全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Wet Synthesis of Monodisperse Cobalt Oxide Nanoparticles

DOI: 10.5402/2012/691032

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ultrafine and monodispersable colloidal cobalt oxide nanoparticles were successfully synthesized quantitatively via soft chemical approach with controlled particle size and microstructural properties for their use in technological applications. The particle size, shape, and other microstructural properties are directly influenced by their reaction conditions. The FT-IR studies give information for phase purity, and ultraviolet absorption spectroscopy helps to study the optical properties. Thermal analysis gives the information about thermal stability. With the help of X-ray diffraction pattern, the size of the particle was calculated. An electron microscope studies help in morphological characterization, and Brunauer-Emmett-Teller method gives information about surface area. Cobalt oxide nanoparticle tends to orient itself with its narrow size distribution having a crystal size around 50?nm. 1. Introduction In recent years, synthesis of transition metal oxide nanoparticles has attracted much attention because of their outstanding multifunctional physical-chemical properties for their use in different fields. The actual challenge that depends on how to optimize a cost-effective synthetic methodology via soft chemical approach that gives technological grade nanomaterials with a specific structural-morphological functional properties remains a challenge to synthetic chemists. Cobalt oxide nanopowder is widely used in many fields such as magnetic [1], gas sensor [2], lithium ion batteries [3], catalysis [4], and electrochemical [5] depending on the size, structure, shape, and phase homogeneity and with surface morphologies. Many approaches were made for the successful synthesis of cobalt oxide nanoparticles in past one decade by using different synthetic approaches, such as thermal method [6], precipitation methods [7], pyrolysis process [8], and sonochemical method [9]. However, all these methods have a limited control in particle functional properties with low yield. Therefore, it is necessary to find alternative method for the synthesis of nanopowder that should be cost-effective and environmental friendly. The soft chemical approach is the best synthetic method which helps to synthesize of cobalt oxide nanopowder. Soft chemistry that helps to increase a functional efficiency for its use in technology also helps in better understanding the crystal growth with a required shape, size, and phase purity by controlling surface energies. We have used wet chemical approach to prepare ultrapure monodisperse tetrapod-shaped cobalt oxide nanoparticles with a

References

[1]  L. Zhang and D. Xue, “Preparation and magnetic properties of pure CoO nanoparticles,” Journal of Materials Science Letters, vol. 21, no. 24, pp. 1931–1933, 2002.
[2]  W. Y. Li, L. N. Xu, and J. Chen, “Co3O4 nanomaterials in lithium-ion batteries and gas sensors,” Advanced Functional Materials, vol. 15, no. 5, pp. 851–857, 2005.
[3]  H. Qiao, L. Xiao, Z. Zheng, H. Liu, F. Jia, and L. Zhang, “One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries,” Journal of Power Sources, vol. 185, no. 1, pp. 486–491, 2008.
[4]  X. Xie and W. Shen, “Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance,” Nanoscale, vol. 1, pp. 50–60, 2009.
[5]  H. J. Guo, Q. M. Sun, X. H. Li, Z. X. Wang, and W. J. Peng, “Synthesis and electrochemical performance of Co3O4/C composite anode for lithium ion batteries,” Transactions of Nonferrous Metals Society of China, vol. 19, no. 2, pp. 372–376, 2009.
[6]  M. Salavati-Niasari, N. Mir, and F. Davar, “Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate,” Journal of Physics and Chemistry of Solids, vol. 70, no. 5, pp. 847–852, 2009.
[7]  V. Srinivasan and J. W. Weidner, “Capacitance studies of cobalt oxide films formed via electrochemical precipitation,” Journal of Power Sources, vol. 108, no. 1-2, pp. 15–20, 2002.
[8]  D. Srikala, V. N. Singh, A. Banerjee, B. R. Mehta, and S. Patnaik, “Synthesis and characterization of ferromagnetic cobalt nanospheres, nanodiscs and nanocubes,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 9, pp. 5627–5632, 2009.
[9]  K. H. Kim and K. B. Kim, “Ultrasound assisted synthesis of nano-sized lithium cobalt oxide,” Ultrasonics Sonochemistry, vol. 15, no. 6, pp. 1019–1025, 2008.
[10]  A. I. Vogel, Textbook of Quantitative Chemical nalysis, Longman, London, UK, 5th edition, 1989.
[11]  A. Salimi, R. Hallaj, and S. Soltanian, “Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity,” Biophysical Chemistry, vol. 130, no. 3, pp. 122–131, 2007.
[12]  W. W. Wang and Y. J. Zhu, “Microwave-assisted synthesis of cobalt oxalate nanorods and their thermal conversion to Co3O4 rods,” Materials Research Bulletin, vol. 40, no. 11, pp. 1929–1935, 2005.
[13]  R. Venkatnarayan, V. Kanniah, and A. Dhathathreya, Journal of Chemical Sciences, vol. 188, p. 179, 2006.
[14]  Q. Yuanchun, Z. Yanbao, and W. Zhishen, “Preparation of cobalt oxide nanoparticles and cobalt powders by solvothermal process and their characterization,” Materials Chemistry and Physics, vol. 110, no. 2-3, pp. 457–462, 2008.
[15]  J. H. Sm?tt, B. Spliethoff, J. B. Rosenholm, and M. Lindén, “Hierachically porous nanocrystalline cobalt oxide monoliths through nanocasting,” Chemical Communications, vol. 10, no. 19, pp. 2188–2189, 2004.
[16]  I. Luisetto, F. Pepe, and E. Bemporad, “Preparation and characterization of nano cobalt oxide,” Journal of Nanoparticle Research, vol. 10, no. 1, pp. 59–67, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133