全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Artemisia amygdalina D. for Anti-Inflammatory and Immunomodulatory Potential

DOI: 10.1155/2013/483646

Full-Text   Cite this paper   Add to My Lib

Abstract:

Artemisia amygdalina D. is a critically endangered endemic medicinal plant of Kashmir Himalayas. In the current study anti-inflammatory and immunomodulatory activity of the plant was carried out. Carrageenan paw edema model was used to study the potential of the drug in inflammation in Wistar rats. SRBC-specific haemagglutination titre and DTH assays were carried out in Balb/C mice for observing the effect of test drugs on immune system. The plant extracts used as test drugs showed to have anti-inflammatory potential. The methanolic fraction was observed to have the maximum effect on the inhibition of paw edema formation with the inhibitory potential of 42.26%, while in the immunomodulation studies the test drugs were found to have the immunosuppressant activity with methanolic fraction again showing the maximum potential for the suppression of both humoral (55.89% and 47.91%) and cell-mediated immunity (62.27% and 57.21%). The plant in total seems to have the anti-inflammatory potential. The suppression of immune system suggests some mechanistic way by which the inhibition of inflammation takes place. Since, in chronic inflammation like arthritis, there is the involvement of immune system, the plant in that way may serve as an alternative for the treatment of such autoimmune diseases. 1. Introduction Inflammation is the reaction of living tissues to injury, infection, or irritation. It is an essential protective process preserving the integrity of organisms against physical, chemical, and infective insults. However, it is frequent that the inflammatory response to several insults erroneously leads to the damaging of normal tissues responsible for certain pathological conditions such as heart attacks, septic shocks, and rheumatoid arthritis [1]. One of the early cellular events in inflammation is the migration of leukocytes, primarily neutrophils. This response can be measured by using the neutrophil-specific enzyme myeloperoxidase (MPO), an indicator of neutrophil accumulation [2]. In addition, nitric oxide (NO) and TNF-α produced by macrophages play an important role in inflammation, and NO synthase inhibitors can reverse several classic inflammatory symptoms [3]. TNF-α is a cytokine which plays an important role in inflammation. TNF-α stimulates neutrophils to transcribe and release cytokines and chemokines biosynthesis [4]. In autoimmune diseases, on one hand pathogenic self-reactivity of T cells plays an important role, while on the other hand self-reactivity is needed to regulate autoaggressive responses. Delayed-type hypersensitivity can be

References

[1]  R. R. Habashy, A. B. Abdel-Naim, A. E. Khalifa, and M. M. Al-Azizi, “Anti-inflammatory effects of jojoba liquid wax in experimental models,” Pharmacological Research, vol. 51, no. 2, pp. 95–105, 2005.
[2]  J. L. Goulet, J. N. Snouweart, A. M. Latour, and T. M. Coffman, “Altered inflammatory responses in leukotriene-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, pp. 12852–12856, 1994.
[3]  A. R. Amin, P. Vyas, M. Attur, and J. Leszcynsca-piziak, “The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 17, pp. 7926–7930, 1995.
[4]  P. T. Marucha, R. A. Zeff, and D. L. Kreutzer, “Cytokine-induced Il-1β gene expression in the human polymorphonuclear leukocyte: transcriptional and post-transcriptional regulation by tumor necrosis factor and Il-1,” Journal of Immunology, vol. 147, no. 8, pp. 2603–2608, 1991.
[5]  J. X. Gao and A. C. Issekutz, “The effect of ebselen on T-lymphocyte migration to arthritic joints and dermal inflammatory reactions in the rat,” International Journal of Immunopharmacology, vol. 16, no. 4, pp. 279–287, 1994.
[6]  J. X. Gao and A. C. Issekutz, “The effect of ebselen on polymorphonuclear leukocyte migration to joints in rats with adjuvant arthritis,” International Journal of Immunopharmacology, vol. 15, no. 7, pp. 793–802, 1993.
[7]  R. Holmdahl, J. Mo, C. Nordling et al., “Collagen induced arthritis: an experiment model for rheumatoid arthritis with involvement of both DTH and immune complex mediated mechanisms,” Clinical and Experimental Rheumatology, vol. 7, supplement 3, pp. S51–S55, 1989.
[8]  A. R. Dar, G. H. Dar, and Z. Reshi, “Conservation of Artemisia amygdalina: a critically endangered, endemic plant species of Kashmir Himalayas,” Endangered Species Update, vol. 23, pp. 34–39, 2006.
[9]  R. Rasool, B. A. Ganai, A. N. Kamili, and S. Akbar, “Antioxidant potential in callus culture of Artemisia amygdalina D.,” Natural Product Research, vol. 26, no. 22, pp. 2103–2106, 2012.
[10]  M. Qaisar, “Asteraceae,” Flora of Pakistan, vol. 207, pp. 120–121, 2006.
[11]  M. A. Rather, B. A. Ganai, A. N. Kamili et al., “Comparative GC-FID and GC-MS analysis of the mono and sesquiterpene secondary metabolites produced by the field grown and micropropagated plants of Artemisia amygdalina D.,” Acta Physiologiae Plantarum, vol. 34, no. 3, pp. 885–890, 2012.
[12]  C. A. Winter, E. A. Risley, and G. W. Nuss, “Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs,” Proceedings of the Society for Experimental Biology and Medicine, vol. 111, pp. 544–547, 1962.
[13]  D. P. Bhagwat, M. D. Kharya, S. Bani et al., “Immunosuppressive properties of Pluchea lanceolata leaves,” Indian Journal of Pharmacology, vol. 42, no. 1, pp. 21–26, 2010.
[14]  M. Thakur, P. Connellan, M. A. Deseo, C. Morris, and V. K. Dixit, “Immunomodulatory polysaccharide from chlorophytum borivilianum roots,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 598521, 7 pages, 2011.
[15]  P.-F. Su, V. Staniforth, C.-J. Li et al., “Immunomodulatory effects of phytocompounds characterized by in vivo transgenic human GM-CSF promoter activity in skin tissues,” Journal of Biomedical Science, vol. 15, no. 6, pp. 813–822, 2008.
[16]  K. Mangathayaru, M. Umadevi, and C. U. Reddy, “Evaluation of the immunomodulatory and DNA protective activities of the shoots of Cynodon dactylon,” Journal of Ethnopharmacology, vol. 123, no. 1, pp. 181–184, 2009.
[17]  M. G. Jayathirtha and S. H. Mishra, “Preliminary immunomodulatory activities of methanol extracts of Eclipta alba and Centella asiatica,” Phytomedicine, vol. 11, no. 4, pp. 361–365, 2004.
[18]  A. Lunardelli, C. E. Leite, M. G. S. Pires, and J. R. de Oliveira, “Extract of the bristles of Dirphia sp. increases nitric oxide in a rat pleurisy model,” Inflammation Research, vol. 55, no. 4, pp. 129–135, 2006.
[19]  A. F. Suffredini, G. Fantuzzi, R. Badolato, J. J. Oppenheim, and N. P. O'Grady, “New insights into the biology of the acute phase response,” Journal of Clinical Immunology, vol. 19, no. 4, pp. 203–214, 1999.
[20]  J. Kuby, Immunology, W.H. Freeman, New York, NY, USA, 2nd edition, 1994.
[21]  P. W. Askenase and M. Van Loveren, “Delayed-type hypersensitivity: activation of mast cells by antigen-specific T-cell factors initiates the cascade of cellular interactions,” Immonology Today, vol. 4, no. 9, pp. 259–264, 1983.
[22]  R. C. Dutta, “Peptide immunomodulators versus infection; an analysis,” Immunology Letters, vol. 83, no. 3, pp. 153–161, 2002.
[23]  Z. Amirghofran, M. Azadbakht, and M. H. Karimi, “Evaluation of the immunomodulatory effects of five herbal plants,” Journal of Ethnopharmacology, vol. 72, no. 1-2, pp. 167–172, 2000.
[24]  P. Hodek, P. Trefil, and M. Stiborová, “Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450,” Chemico-Biological Interactions, vol. 139, no. 1, pp. 1–21, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133