The growing demand for electric energy will require expansion of the amount of nuclear power production in many countries of the world. Research and development in this field will continue to grow to further increase safety and efficiency of nuclear power generation. Neutrons are a unique probe for a wide range of problems related to these efforts, ranging from crystal chemistry of nuclear fuels to engineering diffraction on cladding or structural materials used in nuclear reactors. Increased flux at modern neutron sources combined with advanced sample environments allows nowadays, for example, studies of reaction kinetics at operating temperatures in a nuclear reactor. Neutrons provide unique data to benchmark simulations and modeling of crystal structure evolution and thermomechanical treatment. Advances in neutron detection recently opened up new avenues of materials characterization using neutron imaging with unparalleled opportunities especially for nuclear materials, where heavy elements (e.g., uranium) need to be imaged together with light elements (e.g., hydrogen, oxygen). This paper summarizes applications of neutron scattering techniques for nuclear materials. Directions for future research, extending the trends observed over the past decade, are discussed. 1. Introduction Nuclear power accounts for approximately 13% of all electric power generated in the world and about 20% of the electric power in the United States [1]. For example, the United States alone have 104 operating nuclear power plants in 2012 spread over 31 states, with 35 of these reactors being boiling water reactors (BWRs) and the remaining 69 being pressurized water reactors (PWRs) [2]. Figure 1 shows the fraction of nuclear energy of the total energy production for selected countries. Figure 1: Fraction of electricity generated by nuclear power per country relative to the total electricity production of each country [ 1] (reproduced with permission). Based on the fact that populations and energy demand in many of these countries will continue to grow, it is expected that the ratio of nuclear energy used to produce electricity will continue to grow, in particular in countries like India or China. The need to improve the efficiency and safety of power reactors is therefore of paramount importance from a global perspective. Some of the design features and operation goals of the so-called third-generation reactors are [3](i)a simpler and more rugged design, making them easier to operate and less vulnerable to operational upsets; (ii)higher availability and longer operating life,
References
[1]
Nuclear Power Today, 2012, http://www.world-nuclear.org/info/inf01.html.
[2]
Nuclear Energy Institute, 2012, http://www.nei.org/resourcesandstats/nuclear_statistics/usnuclearpowerplants.
[3]
Nuclear Power Today, 2013, http://www.world-nuclear.org/info/inf08.html.
[4]
J. M. Carpenter and G. H. Lander, “40 years of neutron scattering: a perspective,” Neutron News, vol. 21, pp. 10–12, 2010.
[5]
W. G. Stirling and C. Vettier, “The most useful microscopic probes—neutrons and synchrotron X-rays,” Neutron News, vol. 21, no. 1, pp. 13–17, 2010.
[6]
W. Mampe, P. Ageron, C. Bates, J. M. Pendlebury, and A. Steyerl, “Neutron lifetime measured with stored ultracold neutrons,” Physical Review Letters, vol. 63, no. 6, pp. 593–596, 1989.
[7]
R. Pynn, “Neutron scattering: a primer,” Los Alamos Science, vol. 19, pp. 1–31, 1990, http://library.lanl.gov/cgi-bin/getfile?00326651.pdf.
[8]
L. Dobrzyňski and K. Blinowski, Neutrons and Solid State Physics, Ellis Horwood Series: Physics (editor: M. Cooper), Ellis Horwood, 1994.
[9]
A. J. Dianoux and G. Lander, Neutron Data Booklet, Institut Laue-Langevin, 2002.
[10]
S. C. Vogel and H. G. Priesmeyer, “Neutron production, neutron facilities and neutron instrumentation,” Reviews in Mineralogy and Geochemistry, vol. 63, pp. 27–57, 2006.
[11]
S. C. Vogel and J. S. Carpenter, “Brief introduction to neutron scattering and global neutron user facilities,” JOM: Journal of the Minerals, Metals and Materials Society, vol. 64, no. 1, pp. 104–111, 2012.
[12]
“International Workshop on Scattering Techniques for Structural Materials at UC Berkeley,” 2013, http://scatter.nuc.berkeley.edu/.
[13]
Institut Laue-Langevin, 2013, http://www.ill.eu/.
[14]
OPAL, “ANSTO's research reactor,” 2013, http://www.ansto.gov.au/AboutANSTO/OPAL/index.htm.
[15]
S. J. Kennedy, “Construction of the neutron beam facility at Australia's OPAL research reactor,” Physica B, vol. 385-386, part 2, pp. 949–954, 2006.
[16]
National Research Universal (NRU), 2013, http://www.nrucanada.ca/en/home/default.aspx.
[17]
B. Powell, “Neutron scattering at Chalk River,” Neutron News, vol. 1, pp. 16–20, 1990.
[18]
FRM II, “Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II),” 2013, http://www.frm2.tum.de/en/index.html.
[19]
“The High Flux Isotope Reactor at Oak Ridge National Laboratory,” 2013, http://neutrons.ornl.gov/facilities/HFIR/.
[20]
M. Yethiraj and J. A. Fernandez-Baca, “Neutron scattering at the high flux isotope reactor at Oak Ridge national laboratory,” Materials Research Society Symposium Proceedings, vol. 376, pp. 59–70, 1995.
[21]
NIST Center for Neutron Research, 2013, http://www.ncnr.nist.gov/.
[22]
R. Cappelletti, “The national institute of standards and technology center for neutron research (NCNR),” Neutron News, vol. 12, pp. 10–14, 2001.
“About Laboratory : Frank Laboratory of Neutron Physics,” 2013, http://flnp.jinr.ru/25/.
[25]
A. V. Belushkin, “IBR-2-the fast pulsed reactor at Dubna,” Neutron News, vol. 2, pp. 14–18, 1991.
[26]
Paul Scherrer Institut (PSI), “Swiss Spallation Neutron Source—SINQ,” 2013, http://www.psi.ch/sinq/.
[27]
G. S. Bauer, “Operation and development of the new spallation neutron source SINQ at the Paul Scherrer Institut,” Nuclear Instruments and Methods in Physics Research B, vol. 139, no. 1–4, pp. 65–71, 1998.
[28]
Los Alamos Neutron Science Center, 2013, http://lansce.lanl.gov/.
[29]
P. W. Lisowski and K. F. Schoenberg, “The Los Alamos neutron science center,” Nuclear Instruments and Methods in Physics Research A, vol. 562, no. 2, pp. 910–914, 2006.
[30]
ISIS Home Page, 2013, http://www.isis.stfc.ac.uk/.
[31]
J. Agbenyega and M. Bull, “A world of neutrons & muons,” Materials Today, vol. 12, no. 7-8, p. 59, 2009.
[32]
Neutron Sciences at Oak Ridge National Laboratory, 2013, http://www.sns.gov/.
[33]
T. E. Mason, D. Abernathy, J. Ankner et al., “The spallation neutron source: a powerful tool for materials research,” in AIP Conference Proceedings, vol. 773, pp. 21–25, 2004.
[34]
“J-PARC—Japan Proton Accelerator Research Complex,” 2013, http://j-parc.jp/index-e.html.
[35]
Y. Ikeda, “Current status of 1?MW pulse spallation neutron source (JSNS) of J-PARC,” Journal of Nuclear Materials, vol. 343, no. 1–3, pp. 7–13, 2005.
China Spallation Neutron Source, 2013, http://csns.ihep.ac.cn/english/index.htm.
[38]
W. Jie, F. Shi-Nian, T. Jing-Yu et al., “China spallation neutron source—an overview of application prospects,” Chinese Physics C, vol. 33, no. 11, pp. 1033–1042, 2009.
[39]
P. C. Burns, R. C. Ewing, and A. Navrotsky, “Nuclear fuel in a reactor accident,” Science, vol. 335, no. 6073, pp. 1184–1188, 2012.
[40]
A. Bowman, G. Arnold, W. Witteman, T. Wallace, and N. Nereson, “The crystal structure of UC2,” Acta Crystallographica, vol. 21, part 5, pp. 670–671, 1966.
[41]
M. Bredig, “The crystal structure of UC2,” Journal of the American Ceramic Society, vol. 43, no. 9, pp. 493–494, 1960.
[42]
W. Wilson, “The crystal structure of UC2,” Journal of the American Ceramic Society, vol. 43, no. 2, pp. 77–80, 1960.
[43]
T. B. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, vol. 3, ASM International, 1990.
[44]
X. D. Wen, S. P. Rudin, E. R. Batista, D. L. Clark, G. E. Scuseria, and R. L. Martin, “Rotational rehybridization and the high temperature phase of UC2,” Inorganic Chemistry, vol. 51, no. 23, pp. 12650–12659, 2012.
[45]
B. T. M. Willis, “Positions of the oxygen atoms in UO2.13,” Nature, vol. 197, no. 4869, pp. 755–756, 1963.
[46]
A. F. Andresen, “The structure of U3O8 determined by neutron diffraction,” Acta Crystallographica, vol. 11, part 9, pp. 612–614, 1958.
[47]
B. Loopstra, “Neutron diffraction investigation of U3O8,” Acta Crystallographica, vol. 17, part 6, pp. 651–654, 1964.
[48]
D. J. M. Bevan, I. E. Grey, and B. T. M. Willis, “The crystal structure of β-U4O9-y,” Journal of Solid State Chemistry, vol. 61, no. 1, pp. 1–7, 1986.
[49]
R. I. Cooper and B. T. M. Willis, “Refinement of the structure of β-U4O9,” Acta Crystallographica A, vol. 60, no. 4, pp. 322–325, 2004.
[50]
B. O. Loopstra, J. C. Taylor, and A. B. Waugh, “Neutron powder profile studies of the gamma uranium trioxide phases,” Journal of Solid State Chemistry, vol. 20, no. 1, pp. 9–19, 1977.
[51]
A. Belsky, M. Hellenbrandt, V. L. Karen, and P. Luksch, “New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design,” Acta Crystallographica B, vol. 58, no. 3, pp. 364–369, 2002.
[52]
J. D. Higgs, W. T. Thompson, B. J. Lewis, and S. C. Vogel, “Kinetics of precipitation of U4O9 from hyperstoichiometric UO2+x,” Journal of Nuclear Materials, vol. 366, no. 3, pp. 297–305, 2007.
[53]
J. D. Higgs, B. J. Lewis, W. T. Thompson, and Z. He, “A conceptual model for the fuel oxidation of defective fuel,” Journal of Nuclear Materials, vol. 366, no. 1-2, pp. 99–128, 2007.
[54]
L. Desgranges, G. Baldinozzi, G. Rousseau, J. C. Nièpce, and G. Calvarin, “Neutron diffraction study of the in situ oxidation of UO2,” Inorganic Chemistry, vol. 48, no. 16, pp. 7585–7592, 2009.
[55]
G. Lander and M. Mueller, “Neutron diffraction study of α-uranium at low temperatures,” Acta Crystallographica B, vol. 26, part 2, pp. 129–136, 1970.
[56]
A. Lawson, C. Olsen, J. Richardson, M. Mueller, and G. Lander, “Structure of α-uranium,” Acta Crystallographica B, vol. 44, pp. 89–96, 1988.
[57]
D. W. Brown, M. A. M. Bourke, B. Clausen et al., “Temperature and direction dependence of internal strain and texture evolution during deformation of uranium,” Materials Science and Engineering A, vol. 512, no. 1-2, pp. 67–75, 2009.
[58]
M. A. M. Bourke, D. C. Dunand, and E. Ustundag, “SMARTS—a spectrometer for strain measurement in engineering materials,” Applied Physics A, vol. 74, no. 1, supplement, pp. s1707–s1709, 2002.
[59]
R. C. Birtcher, J. W. Richardson Jr., and M. H. Mueller, “Amorphization of U3Si2 by ion or neutron irradiation,” Journal of Nuclear Materials, vol. 244, no. 3, pp. 251–257, 1997.
[60]
D. Sears, N. Wang, R. Rogge, I. Swainson, and R. Donaberger, “Neutron Diffraction Analysis of High Burnup LEU Fuel from NRU,” 2011, http://www.cins.ca/docs/exp_rep/CNBC-2011-MS-5.pdf.
[61]
B. S. Seong, C. H. Lee, J. S. Lee et al., “Neutron diffraction study of U-10 wt% Mo alloy,” Journal of Nuclear Materials, vol. 277, no. 2-3, pp. 274–279, 2000.
[62]
J. S. Lee, C. H. Lee, K. H. Kim, and V. Em, “Neutron diffraction study of U-5.4 wt% Mo alloy,” Journal of Nuclear Materials, vol. 280, no. 1, pp. 116–119, 2000.
[63]
P. Hosemann, S. Kabra, E. Stergar, M. J. Cappillo, and S. A. Maloy, “Micro-structural characterization of laboratory heats of the Ferric/Martensitic steels HT-9 and T91,” Journal of Nuclear Materials, vol. 403, no. 1–3, pp. 7–14, 2010.
[64]
P. Hosemann, C. Vieh, R. R. Greco et al., “Nanoindentation on ion irradiated steels,” Journal of Nuclear Materials, vol. 389, no. 2, pp. 239–247, 2009.
[65]
U. F. Kocks, C. N. Tomé, and H. R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, New York, NY, USA, 2000.
[66]
S. R. MacEwen, J. Faber Jr., and A. P. L. Turner, “The use of time-of-flight neutron diffraction to study grain interaction stresses,” Acta Metallurgica, vol. 31, no. 5, pp. 657–676, 1983.
[67]
J. W. L. Pang, T. M. Holden, P. A. Turner, and T. E. Mason, “Intergranular stresses in Zircaloy-2 with rod texture,” Acta Materialia, vol. 47, no. 2, pp. 373–383, 1999.
[68]
S. Cai, M. R. Daymond, R. A. Holt, M. A. Gharghouri, and E. C. Oliver, “Evolution of interphase and intergranular stresses in Zr-2.5Nb during room temperature deformation,” Materials Science and Engineering A, vol. 501, no. 1-2, pp. 166–181, 2009.
[69]
S. Cai, M. R. Daymond, and R. A. Holt, “Modeling the room temperature deformation of a two-phase zirconium alloy,” Acta Materialia, vol. 57, no. 2, pp. 407–419, 2009.
[70]
S. Cai, M. R. Daymond, A. K. Khan, R. A. Holt, and E. C. Oliver, “Elastic and plastic properties of βZr at room temperature,” Journal of Nuclear Materials, vol. 393, no. 1, pp. 67–76, 2009.
[71]
S. Cai, M. R. Daymond, R. A. Holt, and E. C. Oliver, “Evolution of internal strains in a two phase zirconium alloy during cyclic loading,” Acta Materialia, vol. 59, no. 13, pp. 5305–5319, 2011.
[72]
S. Cai, M. R. Daymond, and R. A. Holt, “Deformation of high β-phase fraction Zr-Nb alloys at room temperature,” Acta Materialia, vol. 60, no. 8, pp. 3355–3369, 2012.
[73]
P. Rangaswamy, M. A. M. Bourke, D. W. Brown et al., “A study of twinning in zirconium using neutron diffraction and polycrystalline modeling,” Metallurgical and Materials Transactions A, vol. 33, no. 3, pp. 757–763, 2002.
[74]
C. N. Tomé, P. J. Maudlin, R. A. Lebensohn, and G. C. Kaschner, “Mechanical response of zirconium—I. Derivation of a polycrystal constitutive law and finite element analysis,” Acta Materialia, vol. 49, no. 15, pp. 3085–3096, 2001.
[75]
G. C. Kaschner, J. F. Bingert, C. Liu et al., “Mechanical response of zirconium—II. Experimental and finite element analysis of bent beams,” Acta Materialia, vol. 49, no. 15, pp. 3097–3108, 2001.
[76]
T. A. Sisneros, D. W. Brown, B. Clausen et al., “Influence of strain rate on mechanical properties and deformation texture of hot-pressed and rolled beryllium,” Materials Science and Engineering A, vol. 527, no. 20, pp. 5181–5188, 2010.
[77]
H. R. Wenk, L. Lutterotti, and S. Vogel, “Texture analysis with the new HIPPO TOF diffractometer,” Nuclear Instruments and Methods in Physics Research A, vol. 515, no. 3, pp. 575–588, 2003.
[78]
S. C. Vogel, C. Hartig, L. Lutterotti, R. B. Von Dreele, H. R. Wenk, and D. J. Williams, “Texture measurements using the new neutron diffractometer HIPPO and their analysis using the Rietveld method,” Powder Diffraction, vol. 19, no. 1, pp. 65–68, 2004.
[79]
H. M. Reiche, S. C. Vogel, P. Mosbrucker, E. J. Larson, and M. R. Daymond, “A furnace with rotating load frame for in situ high temperature deformation and creep experiments in a neutron diffraction beam line,” Review of Scientific Instruments, vol. 83, no. 5, Article ID 053901, 7 pages, 2012.
[80]
H. M. Reiche and S. C. Vogel, “A versatile automated sample changer for texture measurements on the high pressure-preferred orientation neutron diffractometer,” Review of Scientific Instruments, vol. 81, no. 9, Article ID 093302, 6 pages, 2010.
[81]
D. Bhattacharyya, G. B. Viswanathan, S. C. Vogel, D. J. Williams, V. Venkatesh, and H. L. Fraser, “A study of the mechanism of α to β phase transformation by tracking texture evolution with temperature in Ti-6Al-4V using neutron diffraction,” Scripta Materialia, vol. 54, no. 2, pp. 231–236, 2006.
[82]
H. R. Wenk, I. Lonardelli, and D. Williams, “Texture changes in the hcp→bcc→hcp transformation of zirconium studied in situ by neutron diffraction,” Acta Materialia, vol. 52, no. 7, pp. 1899–1907, 2004.
[83]
M. R. Daymond, R. A. Holt, S. Cai, P. Mosbrucker, and S. C. Vogel, “Texture inheritance and variant selection through an hcp-bcc-hcp phase transformation,” Acta Materialia, vol. 58, no. 11, pp. 4053–4066, 2010.
[84]
R. W. L. Fong, R. Miller, H. J. Saari, and S. C. Vogel, “Crystallographic texture and volume fraction of α and β phases in Zr-2.5Nb pressure tube material during heating and cooling,” Metallurgical and Materials Transactions A, vol. 43, no. 3, pp. 806–821, 2012.
[85]
E. Garlea, H. Choo, G. Y. Wang et al., “Hydride-phase formation and its influence on fatigue crack propagation behavior in a zircaloy-4 alloy,” Metallurgical and Materials Transactions A, vol. 41, no. 11, pp. 2816–2828, 2010.
[86]
P. J. Withers, M. Turski, L. Edwards, P. J. Bouchard, and D. J. Buttle, “Recent advances in residual stress measurement,” International Journal of Pressure Vessels and Piping, vol. 85, no. 3, pp. 118–127, 2008.
[87]
L. Edwards, P. J. Bouchard, M. Dutta et al., “Direct measurement of the residual stresses near a “boat-shaped” repair in a 20?mm thick stainless steel tube butt weld,” International Journal of Pressure Vessels and Piping, vol. 82, no. 4, pp. 288–298, 2005.
[88]
P. J. Bouchard, D. George, J. R. Santisteban et al., “Measurement of the residual stresses in a stainless steel pipe girth weld containing long and short repairs,” International Journal of Pressure Vessels and Piping, vol. 82, no. 4, pp. 299–310, 2005.
[89]
S. Paddea, J. A. Francis, A. M. Paradowska, P. J. Bouchard, and I. A. Shibli, “Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment,” Materials Science and Engineering A, vol. 534, pp. 663–672, 2012.
[90]
D. G. Carr, M. I. Ripley, T. M. Holden, D. W. Brown, and S. C. Vogel, “Residual stress measurements in a zircaloy-4 weld by neutron diffraction,” Acta Materialia, vol. 52, no. 14, pp. 4083–4091, 2004.
[91]
D. G. Carr, M. I. Ripley, D. W. Brown, S. C. Vogel, and T. M. Holden, “Residual stress measurements on a stress relieved zircaloy-4 weld by neutron diffraction,” Journal of Nuclear Materials, vol. 359, no. 3, pp. 202–207, 2006.
[92]
D. Carr, T. Holden, M. Ripley, D. Brown, and S. Vogel, “Investigation of grain-scale stresses and modeling of tensile deformation in a zircaloy-4 weldment,” Metallurgical and Materials Transactions A, vol. 38, no. 10, pp. 2410–2418, 2007.
[93]
G. Ribárik, J. Gubicza, and T. Ungár, “Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction,” Materials Science and Engineering A, vol. 387-389, no. 1-2, pp. 343–347, 2004.
[94]
L. Balogh, D. W. Brown, P. Mosbrucker, F. Long, and M. R. Daymond, “Dislocation structure evolution induced by irradiation and plastic deformation in the Zr-2.5 Nb nuclear structural material determined by neutron diffraction line profile analysis,” Acta Materialia, vol. 60, no. 15, pp. 5567–5577, 2012.
[95]
M. R. Daymond and P. J. Bouchard, “Elastoplastic deformation of 316 stainless steel under tensile loading at elevated temperatures,” Metallurgical and Materials Transactions A, vol. 37, no. 6, pp. 1863–1873, 2006.
[96]
B. Clausen, D. W. Brown, M. A. M. Bourke, T. A. Saleh, and S. A. Maloy, “In situ neutron diffraction and elastic-plastic self-consistent polycrystal modeling of HT-9,” Journal of Nuclear Materials, vol. 425, no. 1–3, pp. 228–232, 2012.
[97]
N. R. Barton, A. Arsenlis, and J. Marian, “A polycrystal plasticity model of strain localization in irradiated iron,” Journal of the Mechanics and Physics of Solids, vol. 61, no. 2, pp. 341–351, 2013.
[98]
K. E. Sickafus, L. Minervini, R. W. Grimes et al., “Radiation tolerance of complex oxides,” Science, vol. 289, no. 5480, pp. 748–751, 2000.
[99]
M. James, M. L. Carter, Z. Zhang et al., “Crystal chemistry and structures of (Ca,U) titanate pyrochlores,” Journal of the American Ceramic Society, vol. 93, no. 10, pp. 3464–3473, 2010.
[100]
T. Hartmann, A. Alaniz, F. Poineau et al., “Structure studies on lanthanide technetium pyrochlores as prospective host phases to immobilize 99technetium and fission lanthanides from effluents of reprocessed used nuclear fuels,” Journal of Nuclear Materials, vol. 411, no. 1–3, pp. 60–71, 2011.
[101]
Y. Zhang, Z. Zhang, G. Thorogood, and E. Vance, “Pyrochlore based glass-ceramics for the immobilization of actiniderich nuclear wastes: from concept to reality,” Journal of Nuclear Materials, vol. 432, no. 1–3, pp. 545–547, 2013.
[102]
F. Izumi and K. Momma, “Three-dimensional visualization of electron- and nuclear-density distributions in inorganic materials by MEM-based technology,” IOP Conference Series: Materials Science and Engineering, vol. 18, Article ID 022001, 2011.
[103]
K. Momma and F. Izumi, “Evaluation of algorithms and weighting methods for mem analysis from powder diffraction data,” ZeitschriFt für Kristallographie Proceedings, vol. 1, pp. 195–200, 2011.
[104]
S. I. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, and A. Yamada, “Experimental visualization of lithium diffusion in LixFePO4,” Nature Materials, vol. 7, no. 9, pp. 707–711, 2008.
[105]
J. Han, J. Zhu, Y. Li et al., “Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12,” Chemical Communications, vol. 48, no. 79, pp. 9840–9842, 2012.
[106]
N. Takenaka, H. Asano, T. Fujii, M. Mizubata, and K. Yoshii, “Application of fast neutron radiography to three-dimensional visualization of steady two-phase flow in a rod bundle,” Nuclear Instruments and Methods in Physics Research A, vol. 424, no. 1, pp. 73–76, 1999.
[107]
R. Zboray, J. Kickhofel, M. Damsohn, and H. M. Prasser, “Cold-neutron tomography of annular flow and functional spacer performance in a model of a boiling water reactor fuel rod bundle,” Nuclear Engineering and Design, vol. 241, no. 8, pp. 3201–3215, 2011.
[108]
A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al., “Detection efficiency, spatial and timing resolution of thermal and cold neutron counting MCP detectors,” Nuclear Instruments and Methods in Physics Research A, vol. 604, no. 1-2, pp. 140–143, 2009.
[109]
W. E. Lamb Jr., “Capture of neutrons by atoms in a crystal,” Physical Review, vol. 55, no. 2, pp. 190–197, 1939.
[110]
R. A. Schrack, J. W. Behrens, R. Johnson, and C. D. Bowman, “Resonance Neutron Radiography using an electron linac,” IEEE Transactions on Nuclear Science, vol. NS-28, no. 2, pp. 1640–1164, 1980.
[111]
G. Chen and R. C. Lanza, “Fast neutron resonance radiography for elemental imaging: theory and applications,” IEEE Transactions on Nuclear Science, vol. 49, no. 4, pp. 1919–1924, 2002.
[112]
H. Postma and P. Schillebeeckx, “Non-destructive analysis of objects using neutron resonance capture,” Journal of Radioanalytical and Nuclear Chemistry, vol. 265, no. 2, pp. 297–302, 2005.
[113]
H. Postma and P. Schillebeeckx, “Neutron resonance capture and transmission analysis,” in Encyclopedia of Analytical Chemistry, 2009.
[114]
D. L. Chichester and J. W. Sterbentz, “Neutron resonance transmission analysis (NRTA): initial studies of a method for assaying plutonium in spent fuel,” Tech. Rep., Idaho National Laboratory (INL), 2011.
[115]
D. L. Chichester and J. W. Sterbentz, A Second Look at Neutron Resonance Transmission Analysis as a Spent Fuel NDA, 2011.
[116]
C. L. Morris, M. Bourke, D. D. Byler et al., “Qualitative comparison of bremsstrahlung X-rays and 800?MeV protons for tomography of urania fuel pellets,” Review of Scientific Instruments, vol. 84, no. 2, Article ID 023902, 2013.
[117]
A. Tremsin, S. Vogel, M. Mocko et al., “Non-destructive studies of fuel rodlets by neutron resonance absorption radiography and thermal neutron radiography,” Journal of Nuclear Materials, 2013.
[118]
M. B. Aufderheide III, H. S. Park, E. P. Hartouni et al., “Proton radiography as a means of material characterization,” AIP Conference Proceedings, vol. 497, pp. 706–712, 1999.
[119]
G. Burca, J. A. James, W. Kockelmann et al., “A new bridge technique for neutron tomography and diffraction measurements,” Nuclear Instruments and Methods in Physics Research A, vol. 651, no. 1, pp. 229–235, 2011.
[120]
W. Kockelmann, L. C. Chapon, and P. G. Radaelli, “Neutron texture analysis on GEM at ISIS,” Physica B, vol. 385-386, pp. 639–643, 2006.
[121]
A. Huq, J. P. Hodges, O. Gourdon, and L. Heroux, “Powgen: a third-generation highresolution high-throughput powder diffraction instrument at the spallation neutron source,” Zeitschrift für Kristallographie Proceedings, vol. 1, pp. 127–135, 2011.
[122]
T. Ishigaki, A. Hoshikawa, M. Yonemura et al., “IBARAKI materials design diffractometer (iMATERIA)—versatile neutron diffractometer at J-PARC,” Nuclear Instruments and Methods in Physics Research A, vol. 600, no. 1, pp. 189–191, 2009.
[123]
J. R. Santisteban, M. R. Daymond, J. A. James, and L. Edwards, “ENGIN-X: a third-generation neutron strain scanner,” Journal of Applied Crystallography, vol. 39, no. 6, pp. 812–825, 2006.
[124]
X. L. Wang, T. M. Holden, G. Q. Rennich et al., “VULCAN—the engineering diffractometer at the SNS,” Physica B, vol. 385-386, pp. 673–675, 2006.
[125]
S. Harjo, T. Ito, K. Aizawa et al., “Current status of engineering materials diffractometer at J-PARC,” Materials Science Forum, vol. 681, pp. 443–448, 2011.
[126]
O. Kirstein, V. Luzin, A. Brule, H. Nguyen, and D. Tawfik, “Kowari—OPAL's residual-stress diffractometer and its application to materials science and engineering,” Advanced Materials Research, vol. 41-42, pp. 439–444, 2008.
[127]
B. C. Larson, W. Yang, G. E. Ice, J. D. Budai, and J. Z. Tischler, “Three-dimensional X-ray structural microscopy with submicrometre resolution,” Nature, vol. 415, no. 6874, pp. 887–890, 2002.
[128]
J. D. Budai, W. Yang, N. Tamura et al., “X-ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates,” Nature Materials, vol. 2, no. 7, pp. 487–492, 2003.
[129]
G. E. Ice, B. C. Larson, W. Yang et al., “Polychromatic X-ray microdiffraction studies of mesoscale structure and dynamics,” Journal of Synchrotron Radiation, vol. 12, no. 2, pp. 155–162, 2005.
[130]
J. Mayers, G. Baciocco, and A. C. Hannon, “Temperature measurement by neutron resonance radiography,” Nuclear Instruments and Methods in Physics Research A, vol. 275, no. 2, pp. 453–459, 1989.
[131]
J. C. Frost, P. Meehan, S. R. Morris, R. C. Ward, and J. Mayers, “Non-intrusive temperature measurement of the components of a working catalyst by neutron resonance radiography,” Catalysis Letters, vol. 2, no. 2, pp. 97–104, 1989.
[132]
Y. Le Godec, M. T. Dove, D. J. Francis et al., “Neutron diffraction at simultaneous high temperatures and pressures, with measurement of temperature by neutron radiography,” Mineralogical Magazine, vol. 65, no. 6, pp. 737–748, 2001.
[133]
H. J. Stone, M. G. Tucker, F. M. Meducin et al., “Temperature measurement in a Paris-Edinburgh cell by neutron resonance spectroscopy,” Journal of Applied Physics, vol. 98, no. 6, Article ID 064905, 10 pages, 2005.
[134]
H. J. Stone, M. G. Tucker, Y. Le Godec et al., “Remote determination of sample temperature by neutron resonance spectroscopy,” Nuclear Instruments and Methods in Physics Research A, vol. 547, no. 2-3, pp. 601–615, 2005.
[135]
V. W. Yuan, J. D. Bowman, D. J. Funk et al., “Shock temperature measurement using neutron resonance spectroscopy,” Physical Review Letters, vol. 94, no. 12, Article ID 125504, 4 pages, 2005.
[136]
D. C. Swift, A. Seifter, D. B. Holtkamp, V. W. Yuan, D. Bowman, and D. A. Clark, “Explanation of anomalous shock temperatures in shock-loaded Mo samples measured using neutron resonance spectroscopy,” Physical Review B, vol. 77, no. 9, Article ID 092102, 4 pages, 2008.
[137]
H. Sato, T. Kamiyama, and Y. Kiyanagi, “Pulsed neutron imaging using resonance transmission spectroscopy,” Nuclear Instruments and Methods in Physics Research A, vol. 605, no. 1-2, pp. 36–39, 2009.
[138]
M. Gu, H. Fang, B. Liu et al., “Indicator to estimate temperature sensitivity of resonance in temperature measurement by neutron resonance spectroscopy,” Nuclear Instruments and Methods in Physics Research B, vol. 269, no. 5, pp. 528–538, 2011.
[139]
H. Sato, T. Kamiyama, Y. Kiyanagi, and S. Ikeda, “Simulation for neutron resonance absorption spectroscopic tomography,” Nuclear Instruments and Methods in Physics Research A, vol. 600, no. 1, pp. 135–138, 2009.
[140]
T. Kamiyama, H. Sato, N. Miyamoto, H. Iwasa, Y. Kiyanagi, and S. Ikeda, “Energy sliced neutron tomography using neutron resonance absorption spectrometer,” Nuclear Instruments and Methods in Physics Research A, vol. 600, no. 1, pp. 107–110, 2009.
[141]
A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al., “High resolution neutron resonance absorption imaging at a pulsed neutron beamline,” in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC '11), pp. 1501–1505, IEEE, October 2011.
[142]
A. Tremsin, J. McPhate, J. Vallerga et al., “Spatially resolved remote measurement of temperature by neutron resonance absorption,” in Proceedings of the IEEE Nuclear Science Symposium, IEEE, Los Angeles, Calif, USA, October 2012.
[143]
E. M. Schooneveld, M. Tardocchi, G. Gorini et al., “A new position-sensitive transmission detector for epithermal neutron imaging,” Journal of Physics D, vol. 42, no. 15, Article ID 152003, 2009.
[144]
X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, and W. Wong, “Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements,” Nuclear Instruments and Methods in Physics Research A, vol. 581, no. 1-2, pp. 485–494, 2007.
[145]
A. S. Tremsin, W. B. Feller, and R. G. Downing, “Efficiency optimization of microchannel plate (MCP) neutron imaging detectors. I. Square channels with 10B doping,” Nuclear Instruments and Methods in Physics Research A, vol. 539, no. 1-2, pp. 278–311, 2005.
[146]
A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al., “Improved efficiency of high resolution thermal and cold neutron imaging,” Nuclear Instruments and Methods in Physics Research A, vol. 628, no. 1, pp. 415–418, 2011.
[147]
K. Meggers, H. G. Priesmeyer, M. Stalder, S. Vogel, and W. Trela, “Single-shot neutron transmission diffraction,” Physica B, vol. 234–236, pp. 1160–1162, 1997.
[148]
S. Vogel, A Rietveld-Approach for the Analysis of Neutron Time-of-Flight Transmission Data, Mathematisch-Naturwissenschaftliche Fakult?t, University of Kiel, Kiel, Germany, 2000.
[149]
J. R. Santisteban, L. Edwards, M. E. Fizpatrick, A. Steuwer, and P. J. Withers, “Engineering applications of Bragg-edge neutron transmission,” Applied Physics A, vol. 74, no. 1, supplement, pp. s1433–s1436, 2002.
[150]
J. R. Santisteban, L. Edwards, H. G. Priesmeyer, and S. Vogel, “Comparison of Bragg-edge neutron-transmission spectroscopy at ISIS and LANSCE,” Applied Physics A, vol. 74, no. 1, supplement, pp. s1616–s1618, 2002.
[151]
J. Huang, S. C. Vogel, W. J. Poole, M. Militzer, and P. Jacques, “The study of low-temperature austenite decomposition in a Fe–C–Mn–Si steel using the neutron Bragg edge transmission technique,” Acta Materialia, vol. 55, no. 8, pp. 2683–2693, 2007.
[152]
H. Sato, T. Kamiyama, and Y. Kiyanagi, “A Rietveld-type analysis code for pulsed neutron Bragg-edge transmission imaging and quantitative evaluation of texture and microstructure of a welded α-iron plate,” Materials Transactions, vol. 52, no. 6, pp. 1294–1302, 2011.
[153]
A. S. Tremsin, J. B. McPhate, J. V. Vallerga et al., “Transmission Bragg edge spectroscopy measurements at ORNL spallation neutron source,” Journal of Physics: Conference Series, vol. 251, no. 1, Article ID 012069, 2010.
[154]
A. S. Tremsin, J. B. McPhate, W. Kockelmann, J. V. Vallerga, O. H. W. Siegmund, and W. B. Feller, “High resolution Bragg edge transmission spectroscopy at pulsed neutron sources: proof of principle experiments with a neutron counting MCP detector,” Nuclear Instruments and Methods in Physics Research A, vol. 633, supplement 1, pp. S235–S238, 2011.
[155]
A. S. Tremsin, J. B. Mcphate, A. Steuwer et al., “High-resolution strain mapping through time-of-flight neutron transmission diffraction with a microchannel plate neutron counting detector,” Strain, vol. 48, no. 4, pp. 296–305, 2012.
[156]
S. Vogel, E. Ustundag, J. C. Hanan, V. W. Yuan, and M. A. M. Bourke, “In-situ investigation of the reduction of NiO by a neutron transmission method,” Materials Science and Engineering A, vol. 333, no. 1-2, pp. 1–9, 2002.
[157]
A. Steuwer, P. J. Withers, J. R. Santisteban, and L. Edwards, “Using pulsed neutron transmission for crystalline phase imaging and analysis,” Journal of Applied Physics, vol. 97, no. 7, Article ID 074903, 2005.
[158]
E. H. Lehmann, P. Vontobel, and A. Hermann, “Non-destructive analysis of nuclear fuel by means of thermal and cold neutrons,” Nuclear Instruments and Methods in Physics Research A, vol. 515, no. 3, pp. 745–759, 2003.
[159]
F. Groeschel, P. Schleuniger, A. Hermann, E. Lehmann, and L. Wiezel, “Neutron radiography of irradiated fuel rod segments at the SINQ: loading, transfer and irradiation concept,” Nuclear Instruments and Methods in Physics Research A, vol. 424, no. 1, pp. 215–220, 1999.
[160]
E. Lehmann, P. Vontobel, and M. Estermann, “Study of material changes of SINQ target rods after long-term exposure by neutron radiography methods,” Applied Radiation and Isotopes, vol. 61, no. 4, pp. 603–607, 2004.
[161]
P. Vontobel, M. Tamaki, N. Mori et al., “Post-irradiation analysis of SINQ target rods by thermal neutron radiography,” Journal of Nuclear Materials, vol. 356, no. 1–3, pp. 162–167, 2006.
[162]
M. Grosse, M. Steinbrueck, E. Lehmann, and P. Vontobel, “Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation,” Oxidation of Metals, vol. 70, no. 3-4, pp. 149–162, 2008.
[163]
E. H. Lehmann, P. Vontobel, and N. Kardjilov, “Hydrogen distribution measurements by neutrons,” Applied Radiation and Isotopes, vol. 61, no. 4, pp. 503–509, 2004.
[164]
R. Yasuda, M. Nakata, M. Matsubayashi, K. Harada, Y. Hatakeyama, and H. Amano, “Application of hydrogen analysis by neutron imaging plate method to zircaloy cladding tubes,” Journal of Nuclear Materials, vol. 320, no. 3, pp. 223–230, 2003.
[165]
E. Sváb, G. Mészáros, Z. Somogyvári, M. Balaskó, and F. K?r?si, “Neutron imaging of Zr-1% Nb fuel cladding material containing hydrogen,” Applied Radiation and Isotopes, vol. 61, no. 4, pp. 471–477, 2004.
[166]
A. Shaikh, P. Vaidya, B. Shah, S. Gangotra, and K. Sahoo, “Application of neutron radiography and neutron diffraction techniques in study of zirconium hydride blisters in zirconium based pressure tube materials,” BARC Newsletter, vol. 273, p. 104, 2006.
[167]
M. Grosse, G. Kuehne, M. Steinbrueck, E. Lehmann, J. Stuckert, and P. Vontobel, “Quantification of hydrogen uptake of steam-oxidized zirconium alloys by means of neutron radiography,” Journal of Physics Condensed Matter, vol. 20, no. 10, Article ID 104263, 2008.
[168]
M. Grosse, M. Steinbrueck, and A. Kaestner, “Wavelength dependent neutron transmission and radiography investigations of the high temperature behaviour of materials applied in nuclear fuel and control rod claddings,” Nuclear Instruments and Methods in Physics Research A, vol. 651, no. 1, pp. 315–319, 2011.
[169]
M. Gro?e, M. Steinbrück, J. Stuckert, A. Kastner, and B. Schillinger, “Application of neutron radiography to study material processes during hypothetical severe accidents in nuclear reactors,” Journal of Materials Science, vol. 47, no. 18, pp. 6505–6512, 2012.
[170]
J. R. Granada, J. R. Santisteban, and R. E. Mayer, “Non-destructive determination of very low hydrogen content in metals with the use of neutron techniques,” Physica B, vol. 213-214, pp. 1005–1007, 1995.
[171]
L. Bennun, J. Santisteban, J. Díaz-Valdés, J. R. Granada, and R. E. Mayer, “A neutronic method to determine low hydrogen concentrations in metals,” Nuclear Instruments and Methods in Physics Research B, vol. 263, no. 2, pp. 468–472, 2007.
[172]
Y. N. Choi, H. S. Oh, V. T. Em, V. A. Somenkov, C. H. Lee, and S. D. Park, “Measurement of very small hydrogen content in zirconium alloys by measuring thermal neutron incoherent scattering,” Applied Physics A, vol. 74, no. 1, supplement, pp. s1710–s1712, 2002.
[173]
A. Couet, A. T. Motta, R. J. Comstock, and R. L. Paul, “Cold neutron prompt gamma activation analysis, a non-destructive technique for hydrogen level assessment in zirconium alloys,” Journal of Nuclear Materials, vol. 425, no. 1–3, pp. 211–217, 2012.
[174]
J. R. Santisteban, M. A. Vicente-Alvarez, P. Vizcaino et al., “Texture imaging of zirconium based components by total neutron cross-section experiments,” Journal of Nuclear Materials, vol. 425, no. 1–3, pp. 218–227, 2012.
[175]
M. Strobl, “Future prospects of imaging at spallation neutron sources,” Nuclear Instruments and Methods in Physics Research A, vol. 604, no. 3, pp. 646–652, 2009.
[176]
G. E. Ice, C. R. Hubbard, B. C. Larson et al., “Kirkpatrick-Baez microfocusing optics for thermal neutrons,” Nuclear Instruments and Methods in Physics Research A, vol. 539, no. 1-2, pp. 312–320, 2005.
[177]
G. E. Ice, C. R. Hubbard, B. C. Larson et al., “High-performance Kirkpatrick-Baez supermirrors for neutron milli- and micro-beams,” Materials Science and Engineering A, vol. 437, no. 1, pp. 120–125, 2006.
[178]
S. J. Kisner, E. Haneda, C. A. Bouman, S. Skatter, M. Kourinny, and S. Bedford, “Limited view angle iterative CT reconstruction,” in 10th Computational Imaging, vol. 8296 of Proceedings of SPIE, p. 7, Burlingame, Calif, USA, January 2012.
[179]
R. Zhang, A. Chang, J. B. Thibault, K. Sauer, and C. Bouman, “Statistical modeling challenges in model-based reconstruction for x-ray CT,” in 11th Computational Imaging, vol. 8657 of Proceedings of SPIE, Burlingame, Calif, USA, February 2013.
[180]
J. Wang, K. Sauer, J. B. Thibault, Z. Yu, and C. Bouman, “Prediction coefficient estimation in markov random fields for iterative x-ray ct reconstruction,” in Medical Imaging 2012: Image Processing, vol. 8314 of Proceedings of SPIE, p. 831444, San Diego, Calif, USA, February 2012.
[181]
G. Chaboussant, S. Désert, and A. Br?let, “Recent developments and projects in SANS instrumentation at LLB-Orphée,” The European Physical Journal Special Topics, vol. 213, no. 1, pp. 313–325, 2012.
[182]
M. H. Mathon, Y. de Carlan, G. Geoffroy, X. Averty, A. Alamo, and C. H. De Novion, “A SANS investigation of the irradiation-enhanced α-α′ phases separation in 7–12 Cr martensitic steels,” Journal of Nuclear Materials, vol. 312, no. 2-3, pp. 236–248, 2003.
[183]
M. J. Alinger, G. R. Odette, and D. T. Hoelzer, “The development and stability of Y–Ti–O nanoclusters in mechanically alloyed Fe–Cr based ferritic alloys,” Journal of Nuclear Materials, vol. 329–333, pp. 382–386, 2004.
[184]
P. J. Bouchard, P. J. Withers, S. A. McDonald, and R. K. Heenan, “Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel,” Acta Materialia, vol. 52, no. 1, pp. 23–34, 2004.
[185]
O. Anderoglu, J. Van den Bosch, P. Hosemann et al., “Phase stability of an HT-9 duct irradiated in FFTF,” Journal of Nuclear Materials, vol. 430, no. 1–3, pp. 194–204, 2012.
[186]
P. Seeger, R. Hjelm Jr., and M. Nutter, “The low-Q diffractometer at the Los Alamos neutron scattering center,” Molecular Crystals and Liquid Crystals, vol. 180, pp. 101–117, 1990.
[187]
C. D. Bowman, D. C. Bowman, T. Hill et al., “Measurements of thermal neutron diffraction and inelastic scattering in reactor-grade graphite,” Nuclear Science and Engineering, vol. 159, no. 2, pp. 182–198, 2008.
[188]
J. E. Lynn, G. H. Kwei, W. J. Trela et al., “Vibrational properties of Pu and Ga in a Pu–Ga alloy from neutron-resonance Doppler spectroscopy,” Physical Review B, vol. 58, no. 17, pp. 11408–11415, 1998.
[189]
N. J. Lane, S. C. Vogel, G. Hug et al., “Neutron diffraction measurements and first-principles study of thermal motion of atoms in select Mn+1AXn and binary MX transition-metal carbide phases,” Physical Review B, vol. 86, no. 21, Article ID 214301, 9 pages, 2012.
[190]
K. Clausen, W. Hayes, J. E. MacDonald, R. Osborn, and M. T. Hutchings, “Observation of oxygen Frenkel disorder in uranium dioxide above 2000?K by use of neutron-scattering techniques,” Physical Review Letters, vol. 52, no. 14, pp. 1238–1241, 1984.
[191]
K. N. Clausen, M. A. Hackett, W. Hayes et al., “Coherent diffuse neutron scattering from UO2 and ThO2 at temperatures above 2000?K,” Physica B, vol. 156-157, pp. 103–106, 1989.
[192]
J. P. Goff, B. F?k, W. Hayes, and M. T. Hutchings, “Defect structure and oxygen diffusion in UO2+δ,” Journal of Nuclear Materials, vol. 188, pp. 210–215, 1992.
[193]
K. Clausen, W. Hayes, M. Hutchings, J. Macdonald, R. Osborn, and P. Schnabel, “Investigation of oxygen disorder, thermal parameters, lattice vibrations and elastic constants of UO2 and ThO2 at temperatures up to 2 930?K,” Revue de Physique Appliquée, vol. 19, pp. 719–722, 1984.
[194]
M. T. Hutchings, “High-temperature studies of UO2 and ThO2 using neutron scattering techniques,” Journal of the Chemical Society, Faraday Transactions 2, vol. 83, no. 7, pp. 1083–1103, 1987.
[195]
T. Proffen, S. J. L. Billinge, T. Egami, and D. Louca, “Structural analysis of complex materials using the atomic pair distribution function—a practical guide,” Zeitschrift für Kristallographie, vol. 218, no. 2, pp. 132–143, 2003.
[196]
A. C. Wright, B. Bachra, T. M. Brunier, R. N. Sinclair, L. F. Gladden, and R. L. Portsmouth, “A neutron diffraction and MAS-NMR study of the structure of fast neutron irradiated vitreous silica,” Journal of Non-Crystalline Solids, vol. 150, no. 1–3, pp. 69–75, 1992.
[197]
F. Garrido, A. C. Hannon, R. M. Ibberson, L. Nowicki, and B. T. M. Willis, “Neutron diffraction studies of U4O9: comparison with EXAFS results,” Inorganic Chemistry, vol. 45, no. 20, pp. 8408–8413, 2006.
[198]
S. D. Conradson, D. Manara, F. Wastin et al., “Local structure and charge distribution in the UO2-U4O9 system,” Inorganic Chemistry, vol. 43, no. 22, pp. 6922–6935, 2004.
[199]
L. Desgranges, G. Baldinozzi, D. Siméone, and H. E. Fischer, “Refinement of the α-U4O9 crystalline structure: new insight into the U4O9→U3O8 transformation,” Inorganic Chemistry, vol. 50, no. 13, pp. 6146–6151, 2011.
[200]
G. Dolling, R. Cowley, and A. Woods, “The crystal dynamics of uranium dioxide,” Canadian Journal of Physics, vol. 43, no. 8, pp. 1397–1413, 1965.
[201]
R. J. McQueeney, A. C. Lawson, A. Migliori et al., “Unusual phonon softening in δ-phase plutonium,” Physical Review Letters, vol. 92, no. 14, Article ID 146401, 4 pages, 2004.
[202]
M. Dubey, M. S. Jablin, P. Wang, M. Mocko, and J. Majewski, “SPEAR-ToF neutron reflectometer at the Los Alamos neutron science center,” European Physical Journal Plus, vol. 126, no. 11, pp. 1–11, 2011.
[203]
H. He, P. Wang, D. Allred, J. Majewski, M. Wilkerson, and K. D. Rector, “Characterization of chemical speciation in ultrathin uranium oxide layered films,” Analytical Chemistry, vol. 84, no. 23, pp. 10380–10387, 2012.
[204]
A. C. Larson and R. B. Von Dreele, “General structure analysis system (GSAS),” Tech. Rep. LA-UR 86-748, Los Alamos National Laboratory (LANL), 2004.
[205]
S. C. Vogel, “Gsaslanguage: a GSAS script language for automated Rietveld refinements of diffraction data,” Journal of Applied Crystallography, vol. 44, no. 4, pp. 873–877, 2011.
[206]
K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” Journal of Applied Crystallography, vol. 44, no. 6, pp. 1272–1276, 2011.
[207]
H. M. Reiche, Advanced sample environments for in situ neutron diffraction studies of nuclear materials [Ph.D. thesis], New Mexico State University, Las Cruces, NM, USA, 2012.
[208]
S. Matthies, J. Pehl, H. R. Wenk, L. Lutterotti, and S. C. Vogel, “Quantitative texture analysis with the HIPPO neutron TOF diffractometer,” Journal of Applied Crystallography, vol. 38, no. 3, pp. 462–475, 2005.
[209]
H. R. Wenk, L. Lutterotti, and S. C. Vogel, “Rietveld texture analysis from TOF neutron diffraction data,” Powder Diffraction, vol. 25, no. 3, Article ID 008003PDJ, pp. 283–296, 2010.
[210]
A. Kahle, B. Winkler, B. Hennion, and P. Boutrouille, “High-temperature furnace for dynamic neutron radiography,” Review of Scientific Instruments, vol. 74, no. 8, pp. 3717–3721, 2003.
[211]
A. Kahle, B. Winkler, and B. Hennion, “Is Faxén's correction function applicable to viscosity measurements of silicate melts with the falling sphere method?” Journal of Non-Newtonian Fluid Mechanics, vol. 112, no. 2-3, pp. 203–215, 2003.
[212]
B. Winkler, A. Kahle, and B. Hennion, “Neutron radiography of rocks and melts,” Physica B, vol. 385-386, pp. 933–934, 2006.
[213]
C. W. Barnes, M. Bourke, S. Malloy et al., “Radiation damage from atomic to meso-scales in extreme environments,” Bulletin of the American Physical Society, vol. 55, 2010.