全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Seismic Behaviour of Exterior Reinforced Concrete Beam-Column Joints in High Performance Concrete Using Metakaolin and Partial Replacement with Quarry Dust

DOI: 10.1155/2014/361962

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recent earthquakes have demonstrated that most of the reinforced concrete structures were severely damaged; the beam-column joints, being the lateral and vertical load resisting members in reinforced concrete structures, are particularly vulnerable to failures during earthquakes. The existing reinforced concrete beam-column joints are not designed as per code IS13920:1993. Investigation of high performance concrete (HPC) joints with conventional concrete (CC) joints (exterior beam-column) was performed by comparing various reinforcement detailing schemes. Ten specimens were considered in this investigation and the results were compared: four specimens with CC (with and without seismic detailing), four specimens with HPC (with and without seismic detailing), and two specimens with HPC at confinement joint. The test was conducted for lateral load displacement, hysteresis loop, load ratio, percent of initial stiffness versus displacement curve, total energy dissipation, strain in beam main bars, and crack pattern. The results reveal that HPC with seismic detailing will be better compared with other reinforcements details under cyclic loading and reverse cyclic loading. 1. Introduction Earthquakes present a threat to public safety and welfare in a significant portion everywhere. We cannot stop earthquakes, but we can protect ourselves from them, as “earthquakes do not kill human beings, but the structures do.” The behaviour of reinforced concrete moment resisting frame structures in recent earthquakes all over the world has highlighted the consequences of poor performance of beam-column joints. Beam-column joints in a reinforced concrete moment resisting frame are crucial zones for transfer of loads effectively between the connecting elements (i.e., beams and columns) in the structure. In the analysis of reinforced concrete moment resisting frames, the joints are generally assumed as rigid. In Indian practice, the joint is usually neglected for specific design with attention being restricted to provision of sufficient anchorage for beam longitudinal reinforcement. This may be acceptable when the frame is not subjected to earthquake loads. The poor design practice of beam-column joints is compounded by the high demand imposed by the adjoining flexural members (beams and columns) in the event of mobilizing their inelastic capacities to dissipate seismic energy. For the past three decades, extensive research has been carried out on studying the behaviour of joints under seismic conditions through experimental and analytical studies. Various international codes

References

[1]  J. Anthony and B. S. Wolanski, Flexural Behaviour of Reinforced and Prestressed Concrete Beams Using Finite Element Analysis, Wisconsin, Milwaukee, Wis, USA, 2004.
[2]  Patrick lucien minnaugh, The Experimental Behaviour of Steel Fibre Reinforced Polymer Retrofit Measures, University of Pittsburgh, 2006.
[3]  J. N. Arlekar and C. V. R. Murty, “Future directions for capacity design of welded beam-to-column connections in steel seismic moment resisting frames,” Structural Engineer, vol. 83, no. 13, pp. 36–41, 2005.
[4]  L. Kutzing and G. K?nig, Design Principle For Steel Fibre reinForced Concrete—A Fracture Mechanics Approach, Lacer, 1999.
[5]  N. Ganesan and P. V. Indira, “Latex modified SFRC beam-column joints subjected to cyclic loading,” Indian Concrete Journal, vol. 74, no. 7, pp. 416–420, 2000.
[6]  S. R. Uma and M. Prasad, Seismic Behaviour of Beam Column Joints in Reinforced Concrete Moment Resisting Frames, IITK-GSDMA-EQ31-Volume1.0, IITK-GSDMA project on building codes.
[7]  S. R. Uma and S. K. Jain, “Seismic design of beam-column joints in RC moment resisting frames—review of codes,” Structural Engineering and Mechanics, vol. 23, no. 5, pp. 579–597, 2006.
[8]  F. Alameddine and M. R. Ehsani, “High-strength RC connections subjected to inelastic cyclic loading,” ASCE Journal of Structural Engineering, vol. 117, no. 3, pp. 829–850, 1991.
[9]  M. R. Ehsani and J. K. Wight, “Exterior reinforced concrete beam-to-column connections subjected to earthquake-type loading,” Journal of the American Concrete Institute, vol. 82, no. 4, pp. 492–499, 1985.
[10]  IS 13920, 1993, Indian Standard Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces-Code of Practice, 1993.
[11]  IS 1893 (Part 1), 2002, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings, 2002.
[12]  IS 456:2000, Indian Standard Plain and Reinforced Concrete Code of Practice, 2000.
[13]  C. V. R. Murty, D. C. Rai, K. K. Bajpai, and S. K. Jain, “Effectiveness of reinforcement details in exterior reinforced concrete beam-column joints for earthquake resistance,” ACI Structural Journal, vol. 100, no. 2, pp. 149–156, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133