The main goal of medical imaging applications is to diagnose some diseases, try to prevent the progression of them, and actually cure the patients. The number of people that suffer from diabetes is growing very fast these recent years in many countries and it is needed to diagnose this disease in the beginning to prevent the subsequent side effects like blindness and so on. One of the first ways to detect this disease is analysis of vessels in some parts of the eye such as retina and conjunctiva. Some studies have been done on effects of vessel changes of conjunctiva in diabetes diagnosis and it is proved that conjunctival vessel extraction and analysis is a good way for this purpose. In this paper, we proposed a method to detect and extract the vessels of conjunctiva automatically. It is the first stage of the process of diabetes diagnosis. We first extract some textural features from each pixel of the conjunctiva image using LBP and then classify each pixel to vessels or nonvessels according to the features vector based on a supervised classifier, ANFIS. We tested the proposed algorithm on 40 conjunctival images to show the performance and efficiency of our method. 1. Introduction One of the best ways to early detection of some diseases like diabetes, hypertension, arteriosclerosis, and so forth is the vasculature detection and analysis in retinal images. However, manual detection and analysis of the retinal images is a time-consuming and unreliable task, and as the number of images increases, the study becomes very difficult. Therefore, it is necessary to use automated algorithms for analysis of these images. Many studies and works have been done on this issue in recent years [1–6], but there are less works and researches on conjunctiva [7–9]. Multispectral imaging of the ocular fundus, that is used for providing retinal images, suffers from three main problems: the image acquisition process needs advanced technology and also expensive photography devices, and actually it is not possible for every hospitals or medical centers to afford these devices and take the images; long acquisition times are not feasible due to patient discomfort; patient movement can lead to loss of image quality. These difficulties have caused that researchers pay more attention to other parts of eye except fundus of eye such as conjunctiva. The conjunctiva is a clear mucous membrane consisting of cells and underlying basement membrane that covers the sclera (white part of the eye) and lines in the inside of the eyelids. Figure 1 shows conjunctiva of a person. Image capture of
References
[1]
A. Bhuiyan, B. Nath, J. Chua, and R. Kotagiri, “Blood vessel segmentation from color retinal images using unsupervised texture classification,” in Proceedings of the IEEE International Conference on Image Processing, pp. 521–524, September 2007.
[2]
S. H. Rezatofighi, A. Roodaki, and H. A. Noubari, “An enhanced segmentation of blood vessels in retinal images using contourlet,” in Proceedings of the IEEE Engineering in Medicine and Biology Society, pp. 3530–3533, August 2008.
[3]
S. M. Zabihi, M. Delgir, and H. R. Pourreza, “Retinal vessel segmentation using color image morphology and local binary patterns,” in Proceedings of the 6th Iranian Conference on Machine Vision and Image Processing, pp. 1–5, 2010.
[4]
A. Osareh and B. Shadgar, “An automated tracking approach for extraction of retinal vasculature in fundus images,” Journal of Ophthalmic and Vision Research, vol. 5, no. 1, pp. 20–26, 2010.
[5]
M. Al-Rawi, M. Qutaishat, and M. Arrar, “An improved matched filter for blood vessel detection of digital retinal images,” Computers in Biology and Medicine, vol. 37, no. 2, pp. 262–267, 2007.
[6]
A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Transactions on Medical Imaging, vol. 19, no. 3, pp. 203–210, 2000.
[7]
R. Pourreza, T. Banaee, H. Pourreza, and R. D. Kakhki, A Radon Transform Based Approach for Extraction of Blood Vessels in Conjunctival Images, Springer, 2008.
[8]
C. G. Owen, R. S. B. Newsom, A. R. Rudnicka, T. J. Ellis, and E. G. Woodward, “Vascular response of the bulbar conjunctiva to diabetes and elevated blood pressure,” Ophthalmology, vol. 112, no. 10, pp. 1801–1808, 2005.
[9]
R. Derakhshani, A. Ross, and S. Crihalmeanu, “a new biometric modality based on conjunctival vasculature,” in Proceedings of the Artificial Neural Networks in Engineering (ANNIE '06), St. Louis, Mo, USA, 2006.
[10]
http://www.adam.com/.
[11]
K. Zuiderveld, Contrast Limited Adaptive Histogram Equalization, Graphics gems IV, Academic Press Professional, San Diego, Calif, USA, 1994.
[12]
T. Ojala, M. Pietikèinen, and T. Mèenpèa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002.
[13]
A. Castro and V. Miranda, “Mapping neural networks into rule sets and making their hidden knowledge explicit application to spatial load forecasting,” in Proceedings of the 14th Power System Computation Conference, 2002.
[14]
S. Mitra and Y. Hayashi, “Neuro-fuzzy rule generation: survey in soft computing framework,” IEEE Transactions on Neural Networks, vol. 11, no. 3, pp. 748–768, 2000.
[15]
S. A. B. Ahmad, M. N. Taib, N. E. Khalid, R. Ahmad, and H. Taib, “The effect of sharp contrast-limited adaptive histogram equalization (SCLAHE) on intra-oral dental radiograph images,” in Proceedings of the IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES '10), pp. 400–405, 2010.
[16]
Y. Zhao, N. D. Georganas, and E. M. Petriu, “Applying contrast-limited adaptive histogram equalization and integral projection for facial feature enhancement and detection,” in Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC '10), pp. 861–866, Austin, Tex, USA, 2010.