We propose a joint segmentation and groupwise registration method for cardiac perfusion images by using temporal information. The nature of perfusion images makes groupwise registration especially attractive as the temporal information from the entire image sequence can be used. Registration aims to maximize the smoothness of the intensity signal, while segmentation minimizes a pixel’s dissimilarity with other pixels having the same segmentation label. The cost function is optimized in an iterative fashion using B-splines. Tests on real patient datasets show that compared to two other methods, our method shows lower registration error and higher segmentation accuracy. This is attributed to the use of temporal information for groupwise registration and mutually complementary registration and segmentation information in one framework, while other methods solve the two problems separately. 1. Introduction Dynamic contrast-enhanced (DCE) magnetic resonance (MR) images (or perfusion MRI) have developed as a popular noninvasive tool for the functional analysis of internal organs. Contrast agent is injected intravenously into the patient, and a series of MR images are acquired over a period of time. As the contrast agent flows through the blood stream, the intensity of corresponding regions increases. Since the image acquisition process can take up to 20 minutes, patient movement is inevitable. Additionally, elastic deformation of cardiac tissues due to patient breathing needs to be corrected. Perfusion images are characterized by rapid intensity change over time, low spatial resolution, and noise and make registration challenging. Previous techniques mostly employed a pairwise registration approach, that is, all images of a sequence are individually registered to a fixed reference image [1–3]. The success of such approaches depends upon the robustness of the cost function to intensity change. Although intensity change due to contrast agent flow poses challenges, it also provides important temporal information for registration and segmentation of the perfusion image sequence. In this work, we propose a method which makes use of the temporal dynamics of contrast agent flow to achieve joint segmentation and groupwise registration of an MR cardiac image sequence. The changing intensity due to contrast agent flow provides valuable segmentation by highlighting the organ of interest. It is interesting to note that different regions of a cardiac image sequence have different intensity-time characteristics (Figure 4). Temporal flow information was used for
References
[1]
Y. Sun, M. P. Jolly, and J. M. F. Moura, “Contrast-invariant registration of cardiac and renal MR perfusion images,” in Proceedings of the 7th International Conference of Medical Image Computing and Computer-Assisted Intervention (MICCAI '04), pp. 903–910, September 2004.
[2]
D. Mahapatra and Y. Sun, “MRF-based intensity invariant elastic registration of cardiac perfusion images using saliency information,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 4, pp. 991–1000, 2011.
[3]
T. Song, V. S. Lee, H. Rusinek, M. Kaur, and A. F. Laine, “Automatic 4-D registration in dynamic mr renography based on over-complete dyadic wavelet and Fourier transforms,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '04), vol. 3750, pp. 205–213, 2005.
[4]
V. S. Lee, H. Rusinek, L. Bokacheva et al., “Renal function measurements from MR renography and a simplified multicompartmental model,” American Journal of Physiology, vol. 292, no. 5, pp. F1548–F1559, 2007.
[5]
Y. Boykov, V. S. Lee, H. Rusinek, and R. Bansal, “Segmentation of dynamic N-D data sets via graph cuts using markov models,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '01), pp. 1058–1066, 2001.
[6]
N. Hackstein, J. Heckrodt, and W. S. Rau, “Measurement of single-kidney glomerular filtration rate using a contrast enhanced dynamic gradient-echo sequence and the rutland-patlak plot technique,” Journal of Magnetic Resonance Imaging, vol. 18, no. 6, pp. 714–725, 2003.
[7]
D. Mahapatra and Y. Sun, “Joint registration and segmentation of dynamic cardiac perfusion images using mrfs,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '10), pp. 493–501, 2010.
[8]
D. Mahapatra and Y. Sun, “Integrating segmentation information for improved mrfbased elastic image registration,” IEEE Transactions on Image Processing, vol. 21, no. 1, pp. 170–183, 2012.
[9]
S. Joshi, B. Davis, M. Jomier, and G. Gerig, “Unbiased diffeomorphic atlas construction for computational anatomy,” NeuroImage, vol. 23, no. 1, pp. S151–S160, 2004.
[10]
D. W. Shattuck, M. Mirza, V. Adisetiyo et al., “Construction of a 3D probabilistic atlas of human cortical structures,” NeuroImage, vol. 30, no. 3, pp. 1064–1080, 2008.
[11]
N. Lepore, C. Brun, X. Pennec et al., “Mean template for tensor based morphometry using deformation tensors,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '07), vol. 2, pp. 826–833, 2007.
[12]
L. Z?llei, A. Stevens, K. Huber, S. Kakunoori, and B. Fischl, “Improved tractography alignment using combined volumetric and surface registration,” NeuroImage, vol. 51, no. 1, pp. 206–213, 2010.
[13]
J. Yang, D. Shen, C. Davatzikos, and R. Verma, “Diffusion tensor image registration using tensor geometry and orientation features,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '08), pp. 905–913, 2008.
[14]
A. Barmpoutis and B. Vemuri, “Groupwise registration and atlas reconstruction of 4th order tensor fields using the R+ Riemannian metric,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '09), p. 64, 2009.
[15]
H. Zhang, B. B. Avants, P. A. Yushkevich et al., “High-dimensional spatial normalization of diffusion tensor images improves the detection of white matter differences: An example study using amyotrophic lateral sclerosis,” IEEE Transactions on Medical Imaging, vol. 26, no. 11, pp. 1585–1597, 2007.
[16]
S. Balci, P. Golland, M. Shenton, and W. Wells, “Free-form b-spline deformation model for groupwise registration,” in Proceedings of the Statistical Registration Workshop (MICCAI '07), pp. 23–30, 2007.
[17]
E. G. Learned-Miller, “Data driven image models through continuous joint alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 2, pp. 236–250, 2006.
[18]
S. Baloch, R. Verma, and C. Davatzikos, “An anatomical equivalence class based joint transformation-residual descriptor for morphological analysis.,” Information Processing in Medical Imaging, vol. 20, pp. 594–606, 2007.
[19]
H. Jia, P. T. Yap, G. Wu, Q. Wang, and D. Shen, “Intermediate templates guided groupwise registration of diffusion tensor images,” NeuroImage, vol. 54, no. 2, pp. 928–939, 2011.
[20]
J. Hamm, C. Davatzikos, and R. Verma, “Efficient large deformation registration via geodesics and learned manifold of images,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '09), pp. 680–687, 2009.
[21]
S. Tang, Y. Fan, G. Wu, M. Kim, and D. Shen, “RABBIT: Rapid alignment of brains by building intermediate templates,” NeuroImage, vol. 47, no. 4, pp. 1277–1287, 2009.
[22]
L. Zhang, C. Chefd'hotel, and G. Bousquet, “Group-wise motion correction of brain perfusion images,” in Proceedings of the 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI '10), pp. 832–835, April 2010.
[23]
C. T. Metz, S. Klein, M. Schaap, T. van Walsum, and W. J. Niessen, “Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization approach,” Medical Image Analysis, vol. 15, no. 2, pp. 238–249, 2011.
[24]
A. Yezzi, L. Z?llei, and T. Kapur, “A variational framework for joint segmentation and registration,” in Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA '01), pp. 44–51, December 2001.
[25]
J. An, Y. Chen, F. Huang, D. Wilson, and E. Geiser, “A variational PDE based level set method for a simultaneous segmentation and non-rigid registration,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '05), pp. 286–293, 2005.
[26]
K. M. Pohl, J. Fisher, W. E. L. Grimson, R. Kikinis, and W. M. Wells, “A Bayesian model for joint segmentation and registration,” NeuroImage, vol. 31, no. 1, pp. 228–239, 2006.
[27]
G. Wu, H. Jia, Q. Wang, and D. Shen, “Groupwise registration with sharp mean,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '10), pp. 570–577, 2010.
[28]
D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes, “Nonrigid registration using free-form deformations: application to breast MR images,” IEEE Transactions on Medical Imaging, vol. 18, pp. 712–721, 1999.