Glasses of various compositions belonging to the Bi2O3-B2O3-ZnO-Li2O quaternary system were prepared using melt quench technique. Dc electric measurements were done on the samples, and activation energies are determined. Arrhenius plots showed straight line behaviour. It is observed that the conductivity of the samples increased with temperature and also with Li2O content, whereas the activation energy decreased with Li2O content. The isothermal plots for constant ZnO and constant Bi2O3 glasses revealed that the conduction in these glasses is due to lithium ions only. The isothermal plots for constant lithium containing glasses varied nonlinearly with two maxima, which is attributed to mixed former effect. The variation is explained based on Anderson-Stuart model. 1. Introduction Glasses and glass-ceramics are technologically important materials when compared with their crystalline counterparts. These materials show superior thermomechanical, electrical and other physicochemical properties, which make them suitable for use in vacuum, high-voltage, and biomedical applications [1]. Conventional glass formers such as P2O5 and TeO2 containing transitional metal ions have been studied earlier [2–5]. In recent years, bismuth-based glasses have attracted the attention of researchers due to technological applications, useful physical properties and among them bismuth borates are of interest [6–9]. The introduction of alkali ions into these glasses exhibits high electrical conductivity and can be used as solid electrolytes in high energy density batteries, sensors, and so forth [10]. Further, transition metal ion glasses based on unconventional glass network formers such as Bi2O3 and PbO have been reported [11–14]. Especially, zinc-oxide based glasses/ceramics have special applications in the area of varistor designing, dielectric layers, barrier ribs in plasma display panels, and so forth [15, 16]. In the literature, it is reported that Bi2O3 occupies both network forming and network modifying positions. Therefore, the physical properties of such glasses exhibit discontinuous changes when the structural role of the cation changes [17, 18]. Especially, efforts are made to enhance the conductivity in lithium ion conducting glasses in this way [19, 20]. There have been two main approaches to improve the conductivity of the glass. The first approach is to dissolve alkali compounds such as Li2O, LiCl, and Na2O into an oxide glass. The second strategy is to combine the network forming oxides, which is known as mixed former effect, although the reason for this is not
References
[1]
P. W. McMillan, Glass Ceramics, Academic Press, London, UK, 2nd edition, 1979.
[2]
M. Sayer and A. Mansingh, “Transport properties of semiconducting phosphate glasses,” Physical Review B, vol. 6, no. 12, pp. 4629–4643, 1972.
[3]
B. Dutta, N. A. Fahmy, and I. L. Pegg, “Effect of mixed transition-metal ions in glasses. Part III: the P2O5–V2O5–MnO system,” Journal of Non-Crystalline Solids, vol. 325, no. 21-22, pp. 2100–2108, 2006.
[4]
P. S. Rao, C. Rajyasree, A. R. Babu, P. M. V. Teja, and D. K. Rao, “Effect of Bi2O3 proportion on physical, structural and electrical properties of zinc bismuth phosphate glasses,” Journal of Non-Crystalline Solids, vol. 357, no. 21, pp. 3585–3591, 2011.
[5]
A. Ghosh, “Correlated-barrier hopping in semiconducting tellurium molybdate glass,” Physical Review B, vol. 45, no. 19, pp. 11318–11320, 1992.
[6]
Y. Cheng, H. Xiao, W. Guo, and W. Guo, “Structure and crystallization kinetics of Bi2O3-B2O3 glasses,” Thermochimica Acta, vol. 444, no. 2, pp. 173–178, 2006.
[7]
Y. B. Saddeek and M. S. Gaafar, “Physical and structural properties of some bismuth borate glasses,” Materials Chemistry and Physics, vol. 115, no. 1, pp. 280–286, 2009.
[8]
S. Bale, S. Rahman, A. M. Awasthi, and V. Sathe, “Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3–ZnO–B2O3 glasses,” Journal of Alloys and Compounds, vol. 460, no. 1-2, pp. 699–703, 2008.
[9]
K. Singh, “Electrical conductivity of Li2O-B2O3-Bi2O3: a mixed conductor,” Solid State Ionics, vol. 93, no. 1-2, pp. 147–158, 1996.
[10]
J. Fu, “Lithium alkaline earth bismuthate glasses,” Physics and Chemistry of Glasses, vol. 37, p. 84, 1996.
[11]
B. B. Das and Deepa, “Synthesis and structure—property relations in xCuO–( )Bi2O3(0.5 ?x? 0.9) (C1–C5: x = 0.5, 0.6, 0.7, 0.8, 0.9) glasses,” Journal of Non-Crystalline Solids, vol. 355, no. 31–33, pp. 1663–1665, 2009.
[12]
X. Hu, G. Guery, J. Boerstler et al., “Influence of Bi2O3 content on the crystallization behavior of TeO2–Bi2O3–ZnO glass system,” Journal of Non-Crystalline Solids, vol. 358, no. 5, pp. 952–958, 2012.
[13]
S. Bale and S. Rahman, “Optical absorption and EPR studies on ( )Bi2O3-xLi2O–30(ZnO–B2O3) (0 ?x? 20) glasses,” Journal of Non-Crystalline Solids, vol. 355, no. 43-44, pp. 2127–2133, 2009.
[14]
N. Kitamura, K. Fukumi, J. Nakamura et al., “Optical properties of zinc bismuth phosphate glass,” Materials Science and Engineering B, vol. 161, no. 1–3, pp. 91–95, 2009.
[15]
D. R. Clarke, “Varistor ceramics,” Journal of the American Ceramic Society, vol. 82, no. 3, pp. 485–502, 1999.
[16]
M. Busio and O. Steigelmann, “New frit glasses for displays,” Glass Science and Technology, vol. 73, no. 10, pp. 319–325, 2000.
[17]
L. Baia, R. Stefan, J. Popp, S. Simon, and W. Kiefer, “Vibrational spectroscopy of highly iron doped B2O3–Bi2O3 glass systems,” Journal of Non-Crystalline Solids, vol. 324, no. 1-2, pp. 109–117, 2003.
[18]
S. Bale and S. Rahman, “Glass structure and transport properties of Li3O containing zinc bismuthate glasses,” Optical Materials, vol. 31, no. 2, pp. 333–337, 2008.
[19]
R. S. Gedam and V. K. Deshpande, “An anomalous enhancement in the electrical conductivity of Li2O?:?B2O3?:?Al2O3 glasses,” Solid State Ionics, vol. 177, no. 26–32, pp. 2589–2592, 2006.
[20]
R. Chen, R. Yang, B. Durand, A. Pradel, and M. Ribes, “A study of the mixed alkali effect by frequency-dependent conductivity in Li2O-Na2O-P2O5 glasses,” Solid State Ionics, vol. 53-56, pp. 1194–1199, 1992.
[21]
B. V. R. Chowdari and Z. Rong, “The role of Bi2O3 as a network modifier and a network former in xBi2O3·(1 ? x)LiBO2 glass system,” Solid State Ionics, vol. 90, no. 1–4, pp. 151–160, 1996.
[22]
A. Pan and A. Ghosh, “Relaxation dynamics of lithium ions in lead bismuthate glasses,” Physical Review B, vol. 62, no. 5, pp. 3190–3195, 2000.
[23]
A. Dutta and A. Ghosh, “Ionic conductivity of Li2O–BaO–Bi2O3 glasses,” Journal of Non-Crystalline Solids, vol. 351, no. 3, pp. 203–208, 2005.
[24]
M. Altaf, M. A. Chaudhry, and S. A. Siddiqi, “DC electrical conductivity of Li2O-CdO-P2O5 glasses,” Materials Chemistry and Physics, vol. 71, no. 1, pp. 28–33, 2001.
[25]
A. Agarwal, V. P. Seth, P. S. Gahlot, S. Khasa, and P. Chand, “Effect of Bi2O3 on EPR, optical transmission and DC conductivity of vanadyl doped alkali bismuth borate glasses,” Journal of Physics and Chemistry of Solids, vol. 64, no. 11, pp. 2281–2288, 2003.
[26]
S. Hazra, S. Mandal, and A. Ghosh, “Properties of unconventional lithium bismuthate glasses,” Physical Review B, vol. 56, no. 13, pp. 8021–8025, 1997.
[27]
M. D. Ingram, “Ionic conductivity in glasses,” Physics and Chemistry of Glasses, vol. 28, pp. 215–234, 1987.
[28]
M. Jamal, G. Venugopal, M. Shareefuddin, and M. Narasimha Chary, “Sodium ion conducting glasses with mixed glass formers NaI–Na2O–V2O5–B2O3: application to solid state battery,” Materials Letters, vol. 39, no. 1, pp. 28–32, 1999.
[29]
C.-H. Lee, K. H. Joo, J. H. Kim et al., “Characterizationsof a new lithium ion conducting Li2O–SeO2–B2O3 glass electrolyte,” Solid State Ionics, vol. 149, no. 1-2, pp. 59–65, 2002.
[30]
R. S. Gedam and V. K. Deshpande, “An anomalous enhancement in the electrical conductivity of Li2O?:?B2O3?:?Al2O3 glasses,” Solid State Ionics, vol. 177, no. 26–32, pp. 2589–2592, 2006.
[31]
O. L. Anderson and D. A. Stuart, “Calculation of activation energy of ionic conductivity in silica glasses by classical methods,” Journal of the American Ceramic Society, vol. 37, pp. 573–580, 1954.
[32]
D. K. McElfresh and D. G. Howitt, “Activation enthalpy for diffusion in glass,” Journal of the American Ceramic Society, vol. 69, no. 10, pp. 237–238, 1986.
[33]
S. W. Martin, “Ionic conduction in phosphate glasses,” Journal of the American Ceramic Society, vol. 74, no. 8, pp. 1767–1784, 1991.
[34]
H. K. Patel and S. W. Martin, “Fast ionic conduction in Na2S + B2S3 glasses: compositional contributions to nonexponentiality in conductivity relaxation in the extreme low-alkali-metal limit,” Physical Review B, vol. 45, no. 18, pp. 10292–10300, 1992.