全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Paprika Pigments Attenuate Obesity-Induced Inflammation in 3T3-L1 Adipocytes

DOI: 10.1155/2013/763758

Full-Text   Cite this paper   Add to My Lib

Abstract:

Obesity is related to various diseases, such as diabetes, hyperlipidemia, and hypertension. Adipocytokine, which is released from adipocyte cells, affects insulin resistance and blood lipid level disorders. Further, adipocytokine is related to chronic inflammation in obesity condition adipocyte cells. Paprika pigments (PPs) contain large amounts of capsanthin and capsorubin. These carotenoids affect the liver and improve lipid disorders of the blood. However, how these carotenoids affect adipocyte cells remains unknown. Present study examined the effects of PP on adipocytokine secretion, which is related to improvement of metabolic syndrome. In addition, suppressive effects of PP on chronic inflammation in adipocyte cells were analyzed using 3T3-L1 adipocyte cells and macrophage cell coculture experiments. PP promoted 3T3-L1 adipocyte cells differentiation upregulated adiponectin mRNA expression and secretion. Further, coculture of adipocyte and macrophage cells treated with PP showed suppressed interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), and resistin mRNA expression, similarly to treatment with troglitazone, which is a PPARγ ligand medicine. Conclusion. These results suggest that PP ameliorates chronic inflammation in adipocytes caused by obesity. PP adjusts adipocytokine secretion and might, therefore, affect antimetabolic syndrome diseases. 1. Introduction Obesity has increased rapidly in recent years. It is currently regarded as a major risk factor for type 2 diabetes, hypertension, and dyslipidemia [1, 2]. The cluster of these three diseases is called metabolic syndrome, of which the incidence is a worldwide problem [3, 4]. Recent reports have described that obesity is characterized by low-grade chronic inflammation. Inflammation suggests a mechanism by which obesity engenders insulin resistance [5, 6]. Adipocytes are recognized as an important endocrine cell that secretes biologically active mediators called adipocytokines [4, 7]. They affect insulin sensitivity, glucose and lipid metabolism in muscle, liver, and adipose tissue and induce metabolic syndrome. TNF-α and resistin, adipocytokines, are known to be elevated in obesity. They play important roles in the development of insulin resistance and type 2 diabetes [8, 9]. MCP-1 induces the infiltration of macrophages into adipose tissue. Moreover, it enhances inflammation causing insulin resistance [10]. These adipocytokines, which are secreted actively from hypertrophy adipocytes in conditions of obesity, exacerbate blood glucose homeostasis in

References

[1]  J. S. Flier, “Obesity wars: molecular progress confronts an expanding epidemic,” Cell, vol. 116, no. 2, pp. 337–350, 2004.
[2]  J. M. Friedman, “Obesity in the new millennium,” Nature, vol. 404, no. 6778, pp. 632–634, 2000.
[3]  R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005.
[4]  Y. Matsuzawa, T. Funahashi, and T. Nakamura, “Molecular mechanism of metabolic syndrome x: contribution of adipocytokines·adipocyte-derived bioactive substances,” Annals of the New York Academy of Sciences, vol. 892, pp. 146–154, 1999.
[5]  P. Dandona, A. Aljada, and A. Bandyopadhyay, “Inflammation: the link between insulin resistance, obesity and diabetes,” Trends in Immunology, vol. 25, no. 1, pp. 4–7, 2004.
[6]  J. M. Fernández-Real and W. Ricart, “Insulin resistance and chronic cardiovascular inflammatory syndrome,” Endocrine Reviews, vol. 24, no. 3, pp. 278–301, 2003.
[7]  T. Kadowaki, T. Yamauchi, N. Kubota, K. Hara, K. Ueki, and K. Tobe, “Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome,” The Journal of Clinical Investigation, vol. 116, no. 7, pp. 1784–1792, 2006.
[8]  G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, “Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance,” Science, vol. 259, no. 5091, pp. 87–91, 1993.
[9]  C. G. Walker, M. G. Zariwala, M. J. Holness, and M. C. Sugden, “Diet, obesity and diabetes: a current update,” Clinical Science, vol. 112, no. 1-2, pp. 93–111, 2007.
[10]  T. Suganami, J. Nishida, and Y. Ogawa, “A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor α,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 10, pp. 2062–2068, 2005.
[11]  H. Matsufuji, H. Nakamura, M. Chino, and M. Takeda, “Antioxidant activity of capsanthin and the fatty acid esters in paprika (Capsicum annuum),” Journal of Agricultural and Food Chemistry, vol. 46, no. 9, pp. 3468–3472, 1998.
[12]  T. Maoka, K. Mochida, M. Kozuka et al., “Cancer chemopreventive activity of carotenoids in the fruits of red paprika Capsicum annuum L.,” Cancer Letters, vol. 172, no. 2, pp. 103–109, 2001.
[13]  A. Murakami, M. Nakashima, T. Koshiba et al., “Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes,” Cancer Letters, vol. 149, no. 1-2, pp. 115–123, 2000.
[14]  K. Aizawa and T. Inakuma, “Dietary capsanthin, the main carotenoid in paprika (Capsicum annuum), alters plasma high-density lipoprotein-cholesterol levels and hepatic gene expression in rats,” British Journal of Nutrition, vol. 102, no. 12, pp. 1760–1766, 2009.
[15]  D. A. Cooper, A. L. Eldridge, and J. C. Peters, “Dietary carotenoids and certain cancers, heart disease, and age-related macular degeneration: a review of recent research,” Nutrition Reviews, vol. 57, no. 7, pp. 201–214, 1999.
[16]  A. V. Rao and L. G. Rao, “Carotenoids and human health,” Pharmacological Research, vol. 55, no. 3, pp. 207–216, 2007.
[17]  W. C. Willett, “Diet and cancer: one view at the start of the millennium,” Cancer Epidemiology Biomarkers and Prevention, vol. 10, no. 1, pp. 3–8, 2001.
[18]  G. Hussein, T. Nakagawa, H. Goto et al., “Astaxanthin ameliorates features of metabolic syndrome in SHR/NDmcr-cp,” Life Sciences, vol. 80, no. 6, pp. 522–529, 2007.
[19]  M. Hosokawa, T. Miyashita, S. Nishikawa et al., “Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice,” Archives of Biochemistry and Biophysics, vol. 504, no. 1, pp. 17–25, 2010.
[20]  H. Maeda, M. Hosokawa, T. Sashima, K. Funayama, and K. Miyashita, “Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues,” Biochemical and Biophysical Research Communications, vol. 332, no. 2, pp. 392–397, 2005.
[21]  J. C. Parker, “Troglitazone: the discovery and development of a novel therapy for the treatment of Type 2 diabetes mellitus,” Advanced Drug Delivery Reviews, vol. 54, no. 9, pp. 1173–1197, 2002.
[22]  A. Tsuchida, T. Yamauchi, and T. Kadowaki, “Nuclear receptors as targets for drug development: molecular mechanisms for regulation of obesity and insulin resistance by peroxisome proliferator- activated receptor γ CREB-binding protein, and adiponectin,” Journal of Pharmacological Sciences, vol. 97, no. 2, pp. 164–170, 2005.
[23]  T. Goto, N. Takahashi, S. Hirai, and T. Kawada, “Various Terpenoids derived from herbal and dietary plants function as PPAR modulators and regulate carbohydrate and lipid metabolism,” PPAR Research, vol. 2010, Article ID 483958, 9 pages, 2010.
[24]  H. Maeda, M. Hosokawa, T. Sashima, N. Takahashi, T. Kawada, and K. Miyashita, “Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells,” International Journal of Molecular Medicine, vol. 18, no. 1, pp. 147–152, 2006.
[25]  M. Ishiyama, M. Suiga, K. Sasamoto, M. Mizoguchi, and P. G. He, “A new sulfonated tetrazolium salt that produces a highly water-soluble formazan dye,” Chemical and Pharmaceutical Bulletin, vol. 41, no. 6, pp. 1118–1122, 1993.
[26]  D. L. Granger, R. R. Taintor, K. S. Boockvar, and J. B. Hibbs, “Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction,” Methods in Enzymology, vol. 268, pp. 142–151, 1996.
[27]  F. M. Gregoire, C. M. Smas, and H. S. Sul, “Understanding adipocyte differentiation,” Physiological Reviews, vol. 78, no. 3, pp. 783–809, 1998.
[28]  P. Tontonoz, E. Hu, and B. M. Spiegelman, “Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor,” Cell, vol. 79, no. 7, pp. 1147–1156, 1994.
[29]  P. A. Grimaldi, “The roles of PPARs in adipocyte differentiation,” Progress in Lipid Research, vol. 40, no. 4, pp. 269–281, 2001.
[30]  A. Okuno, H. Tamemoto, K. Tobe et al., “Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats,” The Journal of Clinical Investigation, vol. 101, no. 6, pp. 1354–1361, 1998.
[31]  S. Rocchi, F. Picard, J. Vamecq et al., “A unique PPARγ ligand with potent insulin-sensitizing yet weak adipogenic activity,” Molecular Cell, vol. 8, no. 4, pp. 737–747, 2001.
[32]  S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante, “Obesity is associated with macrophage accumulation in adipose tissue,” The Journal of Clinical Investigation, vol. 112, no. 12, pp. 1796–1808, 2003.
[33]  H. Xu, G. T. Barnes, Q. Yang et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” The Journal of Clinical Investigation, vol. 112, no. 12, pp. 1821–1830, 2003.
[34]  H. Kanda, S. Tateya, Y. Tamori et al., “MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity,” The Journal of Clinical Investigation, vol. 116, no. 6, pp. 1494–1505, 2006.
[35]  H. Kameji, K. Mochizuki, N. Miyoshi, and T. Goda, “β-Carotene accumulation in 3T3-L1 adipocytes inhibits the elevation of reactive oxygen species and the suppression of genes related to insulin sensitivity induced by tumor necrosis factor-α,” Nutrition, vol. 26, no. 11-12, pp. 1151–1156, 2010.
[36]  T. Maoka, Y. Goto, K. Isobe, Y. Fujiwara, K. Hashimoto, and K. Mochida, “Antioxidative activity of capsorubin and related compounds from paprika (Capsicum annuum),” Journal of Oleo Science, vol. 50, pp. 663–665, 2001.
[37]  S. Araki, K. Dobashi, K. Kubo, Y. Yamamoto, K. Asayama, and A. Shirahata, “N-acetylcysteine attenuates TNF-α induced changes in secretion of interleukin-6, plasminogen activator inhibitor-1 and adiponectin from 3T3-L1 adipocytes,” Life Sciences, vol. 79, no. 25, pp. 2405–2412, 2006.
[38]  H. Shi, M. V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J. S. Flier, “TLR4 links innate immunity and fatty acid-induced insulin resistance,” The Journal of Clinical Investigation, vol. 116, pp. 3015–3025, 2006.
[39]  J. H. Kang, C. S. Kim, I. S. Han, T. Kawada, and R. Yu, “Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages,” FEBS Letters, vol. 581, no. 23, pp. 4389–4396, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133