006.
[107]
W. S. Yoon, K. Y. Chung, J. McBreen, K. Zaghib, and X. Q. Yang, “Electronic structure of the electrochemically delithiated Li 1-xFePO4 electrodes investigated by P K-edge X-ray absorption spectroscopy,” Electrochemical and Solid-State Letters, vol. 9, no. 9, pp. A415–A417, 2006.
[108]
F. Omenya, N. A. Chernova, S. Upreti et al., “Can vanadium be substituted into LiFePO4?” Chemistry of Materials, vol. 23, no. 21, pp. 4733–4740, 2011.
[109]
D. Jang, K. Palanisamy, J. Yoon, Y. Kim, and W. -S Yoon, “Crystal and local structure studies of LiFe0. 48Mn0. 48Mg0. 04PO4 cathode material for lithium rechargeable batteries,” Journal of Power Sources, 2013.
[110]
L. Tabassam, G. Giuli, A. Moretti et al., “Structural study of LiFePO4-LiNiPO4 solid solutions,” Journal of Power Sources, vol. 213, pp. 287–295, 2012.
[111]
G. Ouvrard, M. Zerrouki, P. Soudan et al., “Heterogeneous behaviour of the lithium battery composite electrode LiFePO4,” Journal of Power Sources, vol. 229, pp. 16–31, 2013.
[112]
W. S. Yoon, K. Y. Chung, K. W. Nam et al., “Electronic structural changes of the electrochemically delithiated LiFe0.5Co0.5PO4 cathode material studied by X-ray absorption spectroscopy,” Journal of Power Sources, vol. 183, no. 1, pp. 427–430, 2008.
[113]
A. Perea, L. Castro, L. Aldon et al., “Study of C-coated liFe0. 33Mn0. 67PO4 as positive electrode material for Li-ion batteries,” Journal of Solid State Chemistry, vol. 192, pp. 201–209, 2012.
[114]
M. Pivko, I. Arcon, M. Bele, R. Dominko, and M. Gaberscek, “A3V2(PO4)3 (A = Na or Li) probed by in situ X-ray absorption spectroscopy,” Journal of Power Sources, vol. 216, pp. 145–151, 2012.
[115]
T. S. Arthur, P.-A. Glans, M. Matsui, R. Zhang, B. Ma, and J. Guo, “Mg deposition observed by in situ electrochemical Mg K-Edge X-ray absorption spectroscopy,” Electrochemistry Communications, vol. 24, no. 1, pp. 43–46, 2012.
[116]
S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, and I. Nakai, “Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery,” Inorganic Chemistry, vol. 51, no. 11, pp. 6211–6220, 2012.
[117]
J. J. Ding, Y. N. Zhou, Q. Sun, X. Q. Yu, X. Q. Yang, and Z. W. Fu, “Electrochemical properties of P2-Phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries,” Electrochimica Acta, vol. 87, pp. 388–393, 2013.
[118]
R. Dominko, I. Ar?on, A. Kodre, D. Han?el, and M. Gaber??ek, “In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials,” Journal of Power Sources, vol. 189, no. 1, pp. 51–58, 2009.
[119]
J. Cabana, N. Dupré, F. Gillot, A. V. Chadwick, C. P. Grey, and M. R. Palacín, “Synthesis, short-range structure, and electrochemical properties of new phases in the Li-Mn-N-0 system,” Inorganic Chemistry, vol. 48, no. 12, pp. 5141–5153, 2009.
[120]
J. Gao, M. A. Lowe, Y. Kiya, and H. D. Abru?a, “Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies,” Journal of Physical Chemistry C, vol. 115, no. 50, pp. 25132–25137, 2011.
[121]
M. Balasubramanian, H. S. Lee, X. Sun et al., “Formation of SEI on cycled lithium-ion battery cathodes soft X-ray absorption study,” Electrochemical and Solid-State Letters, vol. 5, no. 1, pp. A22–A25, 2002.
[122]
H. M. Hollmark, K. Maher, I. Saadoune, T. Gustafsson, K. Edstr?m, and L. C. Duda, “Resonant inelastic X-ray scattering and X-ray absorption spectroscopy on the negative electrode material Li0.5Ni0.25TiOPO 4 in a Li-ion battery,” Physical Chemistry Chemical Physics, vol. 13, no. 14, pp. 6544–6551, 2011.
[123]
J. Bartoll, “The early use of Prussian Blue in paintings,” in Proceedings of the 9th International Conference on NDT of Art, Jerusalem, Israel, May 2008.
[124]
H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, “The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3·xH2O,” Inorganic Chemistry, vol. 16, no. 11, pp. 2704–2710, 1977.
[125]
J. Rodríguez-Hernández, E. Reguera, E. Lima, J. Balmaseda, R. Martínez-García, and H. Yee-Madeira, “An atypical coordination in hexacyanometallates: structure and properties of hexagonal zinc phases,” Journal of Physics and Chemistry of Solids, vol. 68, no. 9, pp. 1630–1642, 2007.
[126]
C. W. Ng, J. Ding, and L. M. Gan, “Structure and magnetic properties of Zn-Fe cyanide,” Journal of Physics D, vol. 34, no. 8, pp. 1188–1192, 2001.
[127]
C. M. Kareis, S. H. Lapidus, J. H. Her, P. W. Stephens, and J. S. Miller, “Non-Prussian Blue structures and magnetic ordering of Na2MnII[MnII(CN)6] and Na2MnII[MnII(CN)6].2H2O,” The Journal of the American Chemical Society, vol. 134, no. 4, pp. 2246–2254, 2012.
[128]
O. Sato, “Optically switchable molecular solids: photoinduced spin-crossover, photochromism, and photoinduced magnetization,” Accounts of Chemical Research, vol. 36, no. 9, pp. 692–700, 2003.
[129]
H. Tokoro and S. Ohkoshi, “Novel magnetif functionalities of Prussian Blue analogs,” Dalton Transaction, vol. 40, no. 26, pp. 6813–7048, 2011.
[130]
G. N. Newton, M. Nihei, and H. Oshio, “Cyanide-bridged molecular squares-The building units of Prussian Blue,” European Journal of Inorganic Chemistry, no. 20, pp. 3031–3042, 2011.
[131]
A. S. Wills, “Magnetism,” Annual Reports on the Progress of Chemistry A, vol. 101, pp. 472–488, 2005.
[132]
O. Sato, “Photoinduced magnetization in molecular compounds,” Journal of Photochemistry and Photobuology C, vol. 5, no. 3, pp. 203–223, 2004.
[133]
M. Verdaguer and G. Girolami, “Magnetic Prussian Blue analogs,” in Magnetism: Molecules to Materials, S. Miller and M. Drillon, Eds., Wiley-VCH, Weinheim, Germany, 2004.
[134]
S. Ferlay, T. Mallah, R. Ouahès, P. Veillet, and M. Verdaguer, “A room-temperature organometallic magnet based on Prussian Blue,” Nature, vol. 378, no. 6558, pp. 701–703, 1995.
[135]
N. R. De Tacconi, K. Rajeshwar, and R. O. Lezna, “Metal hexacyanoferrates: electrosynthesis, in situ characterization, and applications,” Chemistry of Materials, vol. 15, no. 16, pp. 3046–3062, 2003.
[136]
A. A. Karyak, “Prussian Blue and its analogues: electrochemistry and analytical applications,” Electroanalysis, vol. 13, no. 10, pp. 813–819, 2001.
[137]
W. Chen, S. Cai, Q. Q. Ren, W. Wen, and Y.-D. Zhao, “Recent advances in electrochemical sensing for hydrogen peroxide: a review,” Analyst, vol. 137, no. 1, pp. 49–58, 2012.
[138]
L. Guadagnini, D. Tonelli, and M. Giorgetti, “Improved copper hexacyanoferrate electrode for hydrogen peroxide detection,” Electrochimica Acta, vol. 55, no. 17, pp. 5036–5039, 2010.
[139]
J. Yang, H. Wang, L. Lu, W. Shi, and H. Zhang, “Large-scale synthesis of Berlin Green Fe[Fe(CN)6] microcubic crystals,” Crystal Growth & Design, vol. 6, no. 11, pp. 2438–2440, 2006.
[140]
J. M. Domínguez-Vera and E. Colacio, “Nanoparticles of Prussian Blue ferritin: a new route for obtaining nanomaterials,” Inorganic Chemistry, vol. 42, no. 22, pp. 6983–6985, 2003.
[141]
X. Wu, M. Cao, C. Hu, and X. He, “Sonochemical synthesis of Prussian Blue nanocubes from a single-source precursor,” Crystal Growth and Design, vol. 6, no. 1, pp. 26–28, 2006.
[142]
M. Berrettoni, M. Giorgetti, S. Zamponi et al., “Synthesis and characterization of nanostructured cobalt hexacyanoferrate,” Journal of Physical Chemistry C, vol. 114, no. 14, pp. 6401–6407, 2010.
[143]
A. Zanotto, R. Matassa, M. L. Saladino et al., “Cobalt hexacyanoferrate-poly(methyl methacrylate) composite: synthesis and characterization,” Materials Chemistry and Physics, vol. 120, no. 1, pp. 118–122, 2010.
[144]
M. Berrettoni, M. Giorgetti, J. A. Cox, D. Ranganathan, P. Conti, and S. Zamponi, “Electrochemical synthesis of nano-cobalt hexacyanoferrate at a sol-gel-coated electrode templated with β-cyclodextrin,” Journal of Solid State Electrochemistry, vol. 16, no. 9, pp. 2861–2866, 2012.
[145]
K. Hayakawa, K. Hatada, P. D'Angelo, S. Della Longa, C. R. Natoli, and M. Benfatto, “Full quantitative multiple-scattering analysis of X-ray absorption spectra: application to potassium hexacyanoferrat(II) and -(III) complexes,” Journal of the American Chemical Society, vol. 126, no. 47, pp. 15618–15623, 2004.
[146]
R. K. Hocking, E. C. Wasinger, F. M. F. de Groot, K. O. Hodgson, B. Hedman, and E. I. Solomon, “Fe L-edge XAS studies of K4[Fe(CN)6] and K3[Fe(CN)6]:? a direct probe of back-bonding,” Journal of the American Chemical Society, vol. 128, no. 32, pp. 10442–10451, 2006.
[147]
N. Kosugi, T. Yokohama, and H. Kuroda, “Polarization dependence of XANES of square-planar Ni(CN)42- ion. A comparison with octahedral Fe(CN)64- and Fe(CN)63- ions,” Chemical Physics, vol. 104, pp. 449–453, 1986.
[148]
A. Kuzmin and P. Parent, “Focusing and superfocusing effects in X-ray absorption fine structure at the iron K edge in FeF3,” Journal of Physics Condensed Matter, vol. 6, no. 23, pp. 4395–4404, 1994.
[149]
M. Giorgetti, M. Berrettoni, A. Filipponi, P. J. Kulesza, and R. Marassi, “Evidence of four-body contributions in the EXAFS spectrum of Na2Co[Fe(CN)6],” Chemical Physics Letters, vol. 275, no. 1-2, pp. 108–112, 1997.
[150]
M. Giorgetti and M. Berrettoni, “Structure of Fe/Co/Ni hexacyanoferrate as probed by multiple edge X-ray absorption spectroscopy,” Inorganic Chemistry, vol. 47, no. 13, pp. 6001–6008, 2008.
[151]
P. A. Lee and J. B. Pendry, “Theory of the extended x-ray absorption fine structure,” Physical Review B, vol. 11, no. 8, pp. 2795–2811, 1975.
[152]
M. Benfatto, C. R. Natoli, A. Bianconi et al., “Multiple-scattering regime and higher-order correlations in x-ray-absorption spectra of liquid solutions,” Physical Review B, vol. 34, no. 8, pp. 5774–5781, 1986.
[153]
C. Brouder, M. F. Ruiz Lopez, R. F. Pettifer, M. Benfatto, and C. R. Natoli, “Systematic approach to the calculation of the polarization-dependent (and polarization-averaged) general term of the curved-wave multiple-scattering series in the x-ray-absorption cross section,” Physical Review B, vol. 39, no. 3, pp. 1488–1500, 1989.
[154]
A. Di Cicco, “Multiple-edge EXAFS refinement: short-range structure in liquid and crystalline Sn,” Physical Review B, vol. 53, no. 10, pp. 6174–6185, 1996.
[155]
H. H. Zhang, A. Filipponi, A. Di Cicco et al., “Multiple-edge XAS studies of cyanide-bridged iron-copper molecular assemblies relevant to cyanide-inhibited heme-copper oxidases using four-body multiple-scattering analysis,” Journal of the American Chemical Society, vol. 119, no. 10, pp. 2470–2478, 1997.
[156]
H. H. Zhang, A. Filipponi, A. D. Cicco et al., “Multiple-edge XAS studies of synthetic iron-copper bridged molecular assemblies relevant to cytochrome c oxidase. Structure determination using multiple-scattering analysis with statistical evaluation of errors,” Inorganic Chemistry, vol. 35, no. 17, pp. 4819–4828, 1996.
[157]
T. Yokoyama, T. Ohta, O. Sato, and K. Hashimoto, “Characterization of magnetic CoFe cyanides by x-ray-absorption fine-structure spectroscopy,” Physical Review B, vol. 58, no. 13, pp. 8257–8266, 1998.
[158]
T. Yokoyama, M. Kiguchi, T. Ohta, O. Sato, Y. Einaga, and K. Hashimoto, “Local structure of a trapped photoexcited state of a Fe-Co cyanide studied by x-ray-absorption fine-structure spectroscopy,” Physical Review B, vol. 60, no. 13, pp. 9340–9346, 1999.
[159]
A. Bleuzen, C. Lomenech, V. Escax et al., “Photoinduced ferrimagnetic systems in Prussian Blue analogues C(x)(I)Co4[Fe(Cn)6](y) (C(i) = alkali cation). 1. Conditions to observe the phenomenon,” Journal of the American Chemical Society, vol. 122, no. 28, pp. 6648–6652, 2000.
[160]
C. Cartier Dit Moulin, F. Villain, A. Bleuzen et al., “Photoinduced ferrimagnetic systems in Prussian Blue analogues C(I)(x)Co4[Fe(CN)6](y) (C(I) = alkali cation). 2. X-ray absorption spectroscopy of the metastable state,” Journal of the American Chemical Society, vol. 122, no. 28, pp. 6653–6658, 2000.
[161]
V. Escax, A. Bleuzen, C. Cartier dit Moulin et al., “Photoinduced ferrimagnetic systems in Prussian Blue analogues CIxCo4[Fe(CN)6]y (CI = Alkali Cation). 3. Control of the photo- and thermally induced electron transfer by the [Fe(CN)6] vacancies in cesium derivatives,” Journal of the American Chemical Society, vol. 123, no. 50, pp. 12536–12543, 2001.
[162]
M. Giorgetti, S. D. Longa, and M. Benfatto, “EXAFS and XANES simulations of Fe/Co hexacyanoferrate spectra by GNXAS and MXAN,” Journal of Physics, vol. 190, Article ID 012145, 2009.
[163]
T. Yokoyama, H. Tokoro, S. I. Ohkoshi, K. Hashimoto, K. Okamoto, and T. Ohta, “Photoinduced phase transition of RbMnFe(CN)6 studied by x-ray-absorption fine structure spectroscopy,” Physical Review B, vol. 66, no. 18, Article ID 184111, pp. 1841111–18411110, 2002.
[164]
T. Yokoyama, K. Okamoto, T. Otha, S. Ohkoshi, and K. Hashimoto, “Local structure and electrocin state of a photomagnetic material of CoW cyanide studied by X-ray absorption fine structure spectroscopy,” Physical Review B, vol. 65, Article ID 064438, 2002.
[165]
X. D. Ma, T. Yokoyama, T. Hozumi, K. Hashimoto, and S. I. Ohkoshi, “Electronic states and local structures of the photomagnetic Cu-Mo cyanides Cu2Mo(CN)88H2O and Cs0.5Cu1.75Mo(CN)81.5H2O studied by x-ray absorption fine structure spectroscopy,” Physical Review B, vol. 72, no. 9, pp. 1–6, 2005.
[166]
E. I. Solomon, B. Hedman, K. O. Hodgson, A. Dey, and R. K. Szilagyi, “Ligand K-edge X-ray absorption spectroscopy: covalency of ligand-metal bonds,” Coordination Chemistry Reviews, vol. 249, no. 1-2, pp. 97–129, 2005.
[167]
M. A. Arrio, P. Sainctavit, C. Cartier Dit Moulin et al., “Characterization of chemical bonds in bimetallic cyanides using X-ray absorption spectroscopy at L2,3 edges,” Journal of the American Chemical Society, vol. 118, no. 27, pp. 6422–6427, 1996.
[168]
V. Escax, G. Champion, M. A. Arrio, M. Zacchigna, C. C. D. Moulin, and A. Bleuzen, “The Co ligand field: a key parameter in photomagnetic CoFe Prussian Blue derivatives,” Angewandte Chemie, vol. 44, no. 30, pp. 4798–4801, 2005.
[169]
A. Bleuzen, V. Escax, A. Ferrier et al., “Thermally induced electron transfer in a CsCoFe Prussian Blue derivative: the specific role of the alkali-metal ion,” Angewandte Chemie, vol. 43, no. 28, pp. 3728–3731, 2004.
[170]
S. Bonhommeau, N. Pontius, S. Cobo et al., “Metal-to-ligand and ligand-to-metal charge transfer in thin films of Prussian Blue analogues investigated by X-ray absorption spectroscopy,” Physical Chemistry Chemical Physics, vol. 10, no. 38, pp. 5882–5889, 2008.
[171]
P. J. Kulesza, M. A. Malik, M. Berrettoni et al., “Electrochemical charging, counter-cation accomodation, and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate,” Journal of Physical Chemistry B, vol. 102, no. 11, pp. 1870–1876, 1998.
[172]
P. J. Kulesza, M. A. Malik, J. Skorek et al., “Hybrid metal cyanometallates electrochemical charging and spectrochemical identity of heteronuclear nickel/cobalt hexacyanoferrate,” Journal of the Electrochemical Society, vol. 146, no. 10, pp. 3757–3761, 1999.
[173]
K. H. Hallmeier, S. Sauter, and R. Szargan, “XANES and EXAFS investigations of bonding and structure of Ni and Co derivatives from Prussian Blue coordination compounds,” Inorganic Chemistry Communications, vol. 4, no. 3, pp. 153–156, 2001.
[174]
W. A. Steen, S. W. Han, Q. Yu et al., “Structure of cathodically deposited nickel hexacyanoferrate thin films using XRD and EXAFS,” Langmuir, vol. 18, no. 20, pp. 7714–7721, 2002.
[175]
S. Zamponi, M. Giorgetti, M. Berrettoni, P. J. Kulesza, J. A. Cox, and A. M. Kijak, “Cobalt hexacyanoferrate in PAMAM-doped silica matrix: 1. Solid state electrochemistry and thermochromism,” Electrochimica Acta, vol. 51, no. 1, pp. 118–124, 2005.
[176]
M. Giorgetti, M. Berrettoni, S. Zamponi, P. J. Kulesza, and J. A. Cox, “Cobalt hexacyanoferrate in PAMAM doped silica matrix. 2. Structural and electronic characterization,” Electrochimica Acta, vol. 51, no. 3, pp. 511–516, 2005.
[177]
A. R. Hillman, M. A. Skopek, and S. J. Gurman, “EXAFS structural studies of electrodeposited Co and Ni hexacyanoferrate films,” Journal of Solid State Electrochemistry, vol. 14, no. 11, pp. 1997–2010, 2010.
[178]
M. Giorgetti, L. Guadagnini, D. Tonelli, M. Minicucci, and G. Aquilanti, “Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi-technique approach,” Physical Chemistry Chemical Physics, vol. 14, no. 16, pp. 5527–5537, 2012.
[179]
M. Giorgetti, G. Aquilanti, and M. Minicucci, “Structural study of the Cu2+-loaded copper hexacyanoferrate electrode deposited on ITO substrate,” Journal of Physics, vol. 430, Article ID 012049, 2013.
[180]
A. Bleuzen, J. D. Cafun, A. Bachschmidt et al., “CoFe Prussian Blue analogues under variable pressure. Evidence of departure from cubic symmetry: X-ray diffraction and absorption study,” Journal of Physical Chemistry C, vol. 112, no. 45, pp. 17709–17715, 2008.
[181]
K. Ishiji, T. Matsuda, H. Tokoro, T. Iwazumi, K. Hashimoto, and S. I. Ohkoshi, “Observation of phase transition of cesium manganese hexacyanoferrates by X-ray absorption spectroscopy,” Journal of Physics and Chemistry of Solids, vol. 68, no. 11, pp. 2158–2161, 2007.
[182]
I. Jarrige, Y. Q. Cai, H. Ishii, N. Hiraoka, and A. Bleuzen, “Thermally activated charge transfer in a Prussian Blue derivative probed by resonant inelastic x-ray scattering,” Applied Physics Letters, vol. 93, no. 5, Article ID 054101, 2008.
[183]
Y. Nanba, D. Asakura, M. Okubo et al., “Configuration-interaction full-multiplet calculation to analyze the electronic structure of a cyano-bridged coordination polymer electrode,” Journal of Physical Chemistry C, vol. 116, no. 47, pp. 24896–24901, 2012.
[184]
Y. Nanba and K. Okada, “Theory of Fe and Mn 2p X-ray absorption for RbMn[Fe(CN)6],” Journal of Electron Spectroscopy and Related Phenomena, vol. 185, no. 5–7, pp. 167–174, 2012.
[185]
Y. Nanba and K. Okada, “Charge transfer effects on Fe 2p X-ray photoemission of RbMn[Fe(CN) 6], K3Fe(CN)6, and K4Fe(CN)6,” Journal of the Physical Society of Japan, vol. 80, no. 7, Article ID 074710, 2011.
[186]
M. Ware, “Prussian Blue: artists' pigment and chemists' sponge,” Journal of Chemical Education, vol. 85, no. 5, pp. 612–620, 2008.
[187]
L. Samain, G. Silversmit, J. Sanyova et al., “Fading of modern Prussian Blue pigments in linseed oil medium,” Journal of Analytical Atomic Spectrometry, vol. 26, no. 5, pp. 930–941, 2011.
[188]
G. Dupouy, I. Bonhoure, S. D. Conradson et al., “Local structure in americium and californium hexacyanoferrates-comparison with their lanthanide analogues,” European Journal of Inorganic Chemistry, no. 10, pp. 1560–1569, 2011.
[189]
I. Bonhoure, C. D. Auwer, C. C. Dit Moulin, P. Moisy, J. C. Berthet, and C. Madic, “Molecular and electronic structure of An(IV)Fe(II)(Cn)6·xH2O (An = Th, U, Np) compounds: an X-ray absorption spectroscopy investigation,” Canadian Journal of Chemistry, vol. 78, no. 10, pp. 1305–1317, 2000.
[190]
P. Glatzel, L. Jacquamet, U. Bergmann, F. M. F. De Groot, and S. P. Cramer, “Site-selective EXAFS in mixed-valence compounds using high-resolution fluorescence detection: a study of iron in Prussian Blue,” Inorganic Chemistry, vol. 41, no. 12, pp. 3121–3127, 2002.
[191]
X. Duan and D. G. Evans, Eds., Layered Double Hydroxides, Structure and Bonding, Springer, Berlin, Germany, 2006.
[192]
A. de Roy, C. Forano, K. El Malki, and J. P. Besse, “Synthesis of microporous materials,” in Expanded Clays and other Microporous Stystems, M. L. Occelli and H. E. Robson, Eds., vol. 2, pp. 108–169, Van Nostrand Reinhold, New York, NY, USA, 1992.
[193]
F. Cavani, F. Trifirò, and A. Vaccari, “Hydrotalcite-type anionic clays: preparation, properties and applications,” Catalysis Today, vol. 11, no. 2, pp. 173–301, 1991.
[194]
V. Rives and M. A. Ulibarri, “Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates,” Coordination Chemistry Reviews, vol. 181, no. 1, pp. 61–120, 1999.
[195]
S. K. Jana, Y. Kubota, and T. Tatsumi, “Cobalt-substituted polyoxometalate pillared hydrotalcite: synthesis and catalysis in liquid-phase oxidation of cyclohexanol with molecular oxygen,” Journal of Catalysis, vol. 255, no. 1, pp. 40–47, 2008.
[196]
Z. Tong, T. Shichi, and K. Takagi, “Oxidation catalysis of a manganese(III)porphyrin intercalated in layered double hydroxide clays,” Materials Letters, vol. 57, no. 15, pp. 2258–2261, 2003.
[197]
E. M. Moujahid, J. Inacio, J. P. Besse, and F. Leroux, “Adsorption of styrene sulfonate versus polystyrene sulfonate on layered double hydroxides,” Microporous and Mesoporous Materials, vol. 57, no. 1, pp. 37–46, 2003.
[198]
D. Tonelli, E. Scavetta, and M. Giorgetti, “Layered double hydroxide modified electrodes: electroanalytical applications,” Analytical and Bioanalytical Chemistry, vol. 405, no. 2-3, pp. 603–614, 2013.
[199]
C. Mousty, C. Forano, S. Fleutot, and J. C. Dupin, “Electrochemical study of anionic ferrocene derivatives intercalated in layered double hydroxides: application to glucose amperometric biosensors,” Electroanalysis, vol. 21, no. 3–5, pp. 399–408, 2009.
[200]
W. Shi, M. Wei, D. G. Evans, and X. Duan, “Tunable photoluminescence properties of fluorescein in a layered double hydroxide matrix and its application in sensors,” Journal of Materials Chemistry, vol. 20, no. 19, pp. 3901–3909, 2010.
[201]
X. Guo, F. Zhang, D. G. Evans, and X. Duan, “Layered double hydroxide films: synthesis, properties and applications,” Chemical Communications, vol. 46, no. 29, pp. 5197–5210, 2010.
[202]
Y. Guo, D. Li, C. Hu et al., “Photocatalytic degradation of aqueous organocholorine pesticide on the layered double hydroxide pillared by Paratungstate A ion, Mg12Al6(OH)36 (W7O42)·4H2O,” Applied Catalysis B, vol. 30, no. 3-4, pp. 337–349, 2001.
[203]
V. Rives, F. M. Labajos, M. A. Ulibarri, and P. Malet, “A new hydrotalcite-like compound containing V3+ ions in the layers,” Inorganic Chemistry, vol. 32, no. 23, pp. 5000–5001, 1993.
[204]
W. Li, K. J. T. Livi, W. Xu et al., “Formation of crystalline Zn-Al layered double hydroxide precipitates on γ-alumina: the role of mineral dissolution,” Environmental Science & Technology, vol. 46, no. 21, pp. 11670–11677, 2012.
[205]
K. J. T. Livi, G. S. Senesi, A. C. Scheinost, and D. L. Sparks, “Microscopic examination of nanosized mixed Ni-Al hydroxide surface precipitates on pyrophyllite,” Environmental Science and Technology, vol. 43, no. 5, pp. 1299–1304, 2009.
[206]
C. Priadi, P. Le Pape, G. Morin et al., “X-ray absorption fine structure evidence for amorphous zinc sulfide as a major zinc species in suspended matter from the seine river downstream of Paris, Ile-De-France, france,” Environmental Science and Technology, vol. 46, no. 7, pp. 3712–3720, 2012.
[207]
O. Jacquat, A. Voegelin, and R. Kretzschmar, “Soil properties controlling Zn speciation and fractionation in contaminated soils,” Geochimica et Cosmochimica Acta, vol. 73, no. 18, pp. 5256–5272, 2009.
[208]
O. Jacquat, A. Voegelin, A. Villard, M. A. Marcus, and R. Kretzschmar, “Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils,” Geochimica et Cosmochimica Acta, vol. 72, no. 20, pp. 5037–5054, 2008.
[209]
M. Nachtegaal and D. L. Sparks, “Nickel sequestration in a kaolinite-humic acid complex,” Environmental Science and Technology, vol. 37, no. 3, pp. 529–534, 2003.
[210]
Y. T. Liu, M. K. Wang, T. Y. Chen, P. N. Chiang, P. M. Huang, and J. F. Lee, “Arsenale sorption on lithium/aluminum layered double hydroxide intercalated by chloride and on gibbsite: sorption isotherms, envelopes, and spectroscopic studies,” Environmental Science and Technology, vol. 40, no. 24, pp. 7784–7789, 2006.
[211]
N. U. Yamaguchi, A. C. Scheinost, and D. L. Sparks, “Influence of gibbsite surface area and citrate on Ni sorption mechanisms at pH 7.5,” Clays and Clay Minerals, vol. 50, no. 6, pp. 784–790, 2002.
[212]
E. J. Elzinga and D. L. Sparks, “Reaction condition effects on nickel sorption mechanisms in illite-water suspensions,” Soil Science Society of America Journal, vol. 65, no. 1, pp. 94–101, 2001.
[213]
J. Hu, X. Tan, X. Ren, and X. Wang X, “Effect of humic acid on nickel(ii) sorption to Ca-montmorillonite by batch and EXAFS techniques study,” Dalton Transactions, vol. 41, no. 35, pp. 10803–10810, 2012.
[214]
M. Nachtegaal and D. L. Sparks, “Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface,” Journal of Colloid and Interface Science, vol. 276, no. 1, pp. 13–23, 2004.
[215]
D. R. Roberts, R. G. Ford, and D. L. Sparks, “Kinetics and mechanisms of Zn complexation on metal oxides using EXAFS spectroscopy,” Journal of Colloid and Interface Science, vol. 263, no. 2, pp. 364–376, 2003.
[216]
L. Aimoz, C. Taviot-Guého, S. V. Churakov et al., “Anion and cation order in iodide-bearing Mg/Zn-Al layered double hydroxides,” The Journal of Physical Chemistry C, vol. 116, no. 9, pp. 5460–5475, 2012.
[217]
B. Monteiro, S. Gago, F. A. Almeida Paz, R. Bilsborrow, I. S. Gon?alves, and M. Pillinger, “Investigation of layered double hydroxides intercalated by oxomolybdenum catecholate complexes,” Inorganic Chemistry, vol. 47, no. 19, pp. 8674–8686, 2008.
[218]
S. Gago, M. Pillinger, R. A. Sá Ferreira, L. D. Carlos, T. M. Santos, and L. S. Gon?alves, “Immobilization of Lanthanide Ions in a Pillared Layered Double Hydroxide,” Chemistry of Materials, vol. 17, no. 23, pp. 5803–5809, 2005.
[219]
M. Doeuff, T. Kwon, and T. J. Pinnavaia, “Layered double hydroxides pillared by polyoxometalate anions: EXAFS studies and chemical synthesis,” Synthetic Metals, vol. 34, no. 1–3, pp. 609–615, 1989.
[220]
E. M. Moujahid, J. P. Besse, and F. Leroux, “Poly(styrene sulfonate) layered double hydroxide nanocomposites. Stability and subsequent structural transformation with changes in temperature,” Journal of Materials Chemistry, vol. 13, no. 2, pp. 258–264, 2003.
[221]
C. Vaysse, L. Guerlou-Demourgues, A. Demourgues, and C. Delmas, “Thermal behavior of oxometalate (Mo, W)-intercalated layered double hydroxides: study of the grafting phenomenon,” Journal of Solid State Chemistry, vol. 167, no. 1, pp. 59–72, 2002.
[222]
L. Bigey, C. Depege, A. de Roy, and J. P. Besse, “EXAFS and XANES study of layered double hydroxides,” in Proceedings of the 1996 9th International Conference on X-Ray Absorption Fine Structure. Part 2, pp. C2–950, August 1996.
[223]
F. Malherbe, L. Bigey, C. Forano, A. De Roy, and J. P. Besse, “Structural aspects and thermal properties of takovite-like layered double hydroxides pillared with chromium oxo-anions,” Journal of the Chemical Society, no. 21, pp. 3831–3839, 1999.
[224]
C. Taviot-Guého, F. Leroux, C. Payen, and J. P. Besse, “Cationic ordering and second-staging structures in copper-chromium and zinc-chromium layered double hydroxides,” Applied Clay Science, vol. 28, no. 1–4, pp. 111–120, 2005.
[225]
H. Roussel, V. Briois, E. Elkaim, A. De Roy, J. P. Besse, and J. P. Jolivet, “Study of the formation of the layered double hydroxide [Zn-Cr-Cl],” Chemistry of Materials, vol. 13, no. 2, pp. 329–337, 2001.
[226]
S. Ariasa, J. G. Eona, R. A. S. San Gila, Y. E. Liceaa, L. A. Palacio, and A. C. Faro Jr., “Synthesis and characterization of terephthalate-intercalated NiAl layered double hydroxides with high Al content,” Dalton Transaction, vol. 42, no. 6, pp. 2084–2093, 2013.
[227]
D. A. Boga, R. Oord, A. M. Beale, Y. Chung, P. C. A. Bruijnincx, and B. M. Weckhuysen, “Highly selective Bimetallic Pt-Cu/Mg(Al)O catalysts for the aqueous-phase reforming of glycerol,” ChemCatChem, vol. 5, no. 2, pp. 529–537, 2013.
[228]
Y. Zhao, P. Chen, B. Zhang et al., “Highly dispersed TiO 6 units in a layered double hydroxide for water splitting,” Chemistry, vol. 18, no. 38, pp. 11949–11958, 2012.
[229]
I. J. Shannon, T. Maschmeyer, G. Sankar et al., “A new cell for the collection of combined EXAFS/XRD data in situ during solid/liquid catalytic reactions,” Catalysis Letters, vol. 44, no. 1-2, pp. 23–27, 1997.
[230]
Y. Lu, M. Wei, L. Yang, and C. Li, “Synthesis of layered cathode material Li[CoxMn1-x]O2 from layered double hydroxides precursors,” Journal of Solid State Chemistry, vol. 180, no. 5, pp. 1775–1782, 2007.
[231]
I. Carpani, M. Giorgetti, M. Berrettoni, P. Luigi Buldini, M. Gazzano, and D. Tonelli, “A new approach for the synthesis of K+-free nickel hexacyanoferrate,” Journal of Solid State Chemistry, vol. 179, no. 12, pp. 3981–3988, 2006.
[232]
A. Corma, F. Rey, J. M. Thomas et al., “On the atomic environment and the mode of action of the catalytic centre in an intercalated oxo-molybdenum complex [MoO2{O2CC(S)Ph2}2]2- for oxygen-transfer reactions,” Chemical Communications, no. 14, pp. 1613–1614, 1996.
[233]
S. Bonnet, L. Bigey, C. Forano et al., “Intercalation of porphyrin in Zn-Al layered double hydroxides,” in Synthesis of Microporous Materials: Zeolytes, Clays and Nanostructures, M. L. Occelli and H. Kessler, Eds., pp. 627–640, Marcel Dekker, Ney York, NY, USA, 1997.
[234]
I. Carpani, M. Berrettoni, B. Ballarin, M. Giorgetti, E. Scavetta, and D. Tonelli, “Study on the intercalation of hexacyanoferrate(II) in a Ni, Al based hydrotalcite,” Solid State Ionics, vol. 168, no. 1-2, pp. 167–175, 2004.
[235]
I. Carpani, M. Berrettoni, M. Giorgetti, and D. Tonelli, “Intercalation of iron(III) hexacyano complex in a Ni,Al hydrotalcite-like compound,” Journal of Physical Chemistry B, vol. 110, no. 14, pp. 7265–7269, 2006.
[236]
C. Vaysse, L. Gueriou-Demourgues, A. Demourgues, F. Lazartigues, D. Fertier, and C. Delmas, “New (Ni, Co)-based layered double hydroxides with intercalated oxometalate (Mo, W) species, obtained by chimie douce reactions,” Journal of Materials Chemistry, vol. 12, no. 4, pp. 1035–1043, 2002.
[237]
C. Depège, L. Bigey, C. Forano, A. De Roy, and J. P. Besse, “Synthesis and characterization of new copper-chromium layered double hydroxides pillared with polyoxovanadates,” Journal of Solid State Chemistry, vol. 126, no. 2, pp. 314–323, 1996.
[238]
B. Ballarin, A. Mignani, E. Scavetta et al., “Novel synthetic route for supported gold nanoparticles Nial Layered Double Hydroxide, catalyst efficiency towards electro-oxydation of methanol,” Langmuir, vol. 28, no. 42, pp. 15065–15074, 2012.
[239]
G. Defontaine, L. J. Michot, I. Bihannic, J. Ghanbaja, and V. Briois, “Synthesis of NiGa layered double hydroxides. A combined extended x-ray absorption fine structure, small-angle x-ray scattering, and transmission electron microscopy study. 1. Hydrolysis in the pure Ni2+ system,” Langmuir, vol. 19, no. 25, pp. 10588–10600, 2003.
[240]
G. Defontaine, L. J. Michot, I. Bihannic, J. Ghanbaja, and V. Briois, “Synthesis of NiGa layered double hydroxides. A combined EXAFS, SAXS, and TEM study. 3. Synthesis at constant pH,” Langmuir, vol. 20, no. 25, pp. 11213–11222, 2004.
[241]
G. Defontaine, L. J. Michot, I. Bihannic, J. Ghanbaja, and V. Briois, “Synthesis of NiGa layered double hydroxides. A combined EXAFS, SAXS, and TEM study. 2. Hydrolysis of a Ni2+/Ga3+ solution,” Langmuir, vol. 20, no. 22, pp. 9834–9843, 2004.
[242]
S. Vial, V. Prevot, F. Leroux, and C. Forano, “Immobilization of urease in ZnAl Layered Double Hydroxides by soft chemistry routes,” Microporous and Mesoporous Materials, vol. 107, no. 1-2, pp. 190–201, 2008.
[243]
H. Funke, A. C. Scheinost, and M. Chukalina, “Wavelet analysis of extended x-ray absorption fine structure data,” Physical Review B, vol. 71, no. 9, pp. 1–7, 2005.
[244]
T. Enoki, M. Suzuki, and M. Endo, Graphite Intercalation Compounds and Applications, Oxford University Press, Oxford, UK, 2003.
[245]
S. M. Heald and E. A. Stern, “Extended-x-ray-absorption-fine-structure study of the Br2-graphite system,” Physical Review B, vol. 17, no. 10, pp. 4069–4081, 1978.
[246]
T. Roisnel, A. Tressaud, J. Grannec, H. Dexpert, and S. Flandrois, “EXAFS study of transition metal chlorides intercalated in graphite,” Solid State Communications, vol. 73, no. 8, pp. 547–550, 1990.
[247]
N. V. Bausk, S. B. érenburg, N. F. Yudanov, and L. N. Mazalov, “Geometry and orientation of molecules in a graphite fluoride matrix,” Journal of Structural Chemistry, vol. 37, no. 6, pp. 913–919, 1996.
[248]
N. V. Bausk, S. B. érenburg, N. F. Yudanov, and L. N. Mazalov, “Determining the orientations of BrF3 and FeBr3 molecules in graphite fluoride matrices using the XANES and EXAFS polarization dependences,” Journal of Structural Chemistry, vol. 36, no. 6, pp. 932–940, 1995.
[249]
G. Faraci, S. La Rosa, A. R. Pennisi, S. Mobilio, and I. Pollini, “Islandlike in-plane structure and vibrational behavior of NiCl2 intercalated in graphite,” Physical Review B, vol. 43, no. 3, pp. 1913–1918, 1991.
[250]
J. Ehrich, P. Behrens, W. Metz, and W. Niemann, “X-ray absorption spectroscopy and X-ray diffraction of AuCl3-graphite,” Synthetic Metals, vol. 34, no. 1–3, pp. 217–222, 1989.
[251]
A. V. Dunaev, I. V. Arkhangelsky, Y. V. Zubavichus, and V. V. Avdeev, “Preparation, structure and reduction of graphite intercalation compounds with hexachloroplatinic acid,” Carbon, vol. 46, no. 5, pp. 788–795, 2008.
[252]
H. Yoshikawa, K. Fukuyama, Y. Nakahara et al., “X-ray absorption fine structure study on residue bromine in carbons with different degrees of graphitization,” Carbon, vol. 41, no. 15, pp. 2931–2938, 2003.
[253]
M. Shirai, K. Igeta, and M. Arai, “Insertion and aggregation behavior of PtCl4 between graphite layers,” Studies in Surface Science and Catalysis, vol. 132, pp. 761–764, 2001.
[254]
P. Thuéry, “Solid state structure of thorium(IV) complexes with common aminopolycarboxylate ligands,” Inorganic Chemistry, vol. 50, no. 5, pp. 1898–1904, 2011.
[255]
T. Yamamoto, T. Matsuyama, T. Tanaka, T. Funabiki, and S. Yoshida, “Silica-supported ytterbium oxide characterized by spectroscopic methods and acid-catalyzed reactions,” Journal of Molecular Catalysis A, vol. 155, no. 1-2, pp. 43–58, 2000.
[256]
S. J. Clarke, P. Adamson, S. J. C. Herkelrath et al., “Structures, physical properties, and chemistry of layered oxychalcogenides and oxypnictides,” Inorganic Chemistry, vol. 47, no. 19, pp. 8473–8486, 2008.
[257]
S. Ganorkar, K. R. Priolkar, P. R. Sarode, A. Banerjee, R. Rawat, and S. Emura, “Influence of local structure on magnetic properties of layered cobaltites PrBaCo(2)O(5+δ), ,” Journal of Physics Condensed Matter, vol. 24, no. 47, Article ID 476003, 2012.
[258]
J. H. Choy, J. Y. Kim, and I. Chung, “Neutron diffraction and X-ray absorption spectroscopic analyses for lithiated aurivillius-type layered perovskite oxide, Li2Bi4Ti3O12,” Journal of Physical Chemistry B, vol. 105, no. 33, pp. 7908–7912, 2001.
[259]
S. Riegg, A. Reller, and S. G. Ebbinghaus, “Single crystalline and rare earth substituted La2RuO5 investigated by X-ray diffraction and EXAFS spectroscopy,” Journal of Solid State Chemistry, vol. 188, pp. 17–25, 2012.
[260]
S. J. Gurman, J. C. Amiss, M. Khaled, N. L. Saini, and K. B. Garg, “X-ray absorption study of the (Y1-xPrx)Ba2Cu3O7-δ system,” Journal of Physics Condensed Matter, vol. 11, no. 7, pp. 1847–1859, 1999.
[261]
H. Oyanagi, N. L. Saini, and A. Bianconi, “Local lattice distortions in YBa2Cu3Oy probed by XAS: critical fluctuation, pseudogap opening and stripe ordering,” International Journal of Modern Physics B, vol. 14, no. 29–31, pp. 3623–3631, 2000.
[262]
P. Ghigna, S. Pin, G. Spinolo et al., “μ-XANES mapping of buried interfaces: pushing microbeam techniques to the nanoscale,” Physical Chemistry Chemical Physics, vol. 12, no. 21, pp. 5547–5550, 2010.
[263]
S. Pascarelli and O. Mathon, “Advances in high brilliance energy dispersive X-ray absorption spectroscopy,” Physical Chemistry Chemical Physics, vol. 12, no. 21, pp. 5535–5546, 2010.
[264]
M. Giorgetti, S. Tonelli, A. Zanelli, G. Aquilanti, M. Pellei, and C. Santini, “Synchrotron radiation X-ray absorption spectroscopic studies in solution and electrochemistry of a nitroimidazole conjugated heteroscorpionate copper(II) complex,” Polyhedron, vol. 48, no. 1, pp. 174–180, 2012.
[265]
M. Pellei, G. Papini, S. Trasatti et al., “Nitroimidazole and glucosamine conjugated heteroscorpionate ligands and related copper(ii) complexes. Syntheses, biological activity and XAS studies,” Dalton Transaction, vol. 40, no. 38, pp. 9877–9888, 2011.
[266]
Y. Wen Hsiao, Y. Tao, J. E. Sholes, R. A. Scott, and U. Ryde, “EXAFS structure refinement supplemented by computational chemistry,” Physical Review B, vol. 74, no. 21, Article ID 214101, 2006.
[267]
P. D'Angelo, A. Zitolo, V. Migliorati, G. Mancini, I. Persson, and G. Chillemi, “Structural investigation of lanthanoid coordination: a combined XANES and molecular dynamics study,” Inorganic Chemistry, vol. 48, no. 21, pp. 10239–10248, 2009.
[268]
A. Witkowska, J. Rybicki, and A. Di Cicco, “Structure of partially reduced bismuth-silicate glasses: EXAFS and MD study,” Journal of Alloys and Compounds, vol. 401, no. 1-2, pp. 135–144, 2005.
[269]
O. M. Roscioni, N. Zonias, S. W. T. Price, A. E. Russell, T. Comaschi, and C. K. Skylaris, “Computational prediction of L3 EXAFS spectra of gold nanoparticles from classical molecular dynamics simulations,” Physical Review B, vol. 83, no. 11, Article ID 115409, 2011.