A multiresolution feature extraction algorithm for face recognition is proposed based on two-dimensional discrete wavelet transform (2D-DWT), which efficiently exploits the local spatial variations in a face image. For feature extraction, instead of considering the entire face image, an entropy-based local band selection criterion is developed, which selects high-informative horizontal segments from the face image. In order to capture the local spatial variations within these bands precisely, the horizontal band is segmented into several small spatial modules. The effect of modularization in terms of the entropy content of the face images has been investigated. Dominant wavelet coefficients corresponding to each module residing inside those bands are selected as features. A histogram-based threshold criterion is proposed to select dominant coefficients, which drastically reduces the feature dimension and provides high within-class compactness and high between-class separability. The effect of using different mother wavelets for the purpose of feature extraction has been also investigated. PCA is performed to further reduce the dimensionality of the feature space. Extensive experimentation is carried out upon standard face databases, and a very high degree of recognition accuracy is achieved by the proposed method in comparison to those obtained by some of the existing methods. 1. Introduction Automatic face recognition has widespread applications in security, authentication, surveillance, and criminal identification. Conventional ID card and password-based identification methods, although very popular, are no more reliable as before because of the use of several advanced techniques of forgery and password hacking. As an alternative, biometric, which is defined as an intrinsic physical or behavioral trait of human beings, is being used for identity access management [1]. The main advantage of biometric features is that these are not prone to theft and loss and do not rely on the memory of their users. Among physiological biometrics, face is getting more popularity because of its nonintrusiveness and high degree of security. Moreover, unlike iris or finger-print recognition, face recognition do not require high precision equipments and user agreement, when doing image acquisition, which make face recognition even more popular for video surveillance. Nevertheless, face recognition is a complicated visual task even for humans. The primary difficulty in face recognition arises from the fact that different images of a particular person may vary largely, while
References
[1]
A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 4–20, 2004.
[2]
C. Villegas-Quezada and J. Climent, “Holistic face recognition using multivariate approximation, genetic algorithms and adaboost classifier: preliminary results,” World Academy of Science, Engineering and Technology, vol. 44, pp. 802–806, 2008.
[3]
L. Shen and L. Bai, “Gabor feature based face recognition using kernel methods,” in Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (FGR '04), vol. 6, pp. 386–389, 2004.
[4]
M. Zhou and H. Wei, “Face verification using gabor wavelets and AdaBoost,” in Proceedings of the 18th International Conference on Pattern Recognition (ICPR '06), vol. 1, pp. 404–407, August 2006.
[5]
X. Tan, S. Chen, Z. H. Zhou, and F. Zhang, “Face recognition from a single image per person: a survey,” Pattern Recognition, vol. 39, no. 9, pp. 1725–1745, 2006.
[6]
Y. Gao and M. K. H. Leung, “Face recognition using line edge map,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 6, pp. 764–779, 2002.
[7]
C. BenAbdelkader and P. Griffin, “A local region-based approach to gender classification from face images,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 3, pp. 52–57, 2005.
[8]
T. Ahonen, A. Hadid, and M. Pietik?inen, “Face description with local binary patterns: application to face recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037–2041, 2006.
[9]
R. Gottumukkal and V. K. Asari, “An improved face recognition technique based on modular PCA approach,” Pattern Recognition Letters, vol. 25, no. 4, pp. 429–436, 2004.
[10]
C. C. Liu and D. Q. Dai, “Face recognition using dual-tree complex wavelet features,” IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2593–2599, 2009.
[11]
H. Imtiaz and S. Fattah, “A face recognition scheme using wavelet-based local features,” in Proceedings of the IEEE Symposium on Computers and Informatics (ISCI '11), pp. 313–316, 2011.
[12]
H. Imtiaz and S. Fattah, “A wavelet-domain local feature selection scheme for face recognition,” in Proceedings of the International Conference on Communication and Signal Processing (ICCSP '11), pp. 448–451, 2011.
[13]
Y. Utsumi, Y. Iwai, and M. Yachida, “Performance evaluation of face recognition in the wavelet domain,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), pp. 3344–3351, October 2006.
[14]
S. Alirezaee, H. Aghaeinia, K. Faez, and F. Askari, “An efficient algorithm for face localization,” International Journal of Information Technology, vol. 12, pp. 30–36, 2006.
[15]
E. Loutas, I. Pitas, and C. Nikou, “Probabilistic multiple face detection and tracking using entropy measures,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 128–135, 2004.
[16]
S. C. Dakin and R. J. Watt, “Biological ‘bar codes’ in human faces,” World Academy of Science, Engineering and Technology, vol. 9, pp. 1–10, 2009.
[17]
X. Zhang and Y. Gao, “Face recognition across pose: a review,” Pattern Recognition, vol. 42, no. 11, pp. 2876–2896, 2009.
[18]
I. Jolloffe, Principal Component Analysis, Springer, Berlin, Germany, 1986.
[19]
F. M. D. S. Matos, L. V. Batista, and J. V. D. Poel, “Face recognition using DCT coefficients selection,” in Proceedings of the 23rd Annual ACM Symposium on Applied Computing (SAC '08), pp. 1753–1757, March 2008.
[20]
X. Y. Jing and D. Zhang, “A face and palmprint recognition approach based on discriminant DCT feature extraction,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 34, no. 6, pp. 2405–2415, 2004.