Thixojoining has been developed for D2 and M2 tool steels. The suitable globular microstructure and excellent bonding quality are obtained through this work. Scanning electron microscopy (SEM) observation along the joint interfaces showed a smooth transition zone with no cracks. In addition, fracture surface of the shear test samples showed that the fracture mode was transgranular. Finally, based on obtained results, this method presented high quality joint with nonequilibrium diffusion interface. 1. Introduction AISI D2 and M2 steels have good strength and excellent resistance to wear as well as perfect toughness [1]. The cladding and coating form of these tool alloys as a multilayer structure is a new type composite improved both alloys properties and is suitable for chemical and mechanical conditions. In such conditions, because of high carbon content and high mechanical properties, conventional cladding methods are not applicable or need to huge equipment [2, 3]; therefore, Thixoprocessing is recommended as a good solution in comparison with the above mentioned. Due to rheological advantages of Thixotropic materials, various methods based on Thixoprocessing have been developed. Thixojoining process is a joining technique together with forming in Thixoprocessing category. Producing multimaterial functional components and minimizing the defects over the weld zone are considered as advantages of this technique in comparison with conventional joining methods [4, 5]. This work aimed to evaluate the novel idea to achieve additional information about the general characteristics of this type of joining. In this study, bonding of two AISI tool (i.e., M2 and D2) steels has been successfully performed and characterized. 2. Experimental Procedure Two steel grades, S600 (AISI M2) and K110 (AISI D2), were chosen in this research. These steels were used in as-received condition without any modifications. For steel grades, initial process to produce spherical particles is less needed compared to nonferrous alloys [6]. The present work aims to provide globular joining structure in semisolid state by employing AISI D2 and M2 tool steels via applying an approximately 1?MPa constant compressive stress at nil strength temperature [7, 8] of D2 and direct partial remelting in furnace with argon controlled atmosphere. The study is known as a new type of diffusion interfacial structure across the interface of the welded parts. The direct partial remelting experiment was performed using PLC controlled resistance furnace, and a protective atmosphere was produced by flowing
References
[1]
B. Rajasekaran, G. Mauer, R. Vaben, A. Rottger, S. Weber, and W. Theisen, “Thick tool steel coatings using HVOF spraying for wear resistance applications,” Surface and Coatings Technology, vol. 205, no. 7, pp. 2449–2454, 2010.
[2]
M. H. Staia, Y. Pérez-Delgado, C. Sanchez, A. Castro, E. le Bourhis, and E. S. Puchi-Cabrera, “Hardness properties and high-temperature wear behavior of nitrided AISI D2 tool steel, prior and after PAPVD coating,” Wear, vol. 267, no. 9-10, pp. 1452–1461, 2009.
[3]
J. J. Candel, V. Amigó, J. A. Ramos, and D. Busquets, “Problems in laser repair cladding a surface AISI D2 heat-treated tool steel,” Welding International, vol. 27, no. 1, pp. 10–17, 2013.
[4]
R. Baadjou, H. Shimahara, and G. Hirt, “Automated semi-solid forging of steel components by means of thixojoining,” Solid State Phenomena, vol. 116-117, pp. 383–386, 2006.
[5]
H. W. Liu, C. Guo, Y. Cheng, X. F. Liu, and G. Shao, “Interfacial strength and structure of stainless steel-semi-solid aluminum alloy clad metal,” Materials Letters, vol. 60, no. 2, pp. 180–184, 2006.
[6]
B. Amin-Ahmadi and H. Aashuri, “Semisolid structure for M2 high speed steel prepared by cooling slope,” Journal of Materials Processing Technology, vol. 210, no. 12, pp. 1632–1635, 2010.
[7]
P. Maciol, W. Zalecki, and R. Kuziak, “Results of experimental investigations of tool steel during forming in semi-solid state,” International Journal of Material Forming, vol. 3, no. 1, supplement, pp. 756–762, 2010.
[8]
K. P. So?ek and A. ?ukaszek-So?ek, “Analysis of the heating process and development of a microstructure suitable for thixoforming of steel,” International Journal of Material Forming, vol. 1, no. 1, supplement, pp. 1015–1018, 2008.
[9]
W. Püttgen, W. Bleck, I. Seidl, R. Kopp, and C. Bertrand, “Investigation of thixoforged damper brackets made of the steel grades HS6-5-3 and 100Cr6,” Advanced Engineering Materials, vol. 7, no. 8, pp. 726–735, 2005.
[10]
J. Lecomte-Beckers, M. Sinnaeve, and T. J. Tchuindjang, “New trends in hot strip mill roughing mills: characterization of high chromium steel and semi-HSS grades,” in Proceedings of the Iron & Steel Technology Conference, vol. 1, pp. 1771–1782, 2011.
[11]
A. Kalaki, Flow behavior effect of steel-steel thixojoining on mechanical properties of the joints [Ph.D. thesis], Amirkabir University of Technology, Tehran, Iran, 2013.
[12]
A. Kalaki and M. Ketabchi, “Predicting the rheological behavior of AISI D2 semi-solid steel by plastic instability approach,” American Journal of Materials Engineering and Technology, vol. 1, no. 3, pp. 41–45, 2013.