Ferroelectric materials rely on some type of non-centrosymmetric displacement correlations to give rise to a macroscopic polarisation. These displacements can show short-range order (SRO) that is reflective of the local chemistry, and so studying it reveals important information about how the structure gives rise to the technologically useful properties. A key means of exploring this SRO is diffuse scattering. Conventional structural studies use Bragg peak intensitiesto determine the average structure. In a single crystal diffuse scattering (SCDS) experiment, the coherent scattered intensity is measured at non-integer Miller indices, and can be used to examine the population of local configurations. This is because the diffuse scattering is sensitive to two-body averages, whereas the Bragg intensity gives single-body averages. This review outlines key results of SCDS studies on several materials and explores the similarities and differences in their diffuse scattering. Random strains are considered, as are models based on a phonon-like picture or a more local-chemistry oriented picture. Limitations of the technique are discussed. 1. Introduction Single crystal diffuse scattering (SCDS) has been the subject of study since the earliest days of crystallography [1] and is seen in many patterns collected using film (e.g., [2]), film being an early variant of “area detector” and therefore very good for surveying large regions of reciprocal space—far better than an electronic point counter. The different forms of disorder present in crystalline materials, and how they are manifested in diffraction patterns have been well explored, both in monographs and papers (these include [3–14]). Diffuse scattering can be defined for the purposes of this paper as the coherently scattered intensity that is not localised on the reciprocal lattice. It is the result of the two-body correlations in a crystalline material (see e.g., [15, 16]). These correlations may exist between atoms, molecules, and, in the case of neutron diffraction, magnetic moments [17–20]. It has long been known that diffuse scattering, an example is shown in Figure 1, contains information about the correlations in atomic and molecular thermal motions [21] as well as static short-range order. Modelling diffuse scattering is not simple, because locally the short-range order, SRO, need not obey the space group symmetry of the crystal. The global symmetry must be regained on averaging across the crystal but may not be present on the local scale of a few nanometres, or if one prefers, on the scale of a few
References
[1]
W. Friedrich, “R?ntgenstrahlinterferenzen,” Physikalische Zeitschrift, vol. 14, pp. 1079–1087, 1913.
[2]
K. Lonsdale and H. Smith, “An experimental study of diffuse x-ray reflexion by single crystals,” Proceedings of the Royal Society A, vol. 179, pp. 8–50.
[3]
R. I. Barabash, G. E. Ice, and P. E. A. Turchi, Diffuse Scattering and the Fundamental Properties of Materials, Momentum Press, 1st edition, 2009.
[4]
M. A. Krivoglaz, Diffuse Scattering of X-Rays and Neutrons by Fluctuations, Springer, Berlin, Germany, 1996.
[5]
M. A. Krivoglaz, Theory of X-Ray and Thermal-Neutron Scattering by Real Crystals, Plenum Press, New York, NY, USA, 1969.
[6]
D. W. L. Hukins, X-Ray Diffraction by Ordered and Disorderd Systems, Pergamon Press, New York, NY, USA, 1981.
[7]
W. A. Wooster, Diffuse X-Ray Reflections from Crystals, Clarendon Press, Oxford, UK, 1962.
[8]
T. R. Welberry, Diffuse X-Ray Scattering and Models of Disorder, Oxford University Press, 2004.
[9]
G. Harburn, C. A. Taylor, and T. R. Welberry, Atlas of Optical Transforms, Bell, London, UK, 1975.
[10]
Th. Proffen, “Analysis of occupational and displacive disorder using the atomic pair distribution function: a systematic investigation,” Zeitschrift fur Kristallographie, vol. 215, no. 11, pp. 661–668, 2000.
[11]
W. Schweika, Disordered Alloys: Diffuse Scattering and Monte Carlo Simulations, Springer, 1998.
[12]
R. B. Neder and Th. Proffen, Diffuse Scattering and Defect Structure Simulations: A Cook Book Using the Program DISCUS, OUP, 2008.
[13]
V. M. Nield and D. A. Keen, Diffuse Neutron Scattering from Crystalline Materials, OUP, Oxford, UK, 2001.
[14]
S. J. L. Billinge and M. F. Thorpe, Local Structure from Diffraction, Plenum, New York, NY, USA, 1998.
[15]
B. D. Butler and T. R. Welberry, “Interpretation of displacement-caused diffuse scattering using the Taylor expansion,” Acta Crystallographica A, vol. 49, no. 5, pp. 736–743, 1993.
[16]
B. E. Warren, B. L. Averbach, and B. W. Roberts, “Atomic size effect in the x-ray scattering by alloys,” Journal of Applied Physics, vol. 22, no. 12, pp. 1493–1496, 1951.
[17]
T. J. Hicks, “Experiments with neutron polarization analysis,” Advances in Physics, vol. 45, no. 4, pp. 243–298, 1996.
[18]
T. J. Hicks, Magnetism in Disorder, OUP, 1995.
[19]
J. R. Stewart, P. P. Deen, K. H. Andersen et al., “Disordered materials studied using neutron polarization analysis on the multi-detector spectrometer, D7,” Journal of Applied Crystallography, vol. 42, no. 1, pp. 69–84, 2009.
[20]
W. Schweika and P. B?ni, “The instrument DNS: polarization analysis for diffuse neutron scattering,” Physica B, vol. 297, pp. 155–159, 2001.
[21]
H. Faxén, “Die bei interferenz von r?ntgenstrahlen infolge der w?rmebewegung entstehende streustrahlung,” Zeitschrift für Physik, vol. 17, pp. 266–278, 1923.
[22]
T. R. Welberry and A. G. Christy, “Defect distribution and the diffuse x-ray diffraction pattern of wüstite, Fe1-xO,” Physics and Chemistry of Minerals, vol. 24, pp. 24–38, 1997.
[23]
A. Bosak, D. Chernyshov, S. Vakhrushev, and M. Krisch, “Diffuse scattering in relaxor ferroelectrics: true three-dimensional mapping, experimental artefacts and modelling,” Acta Crystallographica A, vol. 68, no. 1, pp. 117–123, 2012.
[24]
Y. Kuroiwa, Y. Terado, S. J. Kim et al., “High-energy SR powder diffraction evidence of multisite disorder of Pb atom in cubic phase of PbZr1-xTixO3,” Japanese Journal of Applied Physics A, vol. 44, no. 9B, pp. 7151–7155, 2005.
[25]
T. R. Welberry, D. J. Goossens, R. L. Withers, and K. Z. Baba-Kishi, “Monte Carlo simulation study of diffuse scattering in PZT, Pb(Zr,Ti)O 3,” Metallurgical and Materials Transactions A, vol. 41, no. 5, pp. 1110–1118, 2010.
[26]
M. Pa?ciak, A. P. Heerdegen, D. J. Goossens, R. E. Whitfield, A. Pietraszko, and T. R. Welberry, “Assessing local structure in PbZn1/3Nb2/3O3 using diffuse scattering and reverse Monte Carlo refinement,” Metallurgical and Materials Transactions A, vol. 44, pp. 87–93, 2013.
[27]
T. R. Welberry, M. J. Gutmann, H. Woo et al., “Single-crystal neutron diffuse scattering and Monte Carlo study of the relaxor ferroelectric PbZn1/3Nb2/3O3 (PZN),” Journal of Applied Crystallography, vol. 38, no. 4, pp. 639–647, 2005.
[28]
C. Stock, D. Ellis, I. P. Swainson et al., “Damped soft phonons and diffuse scattering in 40%Pb (Mg1/3Nb2/3)O3-60%PbTiO3,” Physical Review B, vol. 73, no. 6, Article ID 064107, 2006.
[29]
B. Mihailova, B. Maier, C. Paulmann et al., “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Physical Review B, vol. 77, no. 17, Article ID 174106, 2008.
[30]
B. Maier, B. Mihailova, C. Paulmann et al., “Effect of local elastic strain on the structure of Pb-based relaxors: a comparative study of pure and Ba- and Bi-doped PbSc0.5Nb0.5O3,” Physical Review B, vol. 79, Article ID 224108, 2009.
[31]
A. Cervellino, S. N. Gvasaliya, O. Zaharko et al., “Diffuse scattering from the lead-based relaxor ferroelectric PbMg1/3Ta2/3O3,” Journal of Applied Crystallography, vol. 44, no. 3, pp. 603–609, 2011.
[32]
T. R. Welberry, D. J. Goossens, A. P. Heerdegen, and P. L. Lee, “Problems in measuring diffuse X-ray scattering,” Zeitschrift fur Kristallographie, vol. 220, no. 12, pp. 1052–1058, 2005.
[33]
H. Jagodzinski and F. Frey, International Tables for Crystallography, vol. B, 2006.
[34]
M. J. Gutmann, SXD2001, ISIS Facility, Rutherford Appleton Laboratory, Oxfordshire, UK, 2005.
[35]
R. E. Whitfield, D. J. Goossens, A. J. Studer, and J. S. Forrester, “Measuring single-crystal diffuse neutron scattering on the wombat high-intensity powder diffractometer,” Metallurgical and Materials Transactions A, vol. 43, pp. 1423–1428, 2012.
[36]
M. A. Estermann and W. Steurer, “Diffuse scattering data acquisition techniques,” Phase Transitions, vol. 67, no. 1, pp. 165–195, 1998.
[37]
S. Scheidegger, M. A. Estermann, and W. Steurer, “Correction of specimen absorption in X-ray diffuse scattering experiments with area-detector systems,” Journal of Applied Crystallography, vol. 33, no. 1, pp. 35–48, 2000.
[38]
S. Rosenkranz and R. Osborn, “Corelli: efficient single crystal diffraction with elastic discrimination,” Pramana, vol. 71, no. 4, pp. 705–711, 2008.
[39]
J. C. Osborn and T. R. Welberry, “A position-sensitive detector system for the measurement of diffuse X-ray scattering,” Journal of Applied Crystallography, vol. 23, pp. 476–484, 1990.
[40]
H. J. Lamfers, A Diffuse X-Ray Scattering Diffractometer, Rijksuniversiteit Groningen, 1997.
[41]
R. Born and D. Hohlwein, “Simultaneous energy analysis in a large angular range: A novel neutron spectrometer, its resolution and applications,” Zeitschrift für Physik B Condensed Matter, vol. 74, no. 4, pp. 547–555, 1989.
[42]
E. J. Chan and D. J. Goossens, “Study of the single-crystal X-ray diffuse scattering in paracetamol polymorphs,” Acta Crystallographica B, vol. 68, pp. 80–88, 2012.
[43]
T. R. Welberry, D. J. Goossens, W. I. F. David, M. J. Gutmann, M. J. Bull, and A. P. Heerdegen, “Diffuse neutron scattering in benzil, C14D10O2, using the time-of-flight Laue technique,” Journal of Applied Crystallography, vol. 36, no. 6, pp. 1440–1447, 2003.
[44]
T. R. Welberry, D. J. Goossens, and M. J. Gutmann, “Chemical origin of nanoscale polar domains in PbZn1 3 Nb2 3 O3,” Physical Review B, vol. 74, no. 22, Article ID 224108, 2006.
[45]
D. J. Goossens, A. G. Beasley, T. R. Welberry, M. J. Gutmann, and R. O. Piltz, “Neutron diffuse scattering in deuterated para-terphenyl, C 18D14,” Journal of Physics Condensed Matter, vol. 21, no. 12, Article ID 124204, 2009.
[46]
R. E. Whitfield, D. J. Goossens, and A. J. Studer, “Temperature dependence of diffuse scattering in PZN,” Metallurgical and Materials Transactions A, vol. 43, pp. 1429–1433, 2012.
[47]
A. Cervellino, S. N. Gvasaliya, B. Roessli et al., “Cube-shaped diffuse scattering and the ground state of BaMg1/3Ta2/3O3,” Physical Review B, vol. 86, Article ID 104107, 12 pages, 2012.
[48]
E. J. Chan, T. R. Welberry, D. J. Goossens, and A. P. Heerdegen, “A refinement strategy for Monte Carlo modelling of diffuse scattering from molecular crystal systems,” Journal of Applied Crystallography, vol. 43, no. 4, pp. 913–915, 2010.
[49]
E. J. Chan, T. R. Welberry, D. J. Goossens, A. P. Heerdegen, A. G. Beasley, and P. J. Chupas, “Single-crystal diffuse scattering studies on polymorphs of molecular crystals. I. the room-temperature polymorphs of the drug benzocaine,” Acta Crystallographica B, vol. 65, no. 3, pp. 382–392, 2009.
[50]
N. Ahmed, S. J. Campbell, and T. J. Hicks, “LONGPOL II: analysis of spin-flip and nonspin-flip neutron scattering,” Journal of Physics E, vol. 7, no. 3, article no. 318, pp. 199–204, 1974.
[51]
T. Ersez, S. J. Kennedy, T. J. Hicks, Y. Fei, Th. Krist, and P. A. Miles, “New features of the long-wavelength polarisation analysis spectrometer—LONGPOL,” Physica B, vol. 335, no. 1–4, pp. 183–187, 2003.
[52]
E. Elkaim, S. Lefebvre, R. Kahn, J. F. Berar, M. Lemonnier, and M. Bessiere, “Diffraction and diffuse scattering measurements in material science: Improvement brought to a six-circle goniometer on a synchrotron beam line,” Review of Scientific Instruments, vol. 63, no. 1, pp. 988–991, 1992.
[53]
M. W. Wall, S. E. Ealick, and S. M. Gruner, “Three-dimensional diffuse x-ray scattering from crystals of Staphylococcal nuclease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, pp. 6180–6184, 1997.
[54]
G. Xu, Z. Zhong, H. Hiraka, and G. Shirane, “Three-dimensional mapping of diffuse scattering in Pb(Zn1/3Nb2/3)O3-xPbTiO3,” Physical Review B, vol. 70, Article ID 174109, 17 pages, 2004.
[55]
T. Weber and H.-B. Bürgi, “Determination and refinement of disordered crystal structures using evolutionary algorithms in combination with Monte Carlo methods,” Acta Crystallographica A, vol. 58, pp. 526–540, 2002.
[56]
T. Weber, A. Simon, H. Mattausch, L. Kienle, and O. Oeckler, “Reliability of Monte Carlo simulations of disordered structures optimized with evolutionary algorithms exemplified with diffuse scattering from La0.70(1)(Al0.14(1)I0.86(1)),” Acta Crystallographica A, vol. 64, no. 6, pp. 641–653, 2008.
[57]
T. R. Welberry, D. J. Goossens, D. R. Haeffner, P. L. Lee, and J. Almer, “High-energy diffuse scattering on the 1-ID beamline at the advanced photon source,” Journal of Synchrotron Radiation, vol. 10, no. 3, pp. 284–286, 2003.
[58]
A. Gibaud, D. Harlow, J. B. Hastings, J. P. Hill, and D. Chapman, “A high-energy monochromatic laue (monolaue) X-ray diffuse scattering study of KMnF3 using an image plate,” Journal of Applied Crystallography, vol. 30, no. 1, pp. 16–20, 1997.
[59]
G. Honjo, S. Kodera, and N. Kitamura, “Diffuse streak diffraction patterns from single crystals I. General discussion and aspects of electron diffraction diffuse streak patterns,” Journal of the Physical Society of Japan, vol. 19, no. 3, pp. 351–367, 1964.
[60]
C. Randall, D. Barber, R. Whatmore, and P. Groves, “Short-range order phenomena in lead-based perovskites,” Ferroelectrics, vol. 76, Article ID 1, pp. 277–282, 1987.
[61]
S. R. Andrews and R. A. Cowley, “X-ray scattering from critical fluctuations and domain walls in KDP and DKDP,” Journal of Physics C, vol. 19, no. 4, 1986.
[62]
Y. Fujii and Y. Yamada, “X-ray critical scattering in ferroelectric tri-glycine sulphate,” Journal of the Physical Society of Japan, vol. 30, no. 6, pp. 1676–1685, 1971.
[63]
D. J. Goossens, A. P. Heerdegen, T. R. Welberry, and M. J. Gutmann, “Monte Carlo analysis of neutron diffuse scattering data,” Physica B, vol. 385-386, pp. 1352–1354, 2006.
[64]
T. R. Welberry, D. J. Goossens, A. J. Edwards, and W. I. F. David, “Diffuse X-ray scattering from benzil, C14H10O2: Analysis via automatic refinement of a Monte Carlo model,” Acta Crystallographica A, vol. 57, no. 1, pp. 101–109, 2001.
[65]
J. Harada and G. Honjo, “X-ray studies of the lattice vibration in tetragonal barium titanate,” Journal of the Physical Society of Japan, vol. 22, no. 1, pp. 45–57, 1967.
[66]
J. Kreisel, P. Bouvier, B. Dkhil et al., “Effect of high pressure on the relaxor ferroelectrics Na1/2Bi1/2TiO3 (NBT) and PbMg1/3Nb2/3O3 (PMN),” Ferroelectrics, vol. 302, pp. 293–298, 2004.
[67]
J. F. Scott, “Prospects for ferroelectrics: 2012–2022,” ISRN Materials Science, vol. 2013, Article ID 187313, 24 pages, 2013.
[68]
R. Comes, M. Lambert, and A. Guinier, “The chain structure of BaTiO3 and KNbO3,” Solid State Communications, vol. 6, no. 10, pp. 715–719, 1968.
[69]
J. Hlinka, T. Ostapchuk, D. Nuzhnyy et al., “Coexistence of the phonon and relaxation soft modes in the terahertz dielectric response of tetragonal BaTiO3,” Physical Review Letters, vol. 101, no. 16, Article ID 167402, 2008.
[70]
L. E. Cross, “Relaxor ferroelectrics,” Ferroelectrics, vol. 76, pp. 241–267, 1987.
[71]
A. A. Bokov and Z.-G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” Journal of Materials Science, vol. 41, no. 1, pp. 31–52, 2006.
[72]
J. Hlinka, “Do we need the ether of polar nanoregions?” Journal of Advanced Dielectrics, vol. 2, no. 2, Article ID 1241006, 2012.
[73]
C. R. Martin and I. A. Aksay, “Topographical evolution of lead zirconate titanate (PZT) thin films patterned by micromolding in capillaries,” Journal of Physical Chemistry B, vol. 107, no. 18, pp. 4261–4268, 2003.
[74]
R. Bogue, “Energy harvesting and wireless sensors: a review of recent developments,” Sensor Review, vol. 29, no. 3, pp. 194–199, 2009.
[75]
N. Setter, D. Damjanovic, L. Eng et al., “Ferroelectric thin films: rssssssssseview of materials, properties, and applications,” Journal of Applied Physics, vol. 100, no. 5, Article ID 051606, 2006.
[76]
M. Sitti, D. Campolo, J. Yan et al., “Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '01), vol. 4, pp. 3839–3846, May 2001.
[77]
S. E. Park and W. Hackenberger, “High performance single crystal piezoelectrics: Applications and issues,” Current Opinion in Solid State and Materials Science, vol. 6, no. 1, pp. 11–18, 2002.
[78]
L. A. Ivan, M. Rakotondrabe, J. Agnus et al., “Comparative material study between PZT ceramic and newer crystalline PMN-PT and PZN-PT materials for composite bimorph actuators,” Reviews on Advanced Materials Science, vol. 24, no. 1-2, pp. 1–9, 2010.
[79]
H. Ur?i?, M. S. Zarnik, and M. Kosec, “Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) material for actuator applications,” Smart Materials Research, vol. 2011, Article ID 452901, 6 pages, 2011.
[80]
S. H. Baek, J. Park, D. M. Kim et al., “Giant piezoelectricity on Si for hyperactive MEMS,” Science, vol. 334, no. 6058, pp. 958–961, 2011.
[81]
M. Frank, K. S. Moon, and S. Kassegne, “A PMMA coated PMN-PT single crystal resonator for sensing chemical agents,” Smart Materials and Structures, vol. 19, no. 3, Article ID 035015, 2010.
[82]
T. Takenaka, “Piezoelectric properties of some lead-free ferroelectric ceramics,” Ferroelectrics, vol. 230, no. 1, pp. 87–98, 1999.
[83]
E. A. Patterson and D. P. Cann, “Bipolar piezoelectric fatigue of Bi(Zn0.5Ti0.5)O3-(Bi0.5K0.5)TiO3-(Bi0.5Na0.5)TiO3 Pb-free ceramics,” Applied Physics Letters, vol. 101, no. 4, Article ID 042905, 2012.
[84]
J. W. Bennett, I. Grinberg, P. K. Davies, and A. M. Rappe, “Pb-free ferroelectrics investigated with density functional theory: SnAl1/2Nb1/2O3 perovskites,” Physical Review B, vol. 83, Article ID 144112, 6 pages, 2011.
[85]
Y. Uratani, T. Shishidou, and T. Oguchi, “First-principles study of lead-free piezoelectric SnTiO3,” Japanese Journal of Applied Physics, vol. 47, no. 9, pp. 7735–7739, 2008.
[86]
A. I. Lebedev, “Ab initio calculations of phonon spectra in ATiO3 perovskite crystals (A = Ca, Sr, Ba, Ra, Cd, Zn, Mg, Ge, Sn, Pb),” Physics of the Solid State, vol. 51, no. 2, pp. 362–372, 2009.
[87]
B. Mihailova, B. Maier, C. Paulmann et al., “High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3,” Physical Review B, vol. 77, Article ID 174106, 10 pages, 2008.
[88]
P. Ganesh, E. Cockayne, M. Ahart et al., “Origin of diffuse scattering in relaxor ferroelectrics,” Physical Review B, vol. 81, no. 14, Article ID 144102, 2010.
[89]
M. Pa?ciak, M. Wo?cyrz, and A. Pietraszko, “Interpretation of the diffuse scattering in Pb-based relaxor ferroelectrics in terms of three-dimensional nanodomains of the -directed relative interdomain atomic shifts,” Physical Review B, vol. 76, no. 1, Article ID 014117, 2007.
[90]
T. R. Welberry and D. J. Goossens, “The interpretation and analysis of diffuse scattering using Monte Carlo simulation methods,” Acta Crystallographica A, vol. 64, no. 1, pp. 23–32, 2007.
[91]
G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, C. Stock, and G. Shirane, “Ground state of the relaxor ferroelectric Pb(Zn1/3Nb2/3)O3,” Physical Review B, vol. 67, Article ID 104102, 5 pages, 2003.
[92]
G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, and G. Shirane, “Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric,” Nature Materials, vol. 5, no. 2, pp. 134–140, 2006.
[93]
T. R. Gururaja, R. K. Panda, J. Chen, and H. Beck, “Single crystal transducers for medical imaging applications,” in Proceedings of the IEEE Ultrasonics Symposium, pp. 969–972, October 1999.
[94]
Q. F. Zhou, H. L. W. Chan, and C. L. Choy, “PZT ceramic/ceramic 0–3 nanocomposite films for ultrasonic transducer applications,” Thin Solid Films, vol. 375, no. 1-2, pp. 95–99, 2000.
[95]
L. Lebrun, G. Sebald, B. Guiffard, C. Richard, D. Guyomar, and E. Pleska, “Investigations on ferroelectric PMN-PT and PZN-PT single crystals ability for power or resonant actuators,” Ultrasonics, vol. 42, no. 1-9, pp. 501–505, 2004.
[96]
Z. Yang, X. Chao, R. Zhang, Y. Chang, and Y. Chen, “Fabrication and electrical characteristics of piezoelectric PMN-PZN-PZT ceramic transformers,” Materials Science and Engineering B, vol. 138, no. 3, pp. 277–283, 2007.
[97]
B. D. Chapman, E. A. Stern, S.-W. Han et al., “Diffuse x-ray scattering in perovskite ferroelectrics,” Physical Review B, vol. 71, no. 2, Article ID 020102, 2005.
[98]
E. Sawaguchi, H. Maniwa, and S. Hoshino, “Antiferroelectric structure of lead zirconate,” Physical Review, vol. 83, no. 5, p. 1078, 1951.
[99]
A. M. Glazer, K. Roleder, and J. Dec, “Structure and disorder in single-crystal lead zirconate, PbZrO3,” Acta Crystallographica B, vol. 49, no. 5, pp. 846–852, 1993.
[100]
S. Teslic and T. Egami, “Atomic structure of PbZrO3 determined by pulsed neutron diffraction,” Acta Crystallographica B, vol. 54, no. 6, pp. 750–765, 1998.
[101]
X. Dai, J. Li, and D. Viehland, “Weak ferroelectricity in antiferroelectric lead zirconate,” Physical Review B, vol. 51, no. 5, pp. 2651–2655, 1995.
[102]
H. Yokota, N. Zhang, A. E. Taylor, P. A. Thomas, and A. M. Glazer, “Crystal structure of the rhombohedral phase of PbZr1-xTixO3 ceramics at room temperature,” Physical Review B, vol. 80, Article ID 104109, 12 pages, 2009.
[103]
J. Frantti, S. Ivanov, S. Eriksson et al., “Neutron diffraction and bond-valence calculation studies of Pb(ZrxTi1-x )O3 Ceramics,” Ferroelectrics, vol. 272, no. 1, pp. 51–56, 2002.
[104]
J. Ricote, D. L. Corker, R. W. Whatmore et al., “A TEM and neutron diffraction study of the local structure in the rhombohedral phase of lead zirconate titanate,” Journal of Physics Condensed Matter, vol. 10, no. 8, pp. 1767–1786, 1998.
[105]
D. Viehland, Z. Xu, and D. A. Payne, “Origin of F spots and stress sensitivity in lanthanum lead zirconate titanate,” Journal of Applied Physics, vol. 74, no. 12, pp. 7454–7460, 1993.
[106]
K. Z. Baba-Kishi, T. R. Welberry, and R. L. Withers, “An electron diffraction and Monte Carlo simulation study of diffuse scattering in Pb(Zr,Ti)O3,” Journal of Applied Crystallography, vol. 41, no. 5, pp. 930–938, 2008.
[107]
A. M. Glazer, P. A. Thomas, K. Z. Baba-Kishi, G. K. H. Pang, and C. W. Tai, “Influence of short-range and long-range order on the evolution of the morphotropic phase boundary in Pb(Zr1-xTix)O3,” Physical Review B, vol. 70, Article ID 184123, 9 pages, 2004.
[108]
R. G. Burkovsky, A. Yu. Bronwald, A. V. Filimonov et al., “Structural heterogeneity and diffuse scattering in morphotropic lead zirconate-titanate single crystals,” Physical Review Letters, vol. 109, Article ID 097603, 4 pages, 2012.
[109]
D. L. Corker, A. M. Glazer, R. W. Whatmore, A. Stallard, and F. Fauth, “A neutron diffraction investigation into the rhombohedral phases of the perovskite series PbZr1-xTixO3,” Journal of Physics Condensed Matter, vol. 10, no. 28, pp. 6251–6269, 1998.
[110]
S. Adams, “Relationship between bond valence and bond softness of alkali halides and chalcogenides,” Acta Crystallographica B, vol. 57, no. 3, pp. 278–287, 2001.
[111]
I. D. Brown, “Recent developments in the methods and applications of the bond valence model,” Chemical Reviews, vol. 109, no. 12, pp. 6858–6919, 2009.
[112]
R. G. Burkovsky, A. V. Filimonov, A. I. Rudskoy, K. Hirota, M. Matsuura, and S. B. Vakhrushev, “Diffuse scattering anisotropy and inhomogeneous lattice deformations in the lead magnoniobate relaxor PMN above the Burns temperature,” Physical Review B, vol. 85, no. 9, Article ID 094108, 2012.
[113]
S. Vakhrushev, A. Nabereznov, S. K. Sinha, Y. P. Feng, and T. Egami, “Synchrotron X-ray scattering study of lead magnoniobate relaxor ferroelectric crystals,” Journal of Physics and Chemistry of Solids, vol. 57, no. 10, pp. 1517–1523, 1996.
[114]
H. Hiraka, S.-H. Lee, P. M. Gehring, G. Xu, and G. Shirane, “Cold neutron study on the diffuse scattering and phonon excitations in the relaxor Pb(Mg1/3Nb2/3)O3,” Physical Review B, vol. 70, no. 18, Article ID 184105, pp. 1–7, 2004.
[115]
S. Teslic, T. Egami, and D. Viehland, “Local atomic structure of PZT and PLZT studied by pulsed neutron scattering,” Journal of Physics and Chemistry of Solids, vol. 57, no. 10, pp. 1537–1543, 1996.
[116]
M. El Marssi, R. Farhi, J.-L. Dellis, M. D. Glinchuk, L. Seguin, and D. Viehland, “Ferroelectric and glassy states in La-modified lead zirconate titanate ceramics: a general picture,” Journal of Applied Physics, vol. 83, no. 10, pp. 5371–5380, 1998.
[117]
R. L. Withers, Y. Liu, and T. R. Welberry, “Structured diffuse scattering and the fundamental 1-d dipolar unit in PLZT (Pb1-yLay)1-α(Zr1-xTix)1-βO3 (7.5/65/35 and 7.0/60/40) transparent ferroelectric ceramics,” Journal of Solid State Chemistry, vol. 182, no. 2, pp. 348–355, 2009.
[118]
Y. Terado, S. J. Kim, C. Moriyoshi, Y. Kuroiwa, M. Iwata, and M. Takata, “Disorder of Pb atom in cubic structure of Pb(Zn1/3Nb2/3)O3-PbTiO3 system,” Japanese Journal of Applied Physics A, vol. 45, no. 9B, pp. 7552–7555, 2006.
[119]
J. Kuwata and K. Uchino, “Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals,” Japanese Journal of Applied Physics, vol. 21, Article ID 1298, 1982.
[120]
J. Kuwata, K. Uchino, and S. Nomura, “Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system,” Ferroelectrics, vol. 37, pp. 579–582, 1981.
[121]
J. S. Forrester, E. H. Kisi, K. S. Knight, and C. J. Howard, “Rhombohedral to cubic phase transition in the relaxor ferroelectric PZN,” Journal of Physics Condensed Matter, vol. 18, no. 19, pp. L233–L240, 2006.
[122]
E. H. Kisi and J. S. Forrester, “Crystal structure of the relaxor ferroelectric PZN: demise of the ‘X-phase’,” Journal of Physics Condensed Matter, vol. 17, no. 36, pp. L381–L384, 2005.
[123]
P. Bonneau, P. Garnier, E. Husson, and A. Morell, “Structural study of PMN ceramics by X-ray diffraction between 297 and 1023 K,” Materials Research Bulletin, vol. 24, no. 2, pp. 201–206, 1989.
[124]
C. Stock, R. J. Birgeneau, S. Wakimoto et al., “Universal static and dynamic properties of the structural transition in Pb(Zn1/3Nb2/3)O3,” Physical Review B, vol. 69, no. 9, Article ID 094104, 2004.
[125]
H. You, “Diffuse X-ray scattering study of lead magnesium niobate single crystals,” Physical Review Letters, vol. 79, no. 20, pp. 3950–3953, 1997.
[126]
K. Hirota, Z.-G. Ye, S. Wakimoto, P. M. Gehring, and G. Shirane, “Neutron diffuse scattering from polar nanoregions in the relaxor Pb(Mg1/3Nb2/3)O3,” Physical Review B, vol. 65, no. 10, Article ID 104105, 7 pages, 2002.
[127]
G. Burns and F. H. Dacol, “Crystalline ferroelectrics with glassy polarization behavior,” Physical Review B, vol. 28, no. 5, pp. 2527–2530, 1983.
[128]
D. La-Orauttapong, J. Toulouse, J. L. Robertson, and Z.-G. Ye, “Diffuse neutron scattering study of a disordered complex perovskite Pb(Zn1/3Nb2/3)O3 crystal,” Physical Review B, vol. 64, Article ID 212101, 4 pages, 2001.
[129]
D. La-Orauttapong, J. Toulouse, Z.-G. Ye, W. Chen, R. Erwin, and J. L. Robertson, “Neutron scattering study of the relaxor ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3,” Physical Review B, vol. 67, Article ID 134110, 10 pages, 2003.
[130]
M. Soda, M. Matsuura, Y. Wakabayashi, and K. Hirota, “Superparamagnetism induced by polar nanoregions in relaxor Ferroelectric (1-x)BiFeO3-xBaTiO3,” Journal of the Physical Society of Japan, vol. 80, no. 4, Article ID 043705, 2011.
[131]
Y. Yoneda, K. Yoshii, S. Kohara, S. Kitagawa, and S. Mori, “Local structure of BiFeO3-BaTiO3 mixture,” Japanese Journal of Applied Physics, vol. 47, no. 9, pp. 7590–7594, 2008.
[132]
N. E. Brese and M. O’Keeffe, “Bond-valence parameters for solids. Bond-valence parameters for solids,” Acta Crystallographica B, vol. 47, pp. 192–197, 1991.
[133]
S. V. Krivovichev, “Derivation of bond-valence parameters for some cation-oxygen pairs on the basis of empirical relationships between ro and b,” Zeitschrift für Kristallographie, vol. 227, pp. 575–579, 2012.
[134]
T. R. Welberry and D. J. Goossens, “Different models for the polar nanodomain structure of PZN and other relaxor ferroelectrics,” Journal of Applied Crystallography, vol. 41, no. 3, pp. 606–614, 2008.
[135]
L. Xie, Y. L. Li, R. Yu et al., “Static and dynamic polar nanoregions in relaxor ferroelectric Ba(Ti1-xSnx)O3 system at high temperature,” Physical Review B, vol. 85, Article ID 014118, 5 pages, 2012.
[136]
Z. Guo, R. Tai, H. Xu et al., “X-ray probe of the polar nanoregions in the relaxor ferroelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3,” Applied Physics Letters, vol. 91, no. 8, Article ID 081904, 2007.
[137]
S. B. Vakchrushev, B. E. Kvyatkovsky, A. A. Nabereznov, N. M. Okuneva, and B. P. Toperverg, “Neutron scattering from disordered perovskite-like crystals and glassy phenomena,” Physica B, vol. 156-157, no. C, pp. 90–92, 1989.
[138]
N. De Mathan, E. Husson, G. Calvarn, J. R. Gavarri, A. W. Hewat, and A. Morell, “A structural model for the relaxor PbMg1/3Nb2/3O3 at 5 K,” Journal of Physics, vol. 3, no. 42, article 011, pp. 8159–8171, 1991.
[139]
G. Xu, G. Shirane, J. R. D. Copley, and P. M. Gehring, “Neutron elastic diffuse scattering study of Pb(Mg1/3Nb2/3)O3,” Physical Review B, vol. 69, no. 6, Article ID 064112, 2004.
[140]
J. Hlinka, J. Petzelt, S. Kamba, D. Noujni, and T. Ostapchuk, “Infrared dielectric response of relaxor ferroelectrics,” Phase Transitions, vol. 79, no. 1-2, pp. 41–78, 2006.
[141]
A. Al-Zein, B. Hehlen, J. Rouquette, and J. Hlinka, “Polarized hyper-Raman scattering study of the silent F2u mode in PbMg1/3Nb2/3O3,” Physical Review B, vol. 78, no. 13, Article ID 134113, 7 pages, 2008.
[142]
W. Dmowski, S. B. Vakhrushev, I.-K. Jeong, M. P. Hehlen, F. Trouw, and T. Egami, “Local lattice dynamics and the origin of the relaxor ferroelectric behavior,” Physical Review Letters, vol. 100, no. 13, Article ID 137602, 2008.
[143]
P. M. Gehring, H. Hiraka, C. Stock et al., “Polarized hyper-Raman scattering study of the silent F2u mode in PbMg1/3Nb2/3O3,” Physical Review B, vol. 79, no. 22, Article ID 224109, 7 pages, 2009.
[144]
A. Al-Zein, J. Hlinka, and J. Rouquette, “Soft mode doublet in PbMg1/3Nb2/3O3 relaxor investigated with hyper-raman scattering,” Physical Review Letters, vol. 105, no. 1, Article ID 017601, 2010.
[145]
S. Tinte, B. P. Burton, E. Cockayne, and U. V. Waghmare, “Origin of the relaxor state in Pb O3 perovskites,” Physical Review Letters, vol. 97, no. 13, Article ID 137601, 2006.
[146]
I. Grinberg, P. Juhás, P. K. Davies, and A. M. Rappe, “Relationship between local structure and relaxor behavior in perovskite oxides,” Physical Review Letters, vol. 99, no. 26, Article ID 267603, 4 pages, 2007.
[147]
A. Bosak, D. Chernyshov, S. Vakhrushev, and M. Krisch, “Diffuse scattering in relaxor ferroelectrics: true three-dimensional mapping, experimental artefacts and modelling,” Acta Crystallographica A, vol. 68, no. 1, pp. 117–123, 2012.
[148]
A. Bosak and D. Chernyshov, “On model-free reconstruction of lattice dynamics from thermal diffuse scattering,” Acta Crystallographica A, vol. 64, no. 5, pp. 598–600, 2008.
[149]
M. Pa?ciak and T. R. Welberry, “Diffuse scattering and local structure modeling in ferroelectrics,” Zeitschrift Für Kristallographie, vol. 226, pp. 113–1125, 2011.
[150]
M. Sepliarsky and R. E. Cohen, “First-principles based atomistic modeling of phase stability in PMN-xPT,” Journal of Physics, vol. 23, no. 43, Article ID 435902.
[151]
I.-K. Jeong, T. W. Darling, J. K. Lee et al., “Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis,” Physical Review Letters, vol. 94, no. 14, Article ID 147602, 2005.
[152]
M. Pa?ciak, T. R. Welberry, J. Kulda, M. Kempa, and J. Hlinka, “Polar nanoregions and diffuse scattering in the relaxor ferroelectric PbMg1/3Nb2/3O3,” Physical Review B, vol. 85, Article ID 224109, 2012.
[153]
Q. M. Zhang, H. You, M. L. Mulvihill, and S. J. Jang, “An X-ray diffraction study of superlattice ordering in lead magnesium niobate,” Solid State Communications, vol. 97, no. 8, pp. 693–698, 1996.
[154]
T. Egami, H. D. Rosenfeld, B. H. Toby, and A. Bhalla, “Diffraction studies of local atomic structure in ferroelectric and superconducting oxides,” Ferroelectrics, vol. 120, no. 1, pp. 11–21, 1991.
[155]
H. D. Rosenfeld and T. Egami, “Model of local atomic structure in the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3,” Ferroelectrics, vol. 150, no. 1-2, pp. 183–197, 1993.
[156]
J. Wen, G. Xu, C. Stock, and P. M. Gehring, “Response of polar nanoregions in 68%Pb (Mg1/3Nb2/3)O3-32%PbTiO3 to a [001] electric field,” Applied Physics Letters, vol. 93, no. 8, Article ID 082901, 2008.
[157]
R. Blinc, V. Laguta, and B. Zalar, “Field cooled and zero field cooled 207Pb NMR and the local structure of relaxor PbMg1/3Nb2/3O3,” Physical Review Letters, vol. 91, no. 24, Article ID 247601, 4 pages, 2003.
[158]
Z.-G. Ye, Y. Bing, J. Gao et al., “Development of ferroelectric order in relaxor (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 ,” Physical Review B, vol. 67, Article ID 104104, 8 pages, 2003.
[159]
B. Mihailova, N. Waeselmann, B. J. Maier et al., “Chemically induced renormalization phenomena in Pb-based relaxor ferroelectrics under high pressure,” Journal of Physics, vol. 25, no. 11, Article ID 115403, 2013.
[160]
B. J. Maier, N. Waeselmann, B. Mihailova et al., “Structural state of relaxor ferroelectrics PbSc0.5Ta0.5O3 and PbSc0.5Nb0.5O3 at high pressures up to 30 GPa,” Physical Review B, vol. 84, no. 17, Article ID 174104, 2011.
[161]
A.-M. Welsch, B. J. Maier, J. M. Engel et al., “Effect of Ba incorporation on pressure-induced structural changes in the relaxor ferroelectric PbSc0.5 Ta0.5 O3,” Physical Review B, vol. 80, no. 10, Article ID 104118, 2009.
[162]
B. Mihailova, R. J. Angel, A.-M. Welsch et al., “Pressure-induced phase transition in PbSc0.5Ta0.5O3 as a model Pb-based perovksite-type relaxor ferroelectric,” Physical Review Letters, vol. 101, Article ID 017602, 4 pages, 2008.
[163]
N. Takesue, Y. Fujii, M. Ichihara, H. Chen, S. Tatemori, and J. Hatano, “Effects of B-site ordering/disordering in lead scandium niobate,” Journal of Physics Condensed Matter, vol. 11, no. 42, pp. 8301–8312, 1999.
[164]
N. Takesue, Y. Fujii, M. Ichihara, and H. Chen, “X-ray diffuse scattering study of glass-like transition behavior of relaxor lead scandium niobate,” Physics Letters A, vol. 257, no. 3-4, pp. 195–200, 1999.
[165]
C. Perrin, N. Menguy, E. Suard, C. Muller, C. Caranoni, and A. Stepanov, “Neutron diffraction study of the relaxor-ferroelectric phase transition in disordered Pb(Sc1/2Nb1/2)O3,” Journal of Physics Condensed Matter, vol. 12, no. 33, pp. 7523–7539, 2000.
[166]
G. A. Smolensky, Ferroelectrics and Related Materials, Academic Press, New York, NY, USA, 1981.
[167]
S. N. Gvasaliya, B. Roessli, D. Sheptyakov, S. G. Lushnikov, and T. A. Shaplygina, “Neutron scattering study of PbMg1/3Ta2/3O3 and BaMg1/3Ta2/3O3 complex perovskites,” European Physical Journal B, vol. 40, no. 3, pp. 235–241, 2004.
[168]
R. D. Shannon, “Crystal physics, diffraction, theoretical and general crystallography,” Acta Crystallographica A, vol. 32, no. 751, 1976.