全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Enigmatic Cytokine Oncostatin M and Roles in Disease

DOI: 10.1155/2013/512103

Full-Text   Cite this paper   Add to My Lib

Abstract:

Oncostatin M is a secreted cytokine involved in homeostasis and in diseases involving chronic inflammation. It is a member of the gp130 family of cytokines that have pleiotropic functions in differentiation, cell proliferation, and hematopoetic, immunologic, and inflammatory networks. However, Oncostatin M also has activities novel to mediators of this cytokine family and others and may have fundamental roles in mechanisms of inflammation in pathology. Studies have explored Oncostatin M functions in cancer, bone metabolism, liver regeneration, and conditions with chronic inflammation including rheumatoid arthritis, lung and skin inflammatory disease, atherosclerosis, and cardiovascular disease. This paper will review Oncostatin M biology in a historical fashion and focus on its unique activities, in vitro and in vivo, that differentiate it from other cytokines and inspire further study or consideration in therapeutic approaches. 1. Introduction Despite the original identification and cloning of the human cytokine Oncostatin M (OSM) in the late 1980s and an increasing interest in its study more recently, there is still a considerable amount that is not clear about its biology, function in vivo, and contradictory points of view on its role in certain conditions. The grouping of OSM into the family of gp130 (or IL-6/LIF) cytokines has been useful in rationalizing some redundant functions among this group and to explain lack of severe phenotypes in gene deficient mice. However, this grouping may also mask unique effects of OSM that has significant effects upon over- or underexpression in adult mammals. Reviews specifically on OSM have been published in 2003 and 2004 [1, 2] and other more recent reviews of the gp130 cytokine family including those of Silver and Hunter [3] and Sims and Walsh [4] incorporate aspects of OSM biology. This review will focus on OSM, discuss its activities relevant to pathology, and examine functions of OSM that are distinct from other gp130 family members, with a view to suggest further study into this interesting molecule and its role in disease. 2. Discovery, Cloning, and Expression OSM was first purified and biochemically characterized on the basis of its antiproliferative activity on the A375 human melanoma cell line in vitro [5]. Its name was coined based on this inhibitory function on A375 and other melanoma cell lines. A potential function in the regulation of cancer was explored and further studies have clearly shown pleiotropic actions in hematopoietic, skeletal tissue alteration, metabolic, immunologic, differentiation,

References

[1]  M. Tanaka and A. Miyajima, “Oncostatin M, a multifunctional cytokine,” Reviews of Physiology, Biochemistry and Pharmacology, vol. 149, pp. 39–52, 2003.
[2]  S.-H. Chen and E. N. Benveniste, “Oncostatin M: a pleiotropic cytokine in the central nervous system,” Cytokine and Growth Factor Reviews, vol. 15, no. 5, pp. 379–391, 2004.
[3]  J. S. Silver and C. A. Hunter, “gp130 at the nexus of inflammation, autoimmunity, and cancer,” Journal of Leukocyte Biology, vol. 88, no. 6, pp. 1145–1156, 2010.
[4]  N. A. Sims and N. C. Walsh, “GP130 cytokines and bone remodelling in health and disease,” BMB Reports, vol. 43, no. 8, pp. 513–523, 2010.
[5]  J. M. Zarling, M. Shoyab, and H. Marquardt, “Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 24, pp. 9739–9743, 1986.
[6]  N. Malik, J. C. Kallestad, N. L. Gunderson et al., “Molecular cloning, sequence analysis, and functional expression of a novel growth regulator, oncostatin M,” Molecular and Cellular Biology, vol. 9, no. 7, pp. 2847–2853, 1989.
[7]  P. S. Linsley, J. Kallestad, V. Ochs, and M. Neubauer, “Cleavage of a hydrophilic C-terminal domain increases growth-inhibitory activity of oncostatin M,” Molecular and Cellular Biology, vol. 10, no. 5, pp. 1882–1890, 1990.
[8]  A. Yoshimura, M. Ichihara, I. Kinjyo et al., “Mouse oncostatin M: an immediate early gene induced by multiple cytokines through the JAK-STAT5 pathway,” EMBO Journal, vol. 15, no. 5, pp. 1055–1063, 1996.
[9]  A. Okaya, J. Kitanaka, N. Kitanaka et al., “Oncostatin M inhibits proliferation of rat oval cells, OC15-5, inducing differentiation into hepatocytes,” American Journal of Pathology, vol. 166, no. 3, pp. 709–719, 2005.
[10]  J. Bravo and J. K. Heath, “Receptor recognition by gp130 cytokines,” The EMBO Journal, vol. 19, pp. 2399–2411, 2000.
[11]  M. C. Deller, K. R. Hudson, S. Ikemizu, J. Bravo, E. Y. Jones, and J. K. Heath, “Crystal structure and functional dissection of the cytostatic cytokine oncostatin M,” Structure, vol. 8, no. 8, pp. 863–874, 2000.
[12]  H. Plun-Favreau, D. Perret, C. Diveu et al., “Leukemia inhibitory factor (LIF), cardiotrophin-1, and oncostatin M share structural binding determinants in the immunoglobulin-like domain of LIF receptor,” The Journal of Biological Chemistry, vol. 278, no. 29, pp. 27169–27179, 2003.
[13]  R. Somasundaram, M. Ruehl, B. Schaefer et al., “Interstitial collagens I, III, and VI sequester and modulate the multifunctional cytokine oncostatin M,” The Journal of Biological Chemistry, vol. 277, no. 5, pp. 3242–3246, 2002.
[14]  T. Suda, K. Chida, A. Todate et al., “Oncostatin M production by human dendritic cells in response to bacterial products,” Cytokine, vol. 17, no. 6, pp. 335–340, 2002.
[15]  A. Grenier, M. Dehoux, A. Boutten et al., “Oncostatin M production and regulation by human polymorphonuclear neutrophils,” Blood, vol. 93, no. 4, pp. 1413–1421, 1999.
[16]  A. Grenier, D. Combaux, J. Chastre et al., “Oncostatin M production by blood and alveolar neutrophils during acute lung injury,” Laboratory Investigation, vol. 81, no. 2, pp. 133–141, 2001.
[17]  C. Guillet, M. Fourcin, S. Chevalier, A. Pouplard, and H. Gascan, “ELISA detection of circulating levels of LIF, OSM, and CNTF in septic shock,” Annals of the New York Academy of Sciences, vol. 762, pp. 407–409, 1995.
[18]  S. M. Hurst, R. M. McLoughlin, J. Monslow et al., “Secretion of oncostatin M by infiltrating neutrophils: regulation of IL-6 and chemokine expression in human mesothelial cells,” Journal of Immunology, vol. 169, no. 9, pp. 5244–5251, 2002.
[19]  K. Ganesh, A. Das, R. Dickerson, et al., “Prostaglandin E2 induces oncostatin M expression in human chronic wound macrophages through Axl receptor tyrosine kinase pathway,” The Journal of Immunology, vol. 189, pp. 2563–2573, 2012.
[20]  S. Tamura, Y. Morikawa, A. Miyajima, and E. Senba, “Expression of oncostatin M in hematopoietic organs,” Developmental Dynamics, vol. 225, no. 3, pp. 327–331, 2002.
[21]  P. Salamon, N. G. Shoham, I. Puxeddu, Y. Paitan, F. Levi-Schaffer, and Y. A. Mekori, “Human mast cells release oncostatin M on contact with activated T cells: possible biologic relevance,” Journal of Allergy and Clinical Immunology, vol. 121, no. 2, pp. 448–e5, 2008.
[22]  D. J. Hilton, “LIF: lots of interesting functions,” Trends in Biochemical Sciences, vol. 17, no. 2, pp. 72–76, 1992.
[23]  T. Kishimoto, S. Akira, M. Narazaki, and T. Taga, “Interleukin-6 family of cytokines and gp130,” Blood, vol. 86, no. 4, pp. 1243–1254, 1995.
[24]  D. Kamimura, K. Ishihara, and T. Hirano, “IL-6 signal transduction and its physiological roles: the signal orchestration model,” Reviews of physiology, biochemistry and pharmacology, vol. 149, pp. 1–38, 2003.
[25]  M. Murakami, D. Kamimura, and T. Hirano, “New IL-6 (gp130) family cytokine members, CLC/NNT1/BSF3 and IL-27,” Growth Factors, vol. 22, no. 2, pp. 75–77, 2004.
[26]  A. V. Villarino, E. Huang, and C. A. Hunter, “Understanding the pro- and anti-inflammatory properties of IL-27,” The Journal of Immunology, vol. 173, no. 2, pp. 715–720, 2004.
[27]  G. Senaldi, B. C. Varnum, C. S. Ulla Sarmiento et al., “Novel neurotrophin-1/B cell-stimulating factor-3: a cytokine of the IL-6 family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 20, pp. 11458–11463, 1999.
[28]  D. Artis, A. Villarino, M. Silverman et al., “The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity,” The Journal of Immunology, vol. 173, no. 9, pp. 5626–5634, 2004.
[29]  T. Taga, “The signal transducer gp130 is shared by interleukin-6 family of haematopoietic and neurotrophic cytokines,” Annals of Medicine, vol. 29, no. 1, pp. 63–72, 1997.
[30]  P. C. Heinrich, I. Behrmann, G. Müller-Newen, F. Schaper, and L. Graeve, “Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway,” Biochemical Journal, vol. 334, no. 2, pp. 297–314, 1998.
[31]  I. Behrmann, H. M. Hermanns, C. Haan et al., “Signalling of interleukin-6 type cytokines via gp130, leukemia inhibitory factor (LIF) receptor and oncostatin M receptor,” European Cytokine Network, vol. 11, no. 3, pp. 491–492, 2000.
[32]  S. R. Dillon, C. Sprecher, A. Hammond, et al., “Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice,” Nature Immunology, vol. 5, pp. 752–760, 2004.
[33]  T. Taga, “gp130 and the interleukin-6 family of cytokines,” Annual Review of Immunology, vol. 15, pp. 797–819, 1997.
[34]  P. C. Heinrich, I. Behrmann, S. Haan, H. M. Hermanns, G. Müller-Newen, and F. Schaper, “Principles of interleukin (IL)-6-type cytokine signalling and its regulation,” Biochemical Journal, vol. 374, no. 1, pp. 1–20, 2003.
[35]  S. Chevalier, M. Fourcin, O. Robledo, J. Wijdenes, A. Pouplard-Barthelaix, and H. Gascan, “Interleukin-6 family of cytokines induced activation of different functional sites expressed by gp130 transducing protein,” The Journal of Biological Chemistry, vol. 271, no. 25, pp. 14764–14772, 1996.
[36]  J. Liu, B. Modrell, A. Aruffo, S. Scharnowske, and M. Shoyab, “Interactions between oncostatin M and the IL-6 signal transducer, gp130,” Cytokine, vol. 6, no. 3, pp. 272–278, 1994.
[37]  D. P. Gearing, M. R. Comeau, D. J. Friend et al., “The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor,” Science, vol. 255, no. 5050, pp. 1434–1437, 1992.
[38]  B. Mosley, C. De Imus, D. Friend et al., “Dual oncostatin M (OSM) receptors. Cloning and characterization of an alternative signaling subunit conferring OSM-specific receptor activation,” The Journal of Biological Chemistry, vol. 271, no. 51, pp. 32635–32643, 1996.
[39]  D. K. Fritz, “The role of the oncostatin M—STAT6 axis in pulmonary eosinophilia, goblet cell hyperplasia, airway hyperresponsiveness and pulmonary fibrosis,” ETD Collection For McMaster University Paper AAINR64688, 2010.
[40]  M. Ichihara, T. Hara, H. Kim, T. Murate, and A. Miyajima, “Oncostatin M and leukemia inhibitory factor do not use the same functional receptor in mice,” Blood, vol. 90, no. 1, pp. 165–173, 1997.
[41]  R. A. Lindberg, T. S.-C. Juan, A. A. Welcher et al., “Cloning and characterization of a specific receptor for mouse oncostatin M,” Molecular and Cellular Biology, vol. 18, no. 6, pp. 3357–3367, 1998.
[42]  M. Tanaka, T. Hara, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, and A. Miyajima, “Reconstitution of the functional mouse oncostatin M (OSM) receptor: molecular cloning of the mouse OSM receptor β subunit,” Blood, vol. 93, no. 3, pp. 804–815, 1999.
[43]  J. Drechsler, J. Grotzinger, and H. M. Hermanns, “Characterization of the rat oncostatin M receptor complex which resembles the human, but differs from the murine cytokine receptor,” PLoS ONE, vol. 7, no. 8, 2012.
[44]  R. Soldi, A. Graziani, R. Benelli et al., “Oncostatin M activates phosphatidylinositol-3-kinase in Kaposi's sarcoma cells,” Oncogene, vol. 9, no. 8, pp. 2253–2260, 1994.
[45]  M. Faris, B. Ensoli, N. Stahl et al., “Differential activation of the extracellular signal-regulated kinase, Jun Kinase and Janus Kinase-Stat pathways by oncostatin M and basic fibroblast growth factor in AIDS-derived Kaposi's sarcoma cells,” AIDS, vol. 10, no. 4, pp. 369–378, 1996.
[46]  M. Ernst, A. Oates, and A. R. Dunn, “gp130-mediated signal transduction in embryonic stem cells involves activation of Jak and ras/mitogen-activated protein kinase pathways,” The Journal of Biological Chemistry, vol. 271, no. 47, pp. 30136–30143, 1996.
[47]  A. Symes, T. Gearan, J. Eby, and J. S. Fink, “Integration of Jak-Stat and AP-1 signaling pathways at the vasoactive intestinal peptide cytokine response element regulates ciliary neurotrophic factor-dependent transcription,” The Journal of Biological Chemistry, vol. 272, no. 15, pp. 9648–9654, 1997.
[48]  L. F. Stancato, M. Sakatsume, M. David et al., “Beta interferon and oncostatin M activate Raf-1 and mitogen-activated protein kinase through a JAK1-dependent pathway,” Molecular and Cellular Biology, vol. 17, no. 7, pp. 3833–3840, 1997.
[49]  E. Pfitzner, S. Kliem, D. Baus, and C. M. Litterst, “The role of STATs in inflammation and inflammatory diseases,” Current Pharmaceutical Design, vol. 10, no. 23, pp. 2839–2850, 2004.
[50]  C. M. Horvath, “STAT proteins and transcriptional responses to extracellular signals,” Trends in Biochemical Sciences, vol. 25, no. 10, pp. 496–502, 2000.
[51]  K. Takeda and S. Akira, “STAT family of transcription factors in cytokine-mediated biological responses,” Cytokine and Growth Factor Reviews, vol. 11, no. 3, pp. 199–207, 2000.
[52]  L. Hendry and S. John, “Regulation of STAT signalling by proteolytic processing,” European Journal of Biochemistry, vol. 271, no. 23-24, pp. 4613–4620, 2004.
[53]  X. P. Chen, J. A. Losman, and P. Rothman, “SOCS proteins, regulators of intracellular signaling,” Immunity, vol. 13, no. 3, pp. 287–290, 2000.
[54]  B. Liu, J. Liao, X. Rao et al., “Inhibition of Stat1-mediated gene activation by PIAS1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 18, pp. 10626–10631, 1998.
[55]  D. Tang, H. Okada, J. Ruland et al., “Akt is activated in response to an apoptotic signal,” The Journal of Biological Chemistry, vol. 276, no. 32, pp. 30461–30466, 2001.
[56]  S. G. Kennedy, A. J. Wagner, S. D. Conzen et al., “The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal,” Genes and Development, vol. 11, no. 6, pp. 701–713, 1997.
[57]  H. G. Zhang, Y. Wang, J. F. Xie, et al., “Regulation of tumor necrosis factor alpha-mediated apoptosis of rheumatoid arthritis synovial fibroblasts by the protein kinase Akt,” Arthritis & Rheumatism, vol. 44, pp. 1555–1567, 2001.
[58]  L. Chang and M. Karin, “Mammalian MAP kinase signalling cascades,” Nature, vol. 410, no. 6824, pp. 37–40, 2001.
[59]  P. Auguste, C. Guillet, M. Fourcin et al., “Signaling of type II oncostatin M receptor,” The Journal of Biological Chemistry, vol. 272, no. 25, pp. 15760–15764, 1997.
[60]  H. M. Hermanns, S. Radtke, F. Schaper, P. C. Heinrich, and I. Behrmann, “Non-redundant signal transduction of interleukin-6-type cytokines: the adapter protein Shc is specifically recruited to the oncostatin M receptor,” The Journal of Biological Chemistry, vol. 275, no. 52, pp. 40742–40748, 2000.
[61]  C. Stross, S. Radtke, T. Clahsen et al., “Oncostatin M receptor-mediated signal transduction is negatively regulated by SOCS3 through a receptor tyrosine-independent mechanism,” The Journal of Biological Chemistry, vol. 281, no. 13, pp. 8458–8468, 2006.
[62]  L. Tong, D. Smyth, C. Kerr, J. Catterall, and C. D. Richards, “Mitogen-activated protein kinases Erk1/2 and p38 are required for maximal regulation of TIMP-1 by oncostatin M in murine fibroblasts,” Cellular Signalling, vol. 16, no. 10, pp. 1123–1132, 2004.
[63]  D. K. Fritz, C. Kerr, L. Tong, D. Smyth, and C. D. Richards, “Oncostatin-M up-regulates VCAM-1 and synergizes with IL-4 in eotaxin expression: involvement of STAT6,” The Journal of Immunology, vol. 176, no. 7, pp. 4352–4360, 2006.
[64]  D. C. Smyth, C. Kerr, and C. D. Richards, “Oncostatin M-induced IL-6 expression in murine fibroblasts requires the activation of protein kinase Cδ,” The Journal of Immunology, vol. 177, no. 12, pp. 8740–8747, 2006.
[65]  C. Diveu, A.-H. L. Lak-Hal, J. Froger et al., “Predominant expression of the long isoform of GP130-like (GPL) receptor is required for interleukin-31 signaling,” European Cytokine Network, vol. 15, no. 4, pp. 291–302, 2004.
[66]  S. Chattopadhyay, E. Tracy, P. Liang, O. Robledo, S. Rose-John, and H. Baumann, “Interleukin-31 and oncostatin-M mediate distinct signaling reactions and response patterns in lung epithelial cells,” The Journal of Biological Chemistry, vol. 282, no. 5, pp. 3014–3026, 2007.
[67]  R. S. Jawa, S. Chattopadhyay, E. Tracy et al., “Regulated expression of the IL-31 receptor in bronchial and alveolar epithelial cells, pulmonary fibroblasts, and pulmonary macrophages,” Journal of Interferon and Cytokine Research, vol. 28, no. 4, pp. 207–219, 2008.
[68]  J. Bilsborough, D. Y. M. Leung, M. Maurer et al., “IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis,” Journal of Allergy and Clinical Immunology, vol. 117, no. 2, pp. 418–425, 2006.
[69]  S. Nobbe, P. Dziunycz, B. Mühleisen et al., “IL-31 expression by inflammatory cells is preferentially elevated in atopic dermatitis,” Acta Dermato-Venereologica, vol. 92, no. 1, pp. 24–28, 2012.
[70]  J. G. Perrigoue, J. Li, C. Zaph et al., “IL-31-IL-31R interactions negatively regulate type 2 inflammation in the lung,” Journal of Experimental Medicine, vol. 204, no. 3, pp. 481–487, 2007.
[71]  J. Bilsborough, S. Mudri, E. Chadwick, B. Harder, and S. R. Dillon, “IL-31 receptor (IL-31RA) knockout mice exhibit elevated responsiveness to oncostatin M,” The Journal of Immunology, vol. 185, no. 10, pp. 6023–6030, 2010.
[72]  C. Diveu, E. Venereau, J. Froger et al., “Molecular and functional characterization of a soluble form of oncostatin M/interleukin-31 shared receptor,” The Journal of Biological Chemistry, vol. 281, no. 48, pp. 36673–36682, 2006.
[73]  T. Jostock, J. Müllberg, S. ?zbek et al., “Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses,” European Journal of Biochemistry, vol. 268, no. 1, pp. 160–167, 2001.
[74]  S. Rose-John and P. C. Heinrich, “Soluble receptors for cytokines and growth factors: generation and biological function,” Biochemical Journal, vol. 300, no. 2, pp. 281–290, 1994.
[75]  L. Brolund, A. Küster, S. Korr, M. Vogt, and G. Müller-Newen, “A receptor fusion protein for the inhibition of murine oncostatin M,” BMC Biotechnology, vol. 11, article 3, 2011.
[76]  N. Malik, H. S. Haugen, B. Modrell, M. Shoyab, and C. H. Clegg, “Developmental abnormalities in mice transgenic for bovine oncostatin M,” Molecular and Cellular Biology, vol. 15, no. 5, pp. 2349–2358, 1995.
[77]  B. Bamber, R. A. Reife, H. S. Haugen, and C. H. Clegg, “Oncostatin M stimulates excessive extracellular matrix accumulation in a transgenic mouse model of connective tissue disease,” Journal of Molecular Medicine, vol. 76, no. 1, pp. 61–69, 1998.
[78]  C. H. Clegg, J. T. Rulffes, P. M. Wallace, and H. S. Haugen, “Regulation of an extrathymic T-cell development pathway by oncostatin M,” Nature, vol. 384, no. 6606, pp. 261–263, 1996.
[79]  F. M. Botelho, J. Rangel-Moreno, D. Fritz, T. D. Randall, Z. Xing, and C. D. Richards, “Pulmonary expression of oncostatin M, (OSM) promotes inducible BALT formation independently of IL-6, despite a role for IL-6 in OSM-driven pulmonary inflammation,” The Journal of Immunology, vol. 191, no. 3, pp. 1453–1464, 2013.
[80]  Y. Morikawa, S. Tamura, K.-I. Minehata, P. J. Donovan, A. Miyajima, and E. Senba, “Essential function of oncostatin M in nociceptive neurons of dorsal root ganglia,” Journal of Neuroscience, vol. 24, no. 8, pp. 1941–1947, 2004.
[81]  E. Esashi, H. Ito, K.-I. Minehata, S. Saito, Y. Morikawa, and A. Miyajima, “Oncostatin M deficiency leads to thymic hypoplasia, accumulation of apoptotic thymocytes and glomerulonephritis,” European Journal of Immunology, vol. 39, no. 6, pp. 1664–1670, 2009.
[82]  C. H. Clegg, H. S. Haugen, J. T. Rulffes, S. L. Friend, and A. G. Farr, “Oncostatin M transforms lymphoid tissue function in transgenic mice by stimulating lymph node T-cell development and thymus autoantibody production,” Experimental Hematology, vol. 27, no. 4, pp. 712–725, 1999.
[83]  M. Tanaka, Y. Hirabayashi, T. Sekiguchi, T. Inoue, M. Katsuki, and A. Miyajima, “Targeted disruption of oncostatin M receptor results in altered hematopoiesis,” Blood, vol. 102, no. 9, pp. 3154–3162, 2003.
[84]  E. Hams, C. S. Colmont, V. Dioszeghy et al., “Oncostatin M receptor-β signaling limits monocytic cell recruitment in acute inflammation,” The Journal of Immunology, vol. 181, no. 3, pp. 2174–2180, 2008.
[85]  K. Nakamura, H. Nonaka, H. Saito, M. Tanaka, and A. Miyajima, “Hepatocyte proliferation and tissue remodeling is impaired after liver injury in oncostatin M receptor knockout mice,” Hepatology, vol. 39, no. 3, pp. 635–644, 2004.
[86]  E. C. Walker, N. E. McGregor, I. J. Poulton et al., “Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice mice,” The Journal of Clinical Investigation, vol. 120, no. 2, pp. 582–592, 2010.
[87]  T. Komori, M. Tanaka, E. Senba, A. Miyajima, and Y. Morikawa, “Lack of oncostatin M receptor beta Leads to adipose tissue inflammation and insulin resistance by switching macrophage phenotype,” The Journal of Biological Chemistry, vol. 288, pp. 21861–21875, 2013.
[88]  H. Baumann and J. Gauldie, “The acute phase response,” Immunology Today, vol. 15, no. 2, pp. 74–80, 1994.
[89]  C. D. Richards, T. J. Brown, M. Shoyab, H. Baumann, and J. Gauldie, “Recombinant oncostatin M stimulates the production of acute phase proteins in HepG2 cells and rat primary hepatocytes in vitro,” The Journal of Immunology, vol. 148, no. 6, pp. 1731–1736, 1992.
[90]  R. I. Grove, C. E. Mazzucco, S. F. Radka, M. Shoyab, and P. A. Kiener, “Oncostatin M up-regulates low density lipoprotein receptors in HepG2 cells by a novel mechanism,” The Journal of Biological Chemistry, vol. 266, no. 27, pp. 18194–18199, 1991.
[91]  J. Kanda, T. Uchiyama, N. Tomosugi, M. Higuchi, T. Uchiyama, and H. Kawabata, “Oncostatin M and leukemia inhibitory factor increase hepcidin expression in hepatoma cell lines,” International Journal of Hematology, vol. 90, no. 5, pp. 545–552, 2009.
[92]  B. Chung, F. Verdier, P. Matak, J.-C. Deschemin, P. Mayeux, and S. Vaulont, “Oncostatin M is a potent inducer of hepcidin, the iron regulatory hormone,” FASEB Journal, vol. 24, no. 6, pp. 2093–2103, 2010.
[93]  A. Miyajima, T. Kinoshita, M. Tanaka, A. Kamiya, Y. Mukouyama, and T. Hara, “Role of oncostatin M in hematopoiesis and liver development,” Cytokine and Growth Factor Reviews, vol. 11, no. 3, pp. 177–183, 2000.
[94]  T. Hamada, A. Sato, T. Hirano et al., “Oncostatin M gene therapy attenuates liver damage induced by dimethylnitrosamine in rats,” American Journal of Pathology, vol. 171, no. 3, pp. 872–881, 2007.
[95]  D. A. Mann and F. Marra, “Fibrogenic signalling in hepatic stellate cells,” Journal of Hepatology, vol. 52, no. 6, pp. 949–950, 2010.
[96]  I. Znoyko, N. Sohara, S. S. Spicer, M. Trojanowska, and A. Reuben, “Expression of oncostatin M and its receptors in normal and cirrhotic human liver,” Journal of Hepatology, vol. 43, no. 5, pp. 893–900, 2005.
[97]  T. Tanaka, M. Narazaki, and T. Kishimoto, “Anti-interleukin-6 receptor antibody, tocilizumab, for the treatment of autoimmune diseases,” FEBS Letters, vol. 585, no. 23, pp. 3699–3709, 2011.
[98]  T. E. Cawston, V. A. Curry, C. A. Summers, et al., “The role of oncostatin M in animal and human connective tissue collagen turnover and its localization within the rheumatoid joint,” Arthritis & Rheumatism, vol. 41, pp. 1760–1771, 1998.
[99]  C. Langdon, J. Leith, F. Smith, and C. D. Richards, “Oncostatin M stimulates monocyte chemoattractant protein-1- and interleukin-1-induced matrix metalloproteinase-1 production by human synovial fibroblasts in vitro,” Arthritis and Rheumatism, vol. 40, no. 12, pp. 2139–2146, 1997.
[100]  W. Hui, M. Bell, and G. Carroll, “Detection of oncostatin M in synovial fluid from patients with rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 56, no. 3, pp. 184–187, 1997.
[101]  C. D. Richards, M. Shoyab, T. J. Brown, and J. Gauldie, “Selective regulation of metalloproteinase inhibitor (TIMP-1) by oncostatin M in fibroblasts in culture,” The Journal of Immunology, vol. 150, no. 12, pp. 5596–5603, 1993.
[102]  W. Q. Li and M. Zafarullah, “Oncostatin M up-regulates tissue inhibitor of metalloproteinases-3 gene expression in articular chondrocytes viade novo transcription, protein synthesis, and tyrosine kinase- and mitogen-activated protein kinase- dependent mechanisms,” The Journal of Immunology, vol. 161, no. 9, pp. 5000–5007, 1998.
[103]  C. Langdon, C. Kerr, M. Hassen, T. Hara, A. L. Arsenault, and C. D. Richards, “Murine oncostatin M stimulates mouse synovial fibroblasts in vitro and induces inflammation and destruction in mouse joints in vivo,” American Journal of Pathology, vol. 157, no. 4, pp. 1187–1196, 2000.
[104]  C. Hintzen, S. Quaiser, T. Pap, P. C. Heinrich, and H. M. Hermanns, “Induction of CCL13 expression in synovial fibroblasts highlights a significant role of oncostatin M in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 60, no. 7, pp. 1932–1943, 2009.
[105]  T. Cawston, C. Billington, C. Cleaver et al., “The regulation of MMPs and TIMPs in cartilage turnover,” Annals of the New York Academy of Sciences, vol. 878, pp. 120–129, 1999.
[106]  A. D. Rowan, P. J. Koshy, W. D. Shingleton, et al., “Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown,” Arthritis & Rheumatism, vol. 44, pp. 1620–1632, 2001.
[107]  P. J. T. Koshy, C. J. Lundy, A. D. Rowan et al., “The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukin-1 and oncostatin M: a time-course study using real-time quantitative reverse transcription-polymerase chain reaction,” Arthritis and Rheumatism, vol. 46, no. 4, pp. 961–967, 2002.
[108]  H. E. Barksby, W. Hui, I. Wappler et al., “Interleukin-1 in combination with oncostatin M up-regulates multiple genes in chondrocytes: implications for cartilage destruction and repair,” Arthritis and Rheumatism, vol. 54, no. 2, pp. 540–550, 2006.
[109]  P. J. Koshy, N. Henderson, C. Logan, P. F. Life, T. E. Cawston, and A. D. Rowan, “Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines,” Annals of the Rheumatic Diseases, vol. 61, no. 8, pp. 704–713, 2002.
[110]  C. Plater-Zyberk, J. Buckton, S. Thompson, et al., “Amelioration of arthritis in two murine models using antibodies to oncostatin M,” Arthritis Rheum, vol. 44, pp. 2697–2702, 2001.
[111]  P. M. Wallace, J. F. MacMaster, K. A. Rouleau et al., “Erratum: Regulation of inflammatory responses by oncostatin M,” The Journal of Immunology, vol. 164, no. 10, p. 5531, 2000.
[112]  P. M. Wallace, J. F. MacMaster, K. A. Rouleau et al., “Erratum: regulation of inflammatory responses by oncostatin M,” The Journal of Immunology, vol. 164, no. 10, p. 5531, 2000.
[113]  C. H. Clegg, H. S. Haugen, J. T. Rulffes, S. L. Friend, and A. G. Farr, “Oncostatin M transforms lymphoid tissue function in transgenic mice by stimulating lymph node T-cell development and thymus autoantibody production,” Experimental Hematology, vol. 27, no. 4, pp. 712–725, 1999.
[114]  T. S.-C. Juan, B. Bolon, R. A. Lindberg, Y. Sun, V. G. Van G, and F. A. Fletcher, “Mice overexpressing murine oncostatin m (osm) exhibit changes in hematopoietic and other organs that are distinct from those of mice overexpressing human OSM or bovine OSM,” Veterinary Pathology, vol. 46, no. 1, pp. 124–137, 2009.
[115]  E. Lubberts, L. A. B. Joosten, M. Chabaud et al., “IL-4 gene therapy for collagen arthritis suppresses synovial IL-17 and osteoprotegerin ligand and prevents bone erosion,” The Journal of Clinical Investigation, vol. 105, no. 12, pp. 1697–1710, 2000.
[116]  E. Lubberts, L. A. B. Joosten, L. Van Den Bersselaar et al., “Intra-articular IL-10 gene transfer regulates the expression of collagen-induced arthritis (CIA) in the knee and ipsilateral paw,” Clinical and Experimental Immunology, vol. 120, no. 2, pp. 375–383, 2000.
[117]  A. S. K. De Hooge, F. A. J. Van de Loo, M. B. Bennink et al., “Growth plate damage, a feature of juvenile idiopathic arthritis, can be induced by adenoviral gene transfer of oncostatin M: a comparative study in gene-deficient mice,” Arthritis and Rheumatism, vol. 48, no. 6, pp. 1750–1761, 2003.
[118]  A. Rowan, W. Hui, T. E. Cawston, and C. D. Richards, “Adenoviral gene transfer of interleukin-1 in combination with oncostatin M induces significant joint damage in a murine model,” American Journal of Pathology, vol. 162, no. 6, pp. 1975–1984, 2003.
[119]  W. Hui, T. E. Cawston, C. D. Richards, and A. D. Rowan, “A model of inflammatory arthritis highlights a role for oncostatin M in pro-inflammatory cytokine-induced bone destruction via RANK/RANKL,” Arthritis Research & Therapy, vol. 7, no. 1, pp. R57–64, 2005.
[120]  W. Hui, A. D. Rowan, C. D. Richards, and T. E. Cawston, “Oncostatin M in combination with tumor necrosis factor α induces cartilage damage and matrix metalloproteinase expression in vitro and in vivo,” Arthritis and Rheumatism, vol. 48, no. 12, pp. 3404–3418, 2003.
[121]  H. E. Barksby, J. M. Milner, A. M. Patterson et al., “Matrix metalloproteinase 10 promotion of collagenolysis via procollagenase activation: implications for cartilage degradation in arthritis,” Arthritis and Rheumatism, vol. 54, no. 10, pp. 3244–3253, 2006.
[122]  J. M. Milner, L. Kevorkian, D. A. Young et al., “Fibroblast activation protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in osteoarthritis,” Arthritis Research and Therapy, vol. 8, no. 1, article R23, 2006.
[123]  G. J. Litherland, C. Dixon, R. L. Lakey et al., “Synergistic collagenase expression and cartilage collagenolysis are phosphatidylinositol 3-kinase/Akt signaling-dependent,” The Journal of Biological Chemistry, vol. 283, no. 21, pp. 14221–14229, 2008.
[124]  S. J. Gilbert, E. J. Blain, A. Al-Sabah, Y. Zhang, V. C. Duance, and D. J. Mason, “Protein kinase R plays a pivotal role in oncostatin M and interleukin-1 signalling in bovine articular cartilage chondrocytes,” European Cells and Materials, vol. 23, pp. 41–57, 2012.
[125]  T. Tanaka, M. Narazaki, and T. Kishimoto, “Therapeutic targeting of the interleukin-6 receptor,” Annual Review of Pharmacology and Toxicology, vol. 52, pp. 199–219, 2012.
[126]  D. Heymann and A.-V. Rousselle, “gp130 cytokine family and bone cells,” Cytokine, vol. 12, no. 10, pp. 1455–1468, 2000.
[127]  P. R. Jay, M. Centrella, J. Lorenzo, A. G. Bruce, and M. C. Horowitz, “Oncostatin-M: a new bone active cytokine that activates osteoblasts and inhibits bone resorption,” Endocrinology, vol. 137, no. 4, pp. 1151–1158, 1996.
[128]  T. Bellido, N. Stahl, T. J. Farruggella, V. Borba, G. D. Yancopoulos, and S. C. Manolagas, “Detection of receptors for lnterleukin-6, lnterleukin-11, leukemia inhibitory factor, oncostatin M, and ciliary neurotrophic factor in bone marrow stromal/osteoblastic cells,” The Journal of Clinical Investigation, vol. 97, no. 2, pp. 431–437, 1996.
[129]  Y. Taguchi, M. Yamamoto, T. Yamate et al., “Interleukin-6-type cytokines stimulate mesenchymal progenitor differentiation toward the osteoblastic lineage,” Proceedings of the Association of American Physicians, vol. 110, no. 6, pp. 559–574, 1998.
[130]  F. Liu, J. E. Aubin, and L. Malaval, “Expression of leukemia inhibitory factor (LIF)/interleukin-6 family cytokines and receptors during in vitro osteogenesis: differential regulation by dexamethasone and LIF,” Bone, vol. 31, no. 1, pp. 212–219, 2002.
[131]  L. Malaval, F. Liu, A. B. Vernallis, and J. E. Aubin, “GP130/OSMR is the only LIF/IL-6 family receptor complex to promote osteoblast differentiation of calvaria progenitors,” Journal of Cellular Physiology, vol. 204, no. 2, pp. 585–593, 2005.
[132]  A. S. K. De Hooge, F. A. J. Van De Loo, M. B. Bennink et al., “Adenoviral transfer of murine oncostatin M elicits periosteal bone apposition in knee joints of mice, despite synovial inflammation and up-regulated expression of interleukin-6 and receptor activator of nuclear factor-κB ligand,” American Journal of Pathology, vol. 160, no. 5, pp. 1733–1743, 2002.
[133]  P. Guihard, Y. Danger, B. Brounais et al., “Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling,” Stem Cells, vol. 30, no. 4, pp. 762–772, 2012.
[134]  E. C. Walker, I. J. Poulton, N. E. McGregor et al., “Sustained RANKL response to parathyroid hormone in oncostatin M receptor-deficient osteoblasts converts anabolic treatment to a catabolic effect in vivo,” Journal of Bone and Mineral Research, vol. 27, no. 4, pp. 902–912, 2012.
[135]  T. J. Fernandes, J. M. Hodge, P. P. Singh, et al., “Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner,” PLoS ONE, vol. 8, Article ID e73266, 2013.
[136]  V. Nicolaidou, M. M. Wong, A. N. Redpath, et al., “Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation,” PLoS ONE, vol. 7, no. 7, Article ID e39871, 2012.
[137]  S.-H. Kok, C.-Y. Hong, M. Y.-P. Kuo et al., “Oncostatin M-induced CCL2 transcription in osteoblastic cells is mediated by multiple levels of STAT-1 and STAT-3 signaling: an implication for the pathogenesis of arthritis,” Arthritis and Rheumatism, vol. 60, no. 5, pp. 1451–1462, 2009.
[138]  C. D. Richards, C. Langdon, P. Deschamps, D. Pennica, and S. G. Shaughnessy, “Stimulation of osteoclast differentiation in vitro by mouse oncostatin M, leukaemia inhibitory factor, cardiotrophin-1 and interleukin 6: synergy with dexamethasone,” Cytokine, vol. 12, no. 6, pp. 613–621, 2000.
[139]  P. Palmqvist, E. Persson, H. H. Conaway, and U. H. Lerner, “IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-κB ligand, osteoprotegerin, and receptor activator of NF-κB in mouse calvariae,” The Journal of Immunology, vol. 169, no. 6, pp. 3353–3362, 2002.
[140]  I. Kawashima and Y. Takiguchi, “Interleukin-11: a novel stroma-derived cytokine,” Cytokine and Growth Factor Reviews, vol. 4, no. 3, pp. 191–204, 1992.
[141]  D. C. Keller, X. X. Du, E. F. Srour, R. Hoffman, and D. A. Williams, “Interleukin-11 inhibits adipogenesis and stimulates myelopoiesis in human long-term marrow cultures,” Blood, vol. 82, no. 5, pp. 1428–1435, 1993.
[142]  J. Ohsumi, K. Miyadai, I. Kawashima, S. Sakakibara, J. Yamaguchi, and Y. Itoh, “Regulation of lipoprotein lipase synthesis in 3T3-L1 adipocytes by interleukin-11/adipogenesis inhibitory factor,” Biochemistry and Molecular Biology International, vol. 32, no. 4, pp. 705–712, 1994.
[143]  N. Yanai and M. Obinata, “Oncostatin M regulates mesenchymal cell differentiation and enhances hematopoietic supportive activity of bone marrow stromal cell lines,” In Vitro Cellular and Developmental Biology, vol. 37, no. 10, pp. 698–704, 2001.
[144]  Y. S. Hae, S. J. Eun, I. K. Jung, S. J. Jin, and H. K. Jae, “Oncostatin M promotes osteogenesis and suppresses adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells,” Journal of Cellular Biochemistry, vol. 101, no. 5, pp. 1238–1251, 2007.
[145]  Y. Miyaoka, M. Tanaka, T. Naiki, and A. Miyajima, “Oncostatin M inhibits adipogenesis through the RAS/ERK and STAT5 signaling pathways,” The Journal of Biological Chemistry, vol. 281, no. 49, pp. 37913–37920, 2006.
[146]  S. Zvonic, J. E. Baugh Jr., P. Arbour-Reily, R. L. Mynatt, and J. M. Stephens, “Cross-talk among gp130 cytokines in adipocytes,” The Journal of Biological Chemistry, vol. 280, no. 40, pp. 33856–33863, 2005.
[147]  A. S. Hamilton, S. F. Radka, L. Bernstein et al., “Relationship of serum levels of oncostatin M to AIDS-related and classic Kaposi's sarcoma,” Journal of Acquired Immune Deficiency Syndromes, vol. 7, no. 4, pp. 410–414, 1994.
[148]  P. M. Wallace, J. F. MacMaster, K. A. Rouleau et al., “Erratum: regulation of inflammatory responses by oncostatin M,” The Journal of Immunology, vol. 164, no. 10, p. 5531, 2000.
[149]  M. C. Amaral, S. Miles, G. Kumar, and A. E. Nel, “Oncostatin-M stimulates tyrosine protein phosphorylation in parallel with the activation of p42(MAPK)/ERK-2 in Kaposi's cells: evidence that this pathway is important in Kaposi cell growth,” The Journal of Clinical Investigation, vol. 92, no. 2, pp. 848–857, 1993.
[150]  A. Lacreusette, J.-M. Nguyen, M.-C. Pandolfino et al., “Loss of oncostatin M receptor β in metastatic melanoma cells,” Oncogene, vol. 26, no. 6, pp. 881–892, 2007.
[151]  W. Komyod, M. B?hm, D. Metze, P. C. Heinrich, and I. Behrmann, “Constitutive suppressor of cytokine signaling 3 expression confers a growth advantage to a human melanoma cell line,” Molecular Cancer Research, vol. 5, no. 3, pp. 271–281, 2007.
[152]  A. Lacreusette, A. Lartigue, J.-M. Nguyen et al., “Relationship between responsiveness of cancer cells to Oncostatin M and/or IL-6 and survival of stage III melanoma patients treated with tumour-infiltrating lymphocytes,” Journal of Pathology, vol. 216, no. 4, pp. 451–459, 2008.
[153]  A. Lacreusette, I. Barbieux, J.-M. Nguyen et al., “Defective activations of STAT3 Ser727 and PKC isoforms lead to oncostatin M resistance in metastatic melanoma,” Journal of Pathology, vol. 217, no. 5, pp. 665–676, 2009.
[154]  K. Mori, F. Rédini, F. Gouin, B. Cherrier, and D. Heymann, “Osteosarcoma: current status of immunotherapy and future trends (Review),” Oncology Reports, vol. 15, no. 3, pp. 693–700, 2006.
[155]  C. Chipoy, M. Berreur, S. Couillaud et al., “Downregulation of osteoblast markers and induction of the glial fibrillary acidic protein by oncostatin M in osteosarcoma cells require PKCδ and STAT3,” Journal of Bone and Mineral Research, vol. 19, no. 11, pp. 1850–1861, 2004.
[156]  C. Chipoy, B. Brounais, V. Trichet et al., “Sensitization of osteosarcoma cells to apoptosis by oncostatin M depends on STAT5 and p53,” Oncogene, vol. 26, no. 46, pp. 6653–6664, 2007.
[157]  B. Brounais, E. David, C. Chipoy et al., “Long term oncostatin M treatment induces an osteocyte-like differentiation on osteosarcoma and calvaria cells,” Bone, vol. 44, no. 5, pp. 830–839, 2009.
[158]  B. Brounais, C. Chipoy, K. Mori et al., “Oncostatin M induces bone loss and sensitizes rat osteosarcoma to the antitumor effect of midostaurin in vivo,” Clinical Cancer Research, vol. 14, no. 17, pp. 5400–5409, 2008.
[159]  S. L. Fossey, M. D. Bear, W. C. Kisseberth, M. Pennell, and C. A. London, “Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines,” BMC Cancer, vol. 11, article 125, 2011.
[160]  A. M. Douglas, G. A. Goss, R. L. Sutherland et al., “Expression and function of members of the cytokine receptor superfamily on breast cancer cells,” Oncogene, vol. 14, no. 6, pp. 661–669, 1997.
[161]  I. García-Tu?ón, M. Ricote, A. Ruiz, B. Fraile, R. Paniagua, and M. Royuela, “OSM, LIF, its receptors, and its relationship with the malignance in human breast carcinoma (in situ and in infiltrative),” Cancer Investigation, vol. 26, no. 3, pp. 222–229, 2008.
[162]  N. R. West, L. C. Murphy, and P. H. Watson, “Oncostatin M suppresses oestrogen receptor-alpha expression and is associated with poor outcome in human breast cancer,” Endocrine-Related Cancer, vol. 19, pp. 181–195, 2012.
[163]  C. Li, F. Zhang, M. Lin, and J. Liu, “Induction of S100A9 gene expression by cytokine oncostatin M in breast cancer cells through the STAT3 signaling cascade,” Breast Cancer Research and Treatment, vol. 87, no. 2, pp. 123–134, 2004.
[164]  N. R. West and P. H. Watson, “S100A7 (psoriasin) is induced by the proinflammatory cytokines oncostatin-M and interleukin-6 in human breast cancer,” Oncogene, vol. 29, no. 14, pp. 2083–2092, 2010.
[165]  R. G. Holzer, R. E. Ryan, M. Tommack, E. Schlekeway, and C. L. Jorcyk, “Oncostatin M stimulates the detachment of a reservoir of invasive mammary carcinoma cells: role of cyclooxygenase-2,” Clinical and Experimental Metastasis, vol. 21, no. 2, pp. 167–176, 2004.
[166]  C. L. Jorcyk, R. G. Holzer, and R. E. Ryan, “Oncostatin M induces cell detachment and enhances the metastatic capacity of T-47D human breast carcinoma cells,” Cytokine, vol. 33, no. 6, pp. 323–336, 2006.
[167]  M. Snyder, X.-Y. Huang, and J. J. Zhang, “Signal Transducers and Activators of Transcription 3 (STAT3) directly regulates cytokine-induced fascin expression and is required for breast cancer cell migration,” The Journal of Biological Chemistry, vol. 286, no. 45, pp. 38886–38893, 2011.
[168]  C. E. Kan, R. Cipriano, and M. W. Jackson, “c-MYC functions as a molecular switch to alter the response of human mammary epithelial cells to oncostatin M,” Cancer Research, vol. 71, no. 22, pp. 6930–6939, 2011.
[169]  E. David, P. Guihard, B. Brounais et al., “Direct anti-cancer effect of oncostatin M on chondrosarcoma,” International Journal of Cancer, vol. 128, no. 8, pp. 1822–1835, 2011.
[170]  E. David, F. Tirode, M. Baud'huin, et al., “Oncostatin M is a growth factor for Ewing sarcoma,” American Journal of Pathology, vol. 181, pp. 1782–1795, 2012.
[171]  N. R. West, J. I. Murray, and P. H. Watson, “Oncostatin-M promotes phenotypic changes associated with mesenchymal and stem cell-like differentiation in breast cancer,” Oncogene, 2013.
[172]  L. Guo, C. Chen, M. Shi, et al., “Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition,” Oncogene, 2013.
[173]  Q. Li, J. Zhu, F. Sun, L. Liu, X. Liu, and Y. Yue, “Oncostatin M promotes proliferation of ovarian cancer cells through signal transducer and activator of transcription 3,” International Journal of Molecular Medicine, vol. 28, no. 1, pp. 101–108, 2011.
[174]  G. Ng, D. Winder, B. Muralidhar et al., “Gain and overexpression of the oncostatin M receptor occur frequently in cervical squamous cell carcinoma and are associated with adverse clinical outcome,” Journal of Pathology, vol. 212, no. 3, pp. 325–334, 2007.
[175]  D. M. Winder, A. Chattopadhyay, B. Muralidhar et al., “Overexpression of the oncostatin M receptor in cervical squamous cell carcinoma cells is associated with a pro-angiogenic phenotype and increased cell motility and invasiveness,” Journal of Pathology, vol. 225, no. 3, pp. 448–462, 2011.
[176]  A. Krona, S. J?rnum, L. G. Salford, B. Widegren, and P. Aman, “Oncostatin M signaling in human glioma cell lines,” Oncology reports, vol. 13, no. 5, pp. 807–811, 2005.
[177]  S.-H. Chen, G. Y. Gillespie, and E. N. Benveniste, “Divergent effects of oncostatin M on astroglioma cells: Influence on cell proliferation, invasion, and expression of matrix metalloproteinases,” GLIA, vol. 53, no. 2, pp. 191–200, 2006.
[178]  S. Godoy-Tundidor, I. T. R. Cavarretta, D. Fuchs et al., “Interleukin-6 and Oncostatin M stimulation of proliferation of prostate cancer 22Rv1 cells through the signaling pathways of p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase,” Prostate, vol. 64, no. 2, pp. 209–216, 2005.
[179]  T. W. Weiss, R. Simak, C. Kaun et al., “Oncostatin M and IL-6 induce u-PA and VEGF in prostate cancer cells and correlate in vivo,” Anticancer Research, vol. 31, no. 10, pp. 3273–3278, 2011.
[180]  M. Royuela, M. Ricote, M. S. Parsons, I. García-Tu?ón, R. Paniagua, and M. P. De Miguel, “Immunohistochemical analysis of the IL-6 family of cytokines and their receptors in benign, hyperplasic and malignant human prostate,” Journal of Pathology, vol. 202, no. 1, pp. 41–49, 2004.
[181]  D. A. Smith, A. Kiba, Y. Zong, and O. N. Witte, “Interleukin-6 and oncostatin-M synergize with the PI3K/AKT pathway to promote aggressive prostate malignancy in mouse and human tissues,” Molecular Cancer Research, vol. 11, no. 10, pp. 1159–1165, 2013.
[182]  G. M. Loewen, E. Tracy, F. Blanchard et al., “Transformation of human bronchial epithelial cells alters responsiveness to inflammatory cytokines,” BMC Cancer, vol. 5, article 145, 2005.
[183]  G. M. Argast, P. Mercado, I. J. Mulford et al., “Cooperative signaling between oncostatin M, hepatocyte growth factor and transforming growth factor-β enhances epithelial to mesenchymal transition in lung and pancreatic tumor models,” Cells Tissues Organs, vol. 193, no. 1-2, pp. 114–132, 2010.
[184]  M. L. Wang, C. M. Pan, S. H. Chiou, et al., “Oncostatin m modulates the mesenchymal-epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect,” Cancer Research, vol. 72, pp. 6051–6064, 2012.
[185]  D. R. Chen, C.-Y. Chu, C.-Y. Chen et al., “Expression of short-form oncostatin M receptor as a decoy receptor in lung adenocarcinomas,” Journal of Pathology, vol. 215, no. 3, pp. 290–299, 2008.
[186]  M. S. Kim, J. Louwagie, B. Carvalho et al., “Promoter DNA methylation of Oncostatin M receptor-β as a novel diagnostic and therapeutic marker in colon cancer,” PLoS ONE, vol. 4, no. 8, Article ID e6555, 2009.
[187]  G. Deng, S. Kakar, K. Okudiara, E. Choi, M. H. Sleisenger, and Y. S. Kim, “Unique methylation pattern of oncostatin M receptor gene in cancers of colorectum and other digestive organs,” Clinical Cancer Research, vol. 15, no. 5, pp. 1519–1526, 2009.
[188]  K. Hibi, T. Goto, K. Sakuraba et al., “Methylation of OSMR gene is frequently observed in non-invasive colorectal cancer,” Anticancer Research, vol. 31, no. 4, pp. 1293–1295, 2011.
[189]  T. Kausar, R. Sharma, M. R. Hasan et al., “Overexpression of a splice variant of oncostatin M receptor beta in human esophageal squamous carcinoma,” Cellular Oncology, vol. 34, no. 3, pp. 177–187, 2011.
[190]  I. K. Hong, Y. G. Eun, D. H. Chung, K. H. Kwon, and D. Y. Kim, “Association of the oncostatin M receptor gene polymorphisms with papillary thyroid cancer in the Korean population,” Clinical and Experimental Otorhinolaryngology, vol. 4, no. 4, pp. 193–198, 2011.
[191]  B. Engels, D. A. Rowley, and H. Schreiber, “Targeting stroma to treat cancers,” Seminars in Cancer Biology, vol. 22, no. 1, pp. 41–49, 2012.
[192]  K. R?s?nen and A. Vaheri, “Activation of fibroblasts in cancer stroma,” Experimental Cell Research, vol. 316, no. 17, pp. 2713–2722, 2010.
[193]  K. Pietras and A. ?stman, “Hallmarks of cancer: interactions with the tumor stroma,” Experimental Cell Research, vol. 316, no. 8, pp. 1324–1331, 2010.
[194]  M. M. Queen, R. E. Ryan, R. G. Holzer, C. R. Keller-Peck, and C. L. Jorcyk, “Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression,” Cancer Research, vol. 65, no. 19, pp. 8896–8904, 2005.
[195]  P. Vlaicu, P. Mertins, T. Mayr, et al., “Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator,” BMC Cancer, vol. 13, p. 197, 2013.
[196]  C. Bolin, K. Tawara, C. Sutherland, et al., “Oncostatin m promotes mammary tumor metastasis to bone and osteolytic bone degradation,” Genes Cancer, vol. 3, pp. 117–130, 2012.
[197]  D. D. Benson, X. Meng, D. A. Fullerton et al., “Activation state of stromal inflammatory cells in murine metastatic pancreatic adenocarcinoma,” American Journal of Physiology, vol. 302, no. 9, pp. R1067–R1075, 2012.
[198]  K. Ruprecht, T. Kuhlmann, F. Seif et al., “Effects of oncostatin M on human cerebral endothelial cells and expression in inflammatory brain lesions,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 11, pp. 1087–1098, 2001.
[199]  N. J. Van Wagoner, C. Choi, P. Repovic, and E. N. Benveniste, “Oncostatin M regulation of interleukin-6 expression in astrocytes: biphasic regulation involving the mitogen-activated protein kinases ERK1/2 and p38,” Journal of Neurochemistry, vol. 75, no. 2, pp. 563–575, 2000.
[200]  P. Repovic, K. Mi, and E. N. Benveniste, “Oncostatin M enhances the expression of prostaglandin E2 and cyclooxygenase-2 in astrocytes: synergy with interleukin-1β, tumor necrosis factor-α, and bacterial lipopolysaccharide,” Glia, vol. 42, no. 4, pp. 433–446, 2003.
[201]  P. Repovic, C. Y. Fears, C. L. Gladson, and E. N. Benveniste, “Oncostatin-M induction of vascular endothelial growth factor expression in astroglioma cells,” Oncogene, vol. 22, no. 50, pp. 8117–8124, 2003.
[202]  A. Krona, P. ?man, C. ?rndal, and A. Josefsson, “Oncostatin M-induced genes in human astrocytomas,” International Journal of Oncology, vol. 31, no. 6, pp. 1457–1463, 2007.
[203]  I. Glezer and S. Rivest, “Oncostatin M is a novel glucocorticoid-dependent neuroinflammatory factor that enhances oligodendrocyte precursor cell activity in demyelinated sites,” Brain, Behavior, and Immunity, vol. 24, no. 5, pp. 695–704, 2010.
[204]  P. Beatus, D. J. Jhaveri, T. L. Walker et al., “Oncostatin M regulates neural precursor activity in the adult brain,” Developmental Neurobiology, vol. 71, no. 7, pp. 619–633, 2011.
[205]  H. J. Kang, J. S. Kang, S. H. Lee et al., “Upregulation of oncostatin M in allergic rhinitis,” Laryngoscope, vol. 115, no. 12, pp. 2213–2216, 2005.
[206]  J. L. Simpson, K. J. Baines, M. J. Boyle, R. J. Scott, and P. G. Gibson, “Oncostatin m (osm) is increased in asthma with incompletely reversible airflow obstruction,” Experimental Lung Research, vol. 35, no. 9, pp. 781–794, 2009.
[207]  A. Mozaffarian, A. W. Brewer, E. S. Trueblood et al., “Mechanisms of oncostatin M-induced pulmonary inflammation and fibrosis,” The Journal of Immunology, vol. 181, no. 10, pp. 7243–7253, 2008.
[208]  I. G. Luzina, S. P. Atamas, R. Wise et al., “Occurrence of an activated, profibrotic pattern of gene expression in lung CD8+ T cells from scleroderma patients,” Arthritis and Rheumatism, vol. 48, no. 8, pp. 2262–2274, 2003.
[209]  K. J. Baines, J. L. Simpson, and P. G. Gibson, “Innate immune responses are increased in chronic obstructive pulmonary disease,” PLoS ONE, vol. 6, no. 3, Article ID e18426, 2011.
[210]  J. A. Elias, C. G. Lee, T. Zheng, B. Ma, R. J. Homer, and Z. Zhu, “New insights into the pathogenesis of asthma,” The Journal of Clinical Investigation, vol. 111, no. 3, pp. 291–297, 2003.
[211]  S. T. Holgate, “Pathogenesis of asthma,” Clinical and Experimental Allergy, vol. 38, no. 6, pp. 872–897, 2008.
[212]  T. A. Wynn, “Cellular and molecular mechanisms of fibrosis,” Journal of Pathology, vol. 214, no. 2, pp. 199–210, 2008.
[213]  T. A. Wynn, “Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases,” The Journal of Clinical Investigation, vol. 117, no. 3, pp. 524–529, 2007.
[214]  T. A. Wynn and T. R. Ramalingam, “Mechanisms of fibrosis: therapeutic translation for fibrotic disease,” Nature Medicine, vol. 18, pp. 1028–1040, 2012.
[215]  B. F. DiCosmo, G. P. Geba, D. Picarella et al., “Airway epithelial cell expression of interleukin-6 in transgenic mice. Uncoupling of airway inflammation and bronchial hyperreactivity,” The Journal of Clinical Investigation, vol. 94, no. 5, pp. 2028–2035, 1994.
[216]  C. Kuhn III, R. J. Homer, Z. Zhu et al., “Airway hyperresponsiveness and airway obstruction in transgenic mice: morphologic correlates in mice overexpressing interleukin (IL)-11 and IL-6 in the lung,” American Journal of Respiratory Cell and Molecular Biology, vol. 22, no. 3, pp. 289–295, 2000.
[217]  W. Tang, G. P. Geba, T. Zheng et al., “Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction,” The Journal of Clinical Investigation, vol. 98, no. 12, pp. 2845–2853, 1996.
[218]  C. Langdon, C. Kerr, L. Tong, and C. D. Richards, “Oncostatin M regulates eotaxin expression in fibroblasts and eosinophilic inflammation in C57BL/6 mice,” The Journal of Immunology, vol. 170, no. 1, pp. 548–555, 2003.
[219]  Z. Xing, T. Braciak, M. Jordana, K. Croitoru, F. L. Graham, and J. Gauldie, “Adenovirus-mediated cytokine gene transfer at tissue sites: overexpression of IL-6 induces lymphocytic hyperplasia in the lung,” The Journal of Immunology, vol. 153, no. 9, pp. 4059–4069, 1994.
[220]  Z. Xing, T. Braciak, D. Chong, X. Feng, J.-A. Schroeder, and J. Gauldie, “Adenoviral-mediated gene transfer of interleukin-6 in rat lung enhances antiviral immunoglobulin A and G responses in distinct tissue compartments,” Biochemical and Biophysical Research Communications, vol. 258, no. 2, pp. 332–335, 1999.
[221]  C. D. Richards, C. Kerr, L. Tong, and C. Langdon, “Modulation of extracellular matrix using adenovirus vectors,” Biochemical Society Transactions, vol. 30, no. 2, pp. 107–111, 2002.
[222]  T. Lahiri, J. D. Laporte, P. E. Moore, R. A. Panettieri Jr., and S. A. Shore, “Interleukin-6 family cytokines: signaling and effects in human airway smooth muscle cells,” American Journal of Physiology, vol. 280, no. 6, pp. L1225–L1232, 2001.
[223]  P. E. Moore, T. L. Church, D. D. Chism, R. A. Panettieri Jr., and S. A. Shore, “IL-13 and IL-4 cause eotaxin release in human airway smooth muscle cells: a role for ERK,” American Journal of Physiology, vol. 282, no. 4, pp. L847–L853, 2002.
[224]  D. S. Faffe, L. Flynt, M. Mellema et al., “Oncostatin M causes eotaxin-1 release from airway smooth muscle: synergy with IL-4 and IL-13,” Journal of Allergy and Clinical Immunology, vol. 115, no. 3, pp. 514–520, 2005.
[225]  D. S. Faffe, L. Flynt, M. Mellema et al., “Oncostatin M causes VEGF release from human airway smooth muscle: synergy with IL-1β,” American Journal of Physiology, vol. 288, no. 6, pp. L1040–L1048, 2005.
[226]  C. D. Richards and A. Agro, “Interaction between Oncostatin M, interleukin 1 and prostaglandin E2 in induction of IL-6 expression in human fibroblasts,” Cytokine, vol. 6, no. 1, pp. 40–47, 1994.
[227]  A. K. Scaffidi, S. E. Mutsaers, Y. P. Moodley et al., “Oncostatin M stimulates proliferation, induces collagen production and inhibits apoptosis of human lung fibroblasts,” British Journal of Pharmacology, vol. 136, no. 5, pp. 793–801, 2002.
[228]  K. A. O'Hara, M.-A. Kedda, P. J. Thompson, and D. A. Knight, “Oncostatin M: an interleukin-6-like cytokine relevant to airway remodelling and the pathogenesis of asthma,” Clinical and Experimental Allergy, vol. 33, no. 8, pp. 1026–1032, 2003.
[229]  M. Cohen, S. Marchand-Adam, V. Lecon-Malas et al., “HGF synthesis in human lung fibroblasts is regulated by oncostatin M,” American Journal of Physiology, vol. 290, no. 6, pp. L1097–L1103, 2006.
[230]  D. K. Fritz, C. Kerr, F. Botelho, M. Stampfli, and C. D. Richards, “Oncostatin M (OSM) primes IL-13- and IL-4-induced eotaxin responses in fibroblasts: regulation of the type-II IL-4 receptor chains IL-4Rα and IL-13Rα1,” Experimental Cell Research, vol. 315, no. 20, pp. 3486–3499, 2009.
[231]  D. C. Smyth, C. Kerr, Y. Li, D. Tang, and C. D. Richards, “Oncostatin M induction of eotaxin-1 expression requires the convergence of PI3′K and ERK1/2 MAPK signal transduction pathways,” Cellular Signalling, vol. 20, no. 6, pp. 1142–1150, 2008.
[232]  K. Y. Nagahama, S. Togo, O. Holz, et al., “Oncostatin M modulates fibroblast function via STAT3,” American Journal of Respiratory Cell and Molecular Biology, vol. 49, no. 4, pp. 582–591, 2013.
[233]  C. M. Prele, E. Yao, R. J. O'Donoghue, S. E. Mutsaers, and D. A. Knight, “STAT3: a central mediator of pulmonary fibrosis?” Proceedings of the American Thoracic Society, vol. 9, pp. 177–182, 2012.
[234]  R. J. O'Donoghue, D. A. Knight, C. D. Richards, et al., “Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis,” EMBO Molecular Medicine, vol. 4, pp. 939–951, 2012.
[235]  P. L. Dudas, G. L. de, L. K. Lundblad, and D. A. Knight, “The role of the epithelium in chronic inflammatory airway disease,” Pulmonary Pharmacology & Therapeutics, vol. 25, pp. 413–414, 2012.
[236]  J.-M. Sallenave, G. M. Tremblay, J. Gauldie, and C. D. Richards, “Oncostatin M, but not interleukin-6 or leukemia inhibitory factor, stimulates expression of alpha1-proteinase inhibitor in A549 human alveolar epithelial cells,” Journal of Interferon and Cytokine Research, vol. 17, no. 6, pp. 337–346, 1997.
[237]  C. McCormick and R. I. Freshney, “Activity of growth factors in the IL-6 group in the differentiation of human lung adenocarcinoma,” British Journal of Cancer, vol. 82, no. 4, pp. 881–890, 2000.
[238]  D. A. Knight, N. Asokananthan, D. N. Watkins, N. L. A. Misso, P. J. Thompson, and G. A. Stewart, “Oncostatin M synergises with house dust mite proteases to induce the production of PGE2 from cultured lung epithelial cells,” British Journal of Pharmacology, vol. 131, no. 3, pp. 465–472, 2000.
[239]  T. Tomita, A. Yamada, M. Miyakoshi et al., “Oncostatin M regulates secretoglobin 3A1 and 3A2 expression in a bidirectional manner,” American Journal of Respiratory Cell and Molecular Biology, vol. 40, no. 5, pp. 620–630, 2009.
[240]  J. Nightingale, S. Patel, N. Suzuki et al., “Oncostatin M, a cytokine released by activated mononuclear cells, induces epithelial cell-myofibroblast transdifferentiation via Jak/Stat pathway activation,” Journal of the American Society of Nephrology, vol. 15, no. 1, pp. 21–32, 2004.
[241]  R. Sark?zi, C. Hauser, S.-J. Noppert et al., “Oncostatin M is a novel inhibitor of TGF-β1-induced matricellular protein expression,” American Journal of Physiology, vol. 301, no. 5, pp. F1014–F1025, 2011.
[242]  W. M. Elbjeirami, L. D. Truong, A. Tawil et al., “Early differential expression of oncostatin M in obstructive nephropathy,” Journal of Interferon and Cytokine Research, vol. 30, no. 7, pp. 513–523, 2010.
[243]  H. Baumann, Y. Wang, C. D. Richards, C. A. Jones, T. A. Black, and K. W. Gross, “Endotoxin-induced renal inflammatory response: oncostatin M as a major mediator of suppressed renin expression,” The Journal of Biological Chemistry, vol. 275, no. 29, pp. 22014–22019, 2000.
[244]  M. R. Duncan, A. Hasan, and B. Berman, “Oncostatin M stimulates collagen and glycosaminoglycan production by cultured normal dermal fibroblasts: insensitivity of sclerodermal and keloidal fibroblasts,” The Journal of Investigative Dermatology, vol. 104, no. 1, pp. 128–133, 1995.
[245]  H. Ihn, E. C. LeRoy, and M. Trojanowska, “Oncostatin M stimulates transcription of the human α2(I) collagen gene via the Sp1/Sp3-binding site,” The Journal of Biological Chemistry, vol. 272, no. 39, pp. 24666–24672, 1997.
[246]  H. Ihn and K. Tamaki, “Oncostatin M stimulates the growth of dermal fibroblasts via a mitogen- activated protein kinase-dependent pathway,” The Journal of Immunology, vol. 165, no. 4, pp. 2149–2155, 2000.
[247]  C. Hintzen, C. Haan, J. P. Tuckermann, P. C. Heinrich, and H. M. Hermanns, “Oncostatin M-induced and constitutive activation of the JAK2/STAT5/CIS pathway suppresses CCL1, but Not CCL7 and CCL8, chemokine expression,” The Journal of Immunology, vol. 181, no. 10, pp. 7341–7349, 2008.
[248]  M. Hasegawa, S. Sato, H. Ihn, and K. Takehara, “Enhanced production of interleukin-6 (IL-6), oncostatin M and soluble IL-6 receptor by cultured peripheral blood mononuclear cells from patients with systemic sclerosis,” Rheumatology, vol. 38, no. 7, pp. 612–617, 1999.
[249]  N. Finelt, A. Gazel, S. Gorelick, and M. Blumenberg, “Transcriptional responses of human epidermal keratinocytes to Oncostatin-M,” Cytokine, vol. 31, no. 4, pp. 305–313, 2005.
[250]  K. Boniface, C. Diveu, F. Morel et al., “Oncostatin M secreted by skin infiltrating T lymphocytes is a potent keratinocyte activator involved in skin inflammation,” The Journal of Immunology, vol. 178, no. 7, pp. 4615–4622, 2007.
[251]  K. Guilloteau, I. Paris, N. Pedretti et al., “Skin inflammation induced by the synergistic action of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α recapitulates some features of psoriasis,” The Journal of Immunology, vol. 184, no. 9, pp. 5263–5270, 2010.
[252]  J. P. Giot, I. Paris, P. Levillain, et al., “Involvement of IL-1 and oncostatin M in acanthosis associated with hypertensive leg ulcer,” The American Journal of Pathology, vol. 182, no. 3, pp. 806–818, 2013.
[253]  E. Sonkoly, A. Muller, A. I. Lauerma et al., “IL-31: a new link between T cells and pruritus in atopic skin inflammation,” Journal of Allergy and Clinical Immunology, vol. 117, no. 2, pp. 411–417, 2006.
[254]  W. A. Boisvert, “Modulation of atherogenesis by chemokines,” Trends in Cardiovascular Medicine, vol. 14, no. 4, pp. 161–165, 2004.
[255]  Y. Sheikine and G. K. Hansson, “Chemokines and atherosclerosis,” Annals of Medicine, vol. 36, no. 2, pp. 98–118, 2004.
[256]  I. F. Charo and M. B. Taubman, “Chemokines in the pathogenesis of vascular disease,” Circulation Research, vol. 95, no. 9, pp. 858–866, 2004.
[257]  L. K. Curtiss, N. Kubo, N. K. Schiller, and W. A. Boisvert, “Participation of innate and acquired immunity in atherosclerosis,” Immunologic Research, vol. 21, no. 2-3, pp. 167–176, 2000.
[258]  S. A. Huber, P. Sakkinen, D. Conze, N. Hardin, and R. Tracy, “Interleukin-6 exacerbates early atherosclerosis in mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 10, pp. 2364–2367, 1999.
[259]  M. Madan, B. Bishayi, M. Hoge, and S. Amar, “Atheroprotective role of interleukin-6 in diet- and/or pathogen-associated atherosclerosis using an ApoE heterozygote murine model,” Atherosclerosis, vol. 197, no. 2, pp. 504–514, 2008.
[260]  J. J. Boyle, “Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque rupture,” Current Vascular Pharmacology, vol. 3, no. 1, pp. 63–68, 2005.
[261]  J. J. Boyle, P. L. Weissberg, and M. R. Bennett, “Tumor necrosis factor-α promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 9, pp. 1553–1558, 2003.
[262]  T. J. Brown, J. M. Rowe, J. Liu, and M. Shoyab, “Regulation of IL-6 expression by oncostatin M,” The Journal of Immunology, vol. 147, no. 7, pp. 2175–2180, 1991.
[263]  T. J. Brown, J. Liu, C. Brashem-Stein, and M. Shoyab, “Regulation of granulocyte colony-stimulating factor and granulocyte- macrophage colony-stimulating factor expression by oncostatin M,” Blood, vol. 82, no. 1, pp. 33–37, 1993.
[264]  V. Modur, M. J. Feldhaus, A. S. Weyrich et al., “Oncostatin M is a proinflammatory mediator: in vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules,” The Journal of Clinical Investigation, vol. 100, no. 1, pp. 158–168, 1997.
[265]  L. Yao, J. Pan, H. Setiadi, K. D. Patel, and R. P. McEver, “Interleukin 4 or oncostatin M induces a prolonged increase in P-selectin mRNA and protein in human endothelial cells,” Journal of Experimental Medicine, vol. 184, no. 1, pp. 81–92, 1996.
[266]  S. M. Kerfoot, E. Raharjo, M. Ho et al., “Exclusive neutrophil recruitment with oncostatin M in a human system,” American Journal of Pathology, vol. 159, no. 4, pp. 1531–1539, 2001.
[267]  J. Pourtau, F. Mirshahi, H. Li et al., “Cyclooxygenase-2 activity is necessary for the angiogenic properties of oncostatin M,” FEBS Letters, vol. 459, no. 3, pp. 453–457, 1999.
[268]  K. Rychli, C. Kaun, P. J. Hohensinner et al., “The inflammatory mediator oncostatin M induces angiopoietin 2 expression in endothelial cells in vitro and in vivo,” Journal of Thrombosis and Haemostasis, vol. 8, no. 3, pp. 596–604, 2010.
[269]  M. Vasse, J. Pourtau, V. Trochon et al., “Oncostatin M induces angiogenesis in vitro and in vivo,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 8, pp. 1835–1842, 1999.
[270]  R. I. Grove, C. Eberhardt, S. Abid et al., “Oncostatin M is a mitogen for rabbit vascular smooth muscle cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 3, pp. 823–827, 1993.
[271]  C. Bernard, R. Merval, M. Lebret et al., “Oncostatin M induces interleukin-6 and cyclooxygenase-2 expression in human vascular smooth muscle cells: synergy with interleukin-1β,” Circulation Research, vol. 85, no. 12, pp. 1124–1131, 1999.
[272]  S. Demyanets, C. Kaun, K. Rychli et al., “Oncostatin M-enhanced vascular endothelial growth factor expression in human vascular smooth muscle cells involves PI3K-, p38 MAPK-, Erk1/2- and STAT1/STAT3-dependent pathways and is attenuated by interferon-γ,” Basic Research in Cardiology, vol. 106, no. 2, pp. 217–231, 2011.
[273]  A. Albasanz-Puig, J. Murray, M. Preusch et al., “Oncostatin M is expressed in atherosclerotic lesions: a role for Oncostatin M in the pathogenesis of atherosclerosis,” Atherosclerosis, vol. 216, no. 2, pp. 292–298, 2011.
[274]  K. Macfelda, T. W. Weiss, C. Kaun et al., “Plasminogen activator inhibitor 1 expression is regulated by the inflammatory mediators interleukin-1α, tumor necrosis factor-α, transforming growth factor-β and oncostatin M in human cardiac myocytes,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 12, pp. 1681–1691, 2002.
[275]  T. W. Weiss, W. S. Speidl, C. Kaun et al., “Glycoprotein 130 ligand oncostatin-M induces expression of vascular endothelial growth factor in human adult cardiac myocytes,” Cardiovascular Research, vol. 59, no. 3, pp. 628–638, 2003.
[276]  T. W. Weiss, H. Kvakan, C. Kaun et al., “The gp130 ligand oncostatin M regulates tissue inhibitor of metalloproteinases-1 through ERK1/2 and p38 in human adult cardiac myocytes and in human adult cardiac fibroblasts: a possible role for the gp130/gp130 ligand system in the modulation of extracellular matrix degradation in the human heart,” Journal of Molecular and Cellular Cardiology, vol. 39, no. 3, pp. 545–551, 2005.
[277]  P. J. Hohensinner, C. Kaun, K. Rychli et al., “The inflammatory mediator oncostatin M induces stromal derived factor-1 in human adult cardiac cells,” FASEB Journal, vol. 23, no. 3, pp. 774–782, 2009.
[278]  T. Kubin, J. P?ling, S. Kostin et al., “Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling,” Cell Stem Cell, vol. 9, no. 5, pp. 420–432, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133