全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microstructural and Compositional Characterisation of Chromate Pretreatment on Aluminium

DOI: 10.1155/2013/572379

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chromate conversion coating developed on aluminium has been examined using SEM/EDX and CTEM/EDX with a view to having further knowledge of its intrinsic surface, plan, and sectional morphologies which will aid the understanding of their roles in improved corrosion and adhesion properties of the underlying substrate. The surface consists of spherical clusters of particulate materials. The sections, however, reveal approximately parallel, linear features which terminate at or close to the metal/coating interface, while plan views show cell-like particulate features. The coating is composed of chromium and aluminium compounds, both, probably hydrated. For a conversion coating to fully replace its chromate counterpart, most of these features may have to be replicated in the nonchromium coating material which should contain nontoxic, leachable corrosion inhibiting species. 1. Introduction Unfortunately, hexavalent chromium present in chromate conversion coating (CCC) formulations as well as in the dried coatings [1–6] has been listed as a possible carcinogen. Consequently, active investigations [1, 7–14] are on processes and formulations to replace chromate’s corrosion protective properties and improved adhesion of subsequently applied finishes on aluminium and other alloys. Such formulations include those based on noncarcinogens as Zr [7], Zr/titanium/phosphonic acid [10] and cerium [13, 14] based conversion coatings. Some of these have been patented and are being used in mild environments. Although these and a number of alternative processes and formulations based on sol-gel chemistry are probably in the forefront as replacements, their performances lag [11] behind those of chromate conversion coatings. In view of these shortcomings, the present study seeks to know more about the changes in microstructure and composition imparted on aluminium by a typical chromate conversion coating formulation for its outstanding performances in terms of improved corrosion resistance and adhesion. This knowledge will enhance the pursuit of more favourable results in advances from the search for suitable nonchromium replacements. 2. Materials and Methods 2.1. Materials Aluminium specimens, of nominal composition, 0.002?wt.% Fe, 0.002?wt.% Cu, and 0.003?wt.% Si, were prepared by cutting up as-received materials into spade-like electrodes of dimensions 10?mm × 5?mm × 0.5?mm. The electrodes were electropolished according to the standard guide ASTM E1558-09 [15] rinsed in distilled water and dried in air. These electrodes were immersed for various periods in a conversion

References

[1]  T. Chen, W. Li, and J. Cai, “Formation of a chrome-free and coloured conversion coating on AA6063 aluminium alloy,” RSC Advances, vol. 1, no. 4, pp. 607–610, 2011.
[2]  H. Bhatt, “Trivalent chromium conversion coating for corrosion protection of aluminium Surfaces,” in Proceedings of the Department of Defence Corrosion Conference, pp. 1–61, Gaylord National, Washington, DC, USA, August 2009.
[3]  K. Asami, M. Oki, G. E. Thompson, G. C. Wood, and V. Ashworth, “Composition of the near surface regions of conversion coated aluminium,” Electrochimica Acta, vol. 32, no. 2, pp. 337–343, 1987.
[4]  A. M. Pereira, G. Pimenta, and B. D. Dunn, “A comparison of Alodine 1200 with chromium-free conversion coatings,” in Assessment of Chemical Conversion Coatings for the Protection of Aluminium Alloys (ESA-STM-276), K. Fletcher, Ed., pp. 1–61, ESA Communication Production Office, Noordwijk, The Netherlands, 2008.
[5]  J. H. Osborne, “Observations on chromate conversion coatings from a sol-gel perspective,” Progress in Organic Coatings, vol. 41, no. 4, pp. 280–286, 2001.
[6]  O. Lunder, J. C. Walmsley, P. MacK, and K. Nisancioglu, “Formation and characterisation of a chromate conversion coating on AA 6060 aluminium,” Corrosion Science, vol. 47, no. 7, pp. 1604–1624, 2005.
[7]  M. Oki, “Studies on chromium-free conversion coatings on aluminium,” Journal of Applied Science and Environmental Management, vol. 11, no. 2, pp. 187–190, 2007.
[8]  M. Zhao, S. Wu, P. An, Y. Fukuda, and H. Nakae, “Growth of multi-elements complex coating on AZ91D magnesium alloy through conversion treatment,” Journal of Alloys and Compounds, vol. 427, no. 1-2, pp. 310–315, 2007.
[9]  M. Kendig, M. Hon, and L. Warren, “'Smart' corrosion inhibiting coatings,” Progress in Organic Coatings, vol. 47, no. 3-4, pp. 183–189, 2003.
[10]  S. H. Wang, C. S. Liu, and F. J. Shan, “Corrosion behavior of a zirconium-titanium based phosphonic acid conversion coating on AA 6061 aluminium alloy,” Acta Metallurgica Sinica, vol. 21, no. 4, pp. 269–274, 2008.
[11]  M. W. Kendig and R. G. Buchheit, “Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings,” Corrosion, vol. 59, no. 5, pp. 379–400, 2003.
[12]  M. Takai and M. Takaya, “Influence of conversion coating on magnesium and aluminum alloys by adhesion method,” Materials Transactions, vol. 49, no. 5, pp. 1065–1070, 2008.
[13]  J. Hu, X. H. Zhao, S. W. Tang, W. C. Ren, and Z. Y. Zhang, “Corrosion resistance of cerium-based conversion coatings on alumina borate whisker reinforced AA6061 composite,” Applied Surface Science, vol. 253, no. 22, pp. 8879–8884, 2007.
[14]  L. E. M. Palomino, I. V. Aoki, and H. G. de Melo, “Microstructural and electrochemical characterization of Ce conversion layers formed on Al alloy 2024-T3 covered with Cu-rich smut,” Electrochimica Acta, vol. 51, no. 26, pp. 5943–5953, 2006.
[15]  ASTM E 1558-09, “Standard guide for electrolytic polishing of metallographic specimens”.
[16]  M. Oki, “Morphology and composition of aluminium pretreated in sulphuric acid/dichromate solution,” Indian Journal of Technology, vol. 27, no. 9, pp. 454–458, 1989.
[17]  M. Oki and E. Charles, “Chromate conversion coating on Al-0.2 wt.% Fe alloy,” Materials Letters, vol. 63, no. 23, pp. 1990–1991, 2009.
[18]  L. Xia and R. L. McCreery, “Chemistry of a chromate conversion coating on aluminum alloy AA2024-T3 probed by vibrational spectroscopy,” Journal of the Electrochemical Society, vol. 145, no. 9, pp. 3083–3089, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133