全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Magnetotransport Behaviour of Nanocrystalline ()

DOI: 10.1155/2013/490798

Full-Text   Cite this paper   Add to My Lib

Abstract:

The nanocrystalline samples of (PSMO) ( , 0.50, 0.55, and 0.60) were synthesized by wet-chemical sol-gel route. Structural, magnetic, and magnetotransport properties have been studied systematically. It is found that samples with Sr content and 0.50 show paramagnetic to ferromagnetic (PM-FM) transition at ?K with no trace of FM-AFM transition within the temperature range of 77–350?K. However, interestingly a second transition is observed at 273 and 255?K, respectively, for samples and 0.60 correspond to an A-AFM magnetic structure. This indicates that samples and 0.50 are ferromagnetic below , while other samples ( and 0.60) have a mixed phase consisting of FM and A-type AFM phases. Resistivity versus temperature (ρ-T) curve shows that the resistivity of all the samples is much larger than the single crystals of corresponding compositions due to large contribution of grain boundaries in the present nanocrystalline samples. Moreover, the decrease in metallic component at higher Sr concentration is also evidenced by the successive reduction in magnetoresistance (MR) with increasing Sr content from to 0.60. 1. Introduction Several experimental and theoretical studies have focused on the exploration of grain size effect on the structural, magnetic, and electrical transport properties of alkaline-earth doped rare earth perovskite manganites chemically represented by (RE = rare earth cation and AE = alkaline earth cation) because of their unusual magnetic and electronic properties like colossal magnetoresistance (CMR), charge ordering, orbital ordering, and phase separation [1–10]. These studies focus on and clearly highlight the significance of broken Mn–O–Mn exchange bonds at the grain surface and their likely impact on the magnetic and electrical transport properties. Since size reduction leads to increased contribution from the surface regions, the broken Mn–O–Mn bonds are indeed expected to have a definite impact on magnetoelectrical properties in manganites. However, in view of the fact that manganites exhibit a strong competition and correlation between various structural and electronic degrees of freedom even more intriguing and complex phenomena are expected. It has been shown that in nanomanganites, size reduction below ~100?nm renders the charge and orbitally ordered (CO–OO) ground state with unstable antiferromagnetic (AFM) spin order, giving rise to a ferromagnetic (FM) ground state [3, 11]. Size induced transition from the AFM/CO to the weak ferromagnetic (WFM) state was observed in both nanowires [3] and nanoparticles [4]. It has been shown by

References

[1]  Y. Tokura and Y. Tomioka, “Colossal magnetoresistive manganites,” Journal of Magnetism and Magnetic Materials, vol. 200, no. 1, pp. 1–23, 1999.
[2]  F. Chen, H. W. Liu, K. F. Wang et al., “Synthesis and characterization of La0.825Sr0.175MnO3 nanowires,” Journal of Physics, vol. 17, no. 44, pp. L467–L475, 2005.
[3]  S. S. Rao, K. N. Anuradha, S. Sarangi, and S. V. Bhat, “Weakening of charge order and antiferromagnetic to ferromagnetic switch over in Pr0.5Ca0.5MnO3 nanowires,” Applied Physics Letters, vol. 87, no. 18, Article ID 182503, 3 pages, 2005.
[4]  S. S. Rao, S. Tripathi, D. Pandey, and S. V. Bhat, “Suppression of charge order, disappearance of antiferromagnetism, and emergence of ferromagnetism in Nd0.5Ca0.5MnO3 nanoparticles,” Physical Review B, vol. 74, no. 14, Article ID 144416, 5 pages, 2006.
[5]  Z. Q. Wang, F. Gao, K. F. Wang, H. Yu, Z. F. Ren, and J.-M. Liu, “Synthesis and magnetic properties of Pr0.57Ca0.43MnO3 nanoparticles,” Materials Science and Engineering B, vol. 136, no. 1, pp. 96–100, 2007.
[6]  A. Biswas and I. Das, “Experimental observation of charge ordering in nanocrystalline Pr0.65Ca0.35MnO3,” Physical Review B, vol. 74, no. 17, Article ID 172405, 4 pages, 2006.
[7]  A. Biswas, I. Das, and C. Majumdar, “Modification of the charge ordering in Pr1/2Sr1/2MnO3 nanoparticles,” Journal of Applied Physics, vol. 98, no. 12, Article ID 124310, 5 pages, 2005.
[8]  K. S. Shankar, S. Kar, G. N. Subbanna, and A. K. Raychaudhuri, “Enhanced ferromagnetic transition temperature in nanocrystalline lanthanum calcium manganese oxide (La0.67Ca0.33MnO3),” Solid State Communications, vol. 129, no. 7, pp. 479–483, 2004.
[9]  T. Zhang, C. G. Jin, T. Qian, X. L. Lu, J. M. Bai, and X. G. Li, “Hydrothermal synthesis of single-crystalline La0.5Ca0.5MnO3 nanowires at low temperature,” Journal of Materials Chemistry, vol. 14, pp. 2787–2789, 2004.
[10]  S. Dong, F. Gao, Z. Q. Wang, J.-M. Liu, and Z. F. Ren, “Surface phase separation in nanosized charge-ordered manganites,” Applied Physics Letters, vol. 90, no. 8, Article ID 082508, 3 pages, 2007.
[11]  C. L. Lu, S. Dong, K. F. Wang et al., “Charge-order breaking and ferromagnetism in La0.4Ca0.6MnO3 nanoparticles,” Applied Physics Letters, vol. 91, no. 3, Article ID 032502, 3 pages, 2007.
[12]  M. Nagao, T. Asaka, D. Akahoshi et al., “Nanostructural evidence at the phase boundary of A-and C-type antiferromagnetic phases in Nd1-xSrxMnO3 crystals,” Journal of Physics, vol. 19, no. 49, Article ID 492201, 2007.
[13]  D. Akahoshi, R. Hatakeyama, M. Nagao, T. Asaka, Y. Matsui, and H. Kuwahara, “Anomalous ferromagnetic behavior and large magnetoresistance induced by orbital fluctuation in heavily doped Nd1-xSrxMnO3 (0.57?≤?x?≤?0.75),” Physical Review B, vol. 77, no. 5, Article ID 054404, 5 pages, 2008.
[14]  R. Prasad, M. M. Singh, P. K. Siwach, P. Fournier, and H. K. Singh, “Anomalous insulator-metal transition and weak ferromagnetism in Nd0.37Sr0.63MnO3 thin films,” Europhysics Letters, vol. 84, no. 2, Article ID 27003, 2008.
[15]  Y. Tokura, “Critical features of colossal magnetoresistive manganites,” Reports on Progress in Physics, vol. 69, no. 3, p. 797, 2006.
[16]  Y. Moritomo, T. Akimoto, A. Nakamura, K. Ohoyama, and M. Ohashi, “Antiferromagnetic metallic state in the heavily doped region of perovskite manganites,” Physical Review B, vol. 58, no. 9, pp. 5544–5549, 1998.
[17]  H. Kawano, R. Kajimoto, H. Yoshizawa, Y. Tomioka, H. Kuwahara, and Y. Tokura, “Magnetic ordering and relation to the metal-insulator transition in Pr1-xSrxMnO3 and Nd1-xSrxMnO3 with x~ 1/2,” Physical Review Letters, vol. 78, no. 22, pp. 4253–4256, 1997.
[18]  J. A. Fernandez-Baca, P. Dai, H. Y. Hwang, C. Kloc, and S.-W. Cheong, “Evolution of the low-frequency spin dynamics in ferromagnetic manganites,” Physical Review Letters, vol. 80, no. 18, pp. 4012–4015, 1998.
[19]  R. N. Bhowmik, R. Nagarajan, and R. Ranganathan, “Magnetic enhancement in antiferromagnetic nanoparticle of CoRh2O4,” Physical Review B, vol. 69, Article ID 054430, 5 pages, 2004.
[20]  T. Zhang, T. F. Zhou, T. Qian, and X. G. Li, “Particle size effects on interplay between charge ordering and magnetic properties in nanosized La0.25Ca0.75MnO3,” Physical Review B, vol. 76, no. 17, Article ID 174415, 7 pages, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133