全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study of Structural and Phase Transition of Nickel Metal

DOI: 10.1155/2014/253627

Full-Text   Cite this paper   Add to My Lib

Abstract:

Annealing study of nickel metal in the temperature range 300–1000?K has been carried out using molecular dynamics (MD) simulations. The simulation is done for models containing 104 particles Ni at both crystalline and amorphous states. We obtain the change as a function of annealing time for the potential energy of system, pair radial distribution function (PRDF), and distribution of coordination number (DCN). The calculation shows that the aging slightly reduces the potential energy of system. This result evidences that the amorphous model undergoes different quasiequilibrated states during annealing. The crystalline model undergoes the slow relaxation which reduces the energy of system and eliminates structural defects in crystal lattices. 1. Introduction The structure and atomic mechanism of glass formation from liquid metal have been under intensive study from both experiment and computer simulation. By using different diffraction techniques as X-ray and neutron diffraction or turning electronic microscopic, experiment data has provided the important information of structural general arrangement of metals through the RDF and structure factor. Both functions have splitting second peak, which was usually thought to be related to the existence of local icosahedral in amorphous state [1–7]. Based on the MD simulation, Liu et al. [6] suggested that a laboratory or simulated metallic glass is generally a distorted metallic solid including a significant amount of icosahedral, each consisting of 13 atoms; that is, every atom in metallic glass has 12 atoms in its first-neighbor shell to form an icosahedral. On the other hand, Lopez suggested that the shoulder of RDF indicates the presence of two displaced atoms. At higher temperature this presence is washed out by thermal averaging [7]. However, the atomic mechanism of amorphous formation from liquid state is still not well understood. In addition, we found only few works concerning this problem. In addition, our understanding of the atomic mechanism in crystalline and liquid states is still limited. From MD simulation study, Solhjoo et al. showed that during solidification of aluminum, a crystalline and amorphous-like structure is formed depending on the cooling rate [8]. Ozgen and Duruk [9] showed that when the slow cooling process is applied continuously, not gradually, the systems firstly have a tendency of complex arrangement in cluster level at the glassy transition temperature, and, again, it returned to liquid state since they have an energetically unfavorable structure. Sarkar et al. revealed that

References

[1]  Y. Waseda and S. Tamaki, “Structures of 3d-transition metals in the liquid state,” Philosophical Magazine, vol. 32, no. 2, pp. 273–281, 1975.
[2]  P. K. Leung and J. G. Wright, “Structural investigations of amorphous transition element films: II. Chromium, iron, manganese and nickel,” Philosophical Magazine, vol. 30, no. 5, pp. 995–1108, 1974.
[3]  T. Ichikawa, “The assembly of hard spheres as a structure model of amorphous iron,” Physica Status Solidi (A) Applied Research, vol. 29, no. 1, pp. 293–302, 1975.
[4]  Y. Waseda, “The structure of liquids, amorphous solids and solid fast ion conductors,” Progress in Materials Science, vol. 26, pp. 1–122, 1981.
[5]  T. Egami and Y. Waseda, “Atomic size effect on the formability of metallic glasses,” Journal of Non-Crystalline Solids, vol. 64, no. 1-2, pp. 113–134, 1984.
[6]  R. S. Liu, D. W. Qi, and S. Wang, “Subpeaks of structure factors for rapidly quenched metals,” Physical Review B, vol. 45, p. 451, 1991.
[7]  J. M. Lopez and M. Silbert, “Structural diffusion model calculations of the pair distribution function of aluminium: from the liquid to the amorphous phase,” Solid State Communications, vol. 69, no. 5, pp. 585–587, 1989.
[8]  S. Solhjoo, A. Simchi, and H. Aashuri, “Molecular dynamics simulation of melting, solidification and remelting processes of aluminum,” Transaction of Mechanical Engineering, vol. 36, no. 13, 2012.
[9]  S. Ozgen and E. Duruk, “Molecular dynamics simulation of solidification kinetics of aluminium using Sutton-Chen version of EAM,” Materials Letters, vol. 58, no. 6, pp. 1071–1075, 2004.
[10]  A. Sarkar, P. Barat, and P. Mukherjee, “Molecular dynamics simulation of rapid solidification of aluminum under pressure,” International Journal of Modern Physics B, vol. 22, no. 17, pp. 2781–2785, 2008.
[11]  V. V. Hoang, “Computer simulation of the effects of B and P concentrations on microstructure in amorphous Fe-B and Fe-P alloys,” Physica B, vol. 348, no. 1–4, pp. 347–352, 2004.
[12]  P. K. Hung and P. H. Kien, “New model for tracer-diffusion in amorphous solid,” European Physical Journal B, vol. 78, no. 1, pp. 119–125, 2010.
[13]  P. K. Hung, P. H. Kien, and L. T. Vinh, “Evidence of “microscopic bubbles” and a new diffusion mechanism for amorphous alloys,” Journal of Physics Condensed Matter, vol. 22, no. 3, Article ID 035401, 2010.
[14]  V. V. Hoang and N. H. Cuong, “Local icosahedral order and thermodynamics of simulated amorphous Fe,” Physica B: Condensed Matter, vol. 404, no. 2, pp. 340–346, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133