全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of Th17 Cells in the Pathogenesis of Human IBD

DOI: 10.1155/2014/928461

Full-Text   Cite this paper   Add to My Lib

Abstract:

The gastrointestinal tract plays a central role in immune system, being able to mount efficient immune responses against pathogens, keeping the homeostasis of the human gut. However, conditions like Crohn’s disease (CD) or ulcerative colitis (UC), the main forms of inflammatory bowel diseases (IBD), are related to an excessive and uncontrolled immune response against normal microbiota, through the activation of CD4+ T helper (Th) cells. Classically, IBD was thought to be primarily mediated by Th1 cells in CD or Th2 cells in UC, but it is now known that Th17 cells and their related cytokines are crucial mediators in both conditions. Th17 cells massively infiltrate the inflamed intestine of IBD patients, where they produce interleukin- (IL-) 17A and other cytokines, triggering and amplifying the inflammatory process. However, these cells show functional plasticity, and they can be converted into either IFN-γ producing Th1 cells or regulatory T cells. This review will summarize the current knowledge regarding the regulation and functional role of Th17 cells in the gut. Deeper insights into their plasticity in inflammatory conditions will contribute to advancing our understanding of the mechanisms that regulate mucosal homeostasis and inflammation in the gut, promoting the design of novel therapeutic approaches for IBD. 1. Introduction Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder of the gastrointestinal tract that comprises two major conditions: Crohn’s disease (CD) and ulcerative colitis (UC). These pathologies are characterized by abdominal pain, fever, chronic diarrhea, and rectal bleeding due to ulceration of the inner lining of the colon and/or rectum, which can be accompanied by complications such as fistulation, stenosis, and abscesses in CD and megacolon in UC. Acute flares severely impair patient’s ability to lead a normal life, frequently requiring hospitalization and surgery, and may even be life threatening. At present, the pathogenesis of IBD remains elusive; however, the altered and chronic activation of the immune and inflammatory cascade in genetically susceptible individuals against unknown components of the luminal microflora seems to play a key role [1, 2] (Figure 1). The intestinal immune system is the largest and most complex component of the immune system in the human being. As the intestine comprises the major single epithelial interface in the body, which is populated by the greatest number and diversity of resident microbes, the intestinal immune system encounters therefore more antigens than any

References

[1]  R. J. Xavier and D. K. Podolsky, “Unravelling the pathogenesis of inflammatory bowel disease,” Nature, vol. 448, no. 7152, pp. 427–434, 2007.
[2]  E. Glocker and B. Grimbacher, “Inflammatory bowel disease: is it a primary immunodeficiency?” Cellular and Molecular Life Sciences, vol. 69, no. 1, pp. 41–48, 2012.
[3]  A. M. Mowat, “Anatomical basis of tolerance and immunity to intestinal antigens,” Nature Reviews Immunology, vol. 3, no. 4, pp. 331–341, 2003.
[4]  G. Bouma and W. Strober, “The immunological and genetic basis of inflammatory bowel disease,” Nature Reviews Immunology, vol. 3, no. 7, pp. 521–533, 2003.
[5]  W. Strober and I. J. Fuss, “Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases,” Gastroenterology, vol. 140, no. 6, pp. 1756–1767, 2011.
[6]  J. J. Lafaille, “The role of helper T cell subsets in autoimmune diseases,” Cytokine and Growth Factor Reviews, vol. 9, no. 2, pp. 139–151, 1998.
[7]  T. Usui, J. C. Preiss, Y. Kanno et al., “T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription,” The Journal of Experimental Medicine, vol. 203, no. 3, pp. 755–766, 2006.
[8]  A. Castellanos-Rubio, I. Santin, I. Irastorza, L. Casta?o, J. Carlos Vitoria, and J. R. Bilbao, “TH17 (and TH1) signatures of intestinal biopsies of CD patients in response to gliadin,” Autoimmunity, vol. 42, no. 1, pp. 69–73, 2009.
[9]  F. Heller, P. Florian, C. Bojarski et al., “Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution,” Gastroenterology, vol. 129, no. 2, pp. 550–564, 2005.
[10]  L. A. Fouser, J. F. Wright, K. Dunussi-Joannopoulos, and M. Collins, “Th17 cytokines and their emerging roles in inflammation and autoimmunity,” Immunological Reviews, vol. 226, no. 1, pp. 87–102, 2008.
[11]  S. Kotake, N. Udagawa, N. Takahashi et al., “IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis,” The Journal of Clinical Investigation, vol. 103, no. 9, pp. 1345–1352, 1999.
[12]  M. B. M. Teunissen, C. W. Koomen, R. de Waal Malefyt, E. A. Wierenga, and J. D. Bos, “Interleukin-17 and interferon-γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes,” Journal of Investigative Dermatology, vol. 111, no. 4, pp. 645–649, 1998.
[13]  C. L. Langrish, Y. Chen, W. M. Blumenschein et al., “IL-23 drives a pathogenic T cell population that induces autoimmune inflammation,” The Journal of Experimental Medicine, vol. 201, no. 2, pp. 233–240, 2005.
[14]  I. I. Ivanov, B. S. McKenzie, L. Zhou et al., “The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells,” Cell, vol. 126, no. 6, pp. 1121–1133, 2006.
[15]  F. Annunziato, L. Cosmi, V. Santarlasci et al., “Phenotypic and functional features of human Th17 cells,” The Journal of Experimental Medicine, vol. 204, no. 8, pp. 1849–1861, 2007.
[16]  L. Cosmi, R. de Palma, V. Santarlasci et al., “Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor,” The Journal of Experimental Medicine, vol. 205, no. 8, pp. 1903–1916, 2008.
[17]  E. V. Acosta-Rodriguez, G. Napolitani, A. Lanzavecchia, and F. Sallusto, “Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells,” Nature Immunology, vol. 8, no. 9, pp. 942–949, 2007.
[18]  L. Zhou, I. I. Ivanov, R. Spolski et al., “IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways,” Nature Immunology, vol. 8, no. 9, pp. 967–974, 2007.
[19]  X. O. Yang, A. D. Panopoulos, R. Nurieva et al., “STAT3 regulates cytokine-mediated generation of inflammatory helper T cells,” The Journal of Biological Chemistry, vol. 282, no. 13, pp. 9358–9363, 2007.
[20]  U. H. Von Andrian and C. R. Mackay, “T-cell function and migration: two sides of the same coin,” The New England Journal of Medicine, vol. 343, no. 14, pp. 1020–1034, 2000.
[21]  F. Sallusto and A. Lanzavecchia, “Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity,” European Journal of Immunology, vol. 39, no. 8, pp. 2076–2082, 2009.
[22]  N. J. Wilson, K. Boniface, J. R. Chan et al., “Development, cytokine profile and function of human interleukin 17-producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp. 950–957, 2007.
[23]  E. Bettelli, Y. Carrier, W. Gao et al., “Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells,” Nature, vol. 441, no. 7090, pp. 235–238, 2006.
[24]  M. Cho, J. Kang, Y. Moon et al., “STAT3 and NF-κB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice,” The Journal of Immunology, vol. 176, no. 9, pp. 5652–5661, 2006.
[25]  S. Aggarwal, N. Ghilardi, M. Xie, F. J. de Sauvage, and A. L. Gurney, “Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17,” The Journal of Biological Chemistry, vol. 278, no. 3, pp. 1910–1914, 2003.
[26]  M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, “TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells,” Immunity, vol. 24, no. 2, pp. 179–189, 2006.
[27]  L. Yang, D. E. Anderson, C. Baecher-Allan et al., “IL-21 and TGF-β are required for differentiation of human T H17 cells,” Nature, vol. 454, no. 7202, pp. 350–352, 2008.
[28]  N. Manel, D. Unutmaz, and D. R. Littman, “The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt,” Nature Immunology, vol. 9, no. 6, pp. 641–649, 2008.
[29]  E. Volpe, N. Servant, R. Zollinger et al., “A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses,” Nature Immunology, vol. 9, no. 6, pp. 650–657, 2008.
[30]  V. Santarlasci, L. Maggi, M. Capone et al., “TGF-β indirectly favors the development of human Th17 cells by inhibiting Th1 cells,” European Journal of Immunology, vol. 39, no. 1, pp. 207–215, 2009.
[31]  J. Das, G. Ren, L. Zhang et al., “Transforming growth factor β is dispensable for the molecular orchestration of Th17 cell differentiation,” The Journal of Experimental Medicine, vol. 206, no. 11, pp. 2407–2416, 2009.
[32]  T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 cells,” Annual Review of Immunology, vol. 27, pp. 485–517, 2009.
[33]  H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17,” Nature Immunology, vol. 6, no. 11, pp. 1133–1141, 2005.
[34]  S. L. Gaffen, “Structure and signalling in the IL-17 receptor family,” Nature Reviews Immunology, vol. 9, no. 8, pp. 556–567, 2009.
[35]  Y. Iwakura, H. Ishigame, S. Saijo, and S. Nakae, “Functional specialization of interleukin-17 family members,” Immunity, vol. 34, no. 2, pp. 149–162, 2011.
[36]  M. Baba, T. Imai, M. Nishimura et al., “Identification of CCR6, the specific receptor for a novel lymphocyte- directed CC chemokine LARC,” The Journal of Biological Chemistry, vol. 272, no. 23, pp. 14893–14898, 1997.
[37]  G. Monteleone, I. Monteleone, D. Fina et al., “Interleukin-21 enhances T-helper cell type I signaling and interferon-γ production in Crohn's disease,” Gastroenterology, vol. 128, no. 3, pp. 687–694, 2005.
[38]  R. Nurieva, X. O. Yang, G. Martinez et al., “Essential autocrine regulation by IL-21 in the generation of inflammatory T cells,” Nature, vol. 448, no. 7152, pp. 480–483, 2007.
[39]  D. Fina, M. Sarra, M. C. Fantini et al., “Regulation of gut inflammation and th17 cell response by interleukin-21,” Gastroenterology, vol. 134, no. 4, pp. 1038.e2–1048.e2, 2008.
[40]  S. Brand, F. Beigel, T. Olszak et al., “IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration,” American Journal of Physiology: Gastrointestinal and Liver Physiology, vol. 290, no. 4, pp. G827–G838, 2006.
[41]  J. M. Leung, M. Davenport, M. J. Wolff, K. E. Wiens, W. M. Abidi, M. A. Poles, et al., “IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue,” Mucosal Immunology, vol. 7, no. 1, pp. 124–133, 2014.
[42]  M. Pelletier, L. Maggi, A. Micheletti et al., “Evidence for a cross-talk between human neutrophils and Th17 cells,” Blood, vol. 115, no. 2, pp. 335–343, 2010.
[43]  L. A. Zenewicz, A. Antov, and R. A. Flavell, “CD4 T-cell differentiation and inflammatory bowel disease,” Trends in Molecular Medicine, vol. 15, no. 5, pp. 199–207, 2009.
[44]  C. T. Weaver, C. O. Elson, L. A. Fouser, and J. K. Kolls, “The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin,” Annual Review of Pathology: Mechanisms of Disease, vol. 8, pp. 477–512, 2013.
[45]  S. Fujino, A. Andoh, S. Bamba et al., “Increased expression of interleukin 17 in inflammatory bowel disease,” Gut, vol. 52, no. 1, pp. 65–70, 2003.
[46]  J. Seiderer, I. Elben, J. Diegelmann et al., “Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD,” Inflammatory Bowel Diseases, vol. 14, no. 4, pp. 437–445, 2008.
[47]  A. Raza and M. T. Shata, “Letter: pathogenicity of Th17 cells may differ in ulcerative colitis compared with Crohn's disease,” Alimentary Pharmacology & Therapeutics, vol. 36, article 204, 2012.
[48]  S. Bogaert, D. Laukens, H. Peeters et al., “Differential mucosal expression of Th17-related genes between the inflamed colon and ileum of patients with inflammatory bowel disease,” BMC Immunology, vol. 11, article 61, 2010.
[49]  N. Kamada, T. Hisamatsu, S. Okamoto et al., “Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis,” The Journal of Clinical Investigation, vol. 118, no. 6, pp. 2269–2280, 2008.
[50]  A. I. Thompson and C. W. Lees, “Genetics of ulcerative colitis,” Inflammatory Bowel Diseases, vol. 17, no. 3, pp. 831–848, 2011.
[51]  T. Kobayashi, S. Okamoto, T. Hisamatsu et al., “IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease,” Gut, vol. 57, no. 12, pp. 1682–1689, 2008.
[52]  K. Hirota, H. Yoshitomi, M. Hashimoto et al., “Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model,” The Journal of Experimental Medicine, vol. 204, no. 12, pp. 2803–2812, 2007.
[53]  R. Caruso, D. Fina, I. Peluso et al., “A functional role for interleukin-21 in promoting the synthesis of the T-cell chemoattractant, MIP-3α, by gut epithelial cells,” Gastroenterology, vol. 132, no. 1, pp. 166–175, 2007.
[54]  D. de Nitto, M. Sarra, F. Pallone, and G. Monteleone, “Interleukin-21 triggers effector cell responses in the Gut,” World Journal of Gastroenterology, vol. 16, no. 29, pp. 3638–3641, 2010.
[55]  A. Ogawa, A. Andoh, Y. Araki, T. Bamba, and Y. Fujiyama, “Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice,” Clinical Immunology, vol. 110, no. 1, pp. 55–62, 2004.
[56]  X. O. Yang, H. C. Seon, H. Park et al., “Regulation of inflammatory responses by IL-17F,” The Journal of Experimental Medicine, vol. 205, no. 5, pp. 1063–1075, 2008.
[57]  N. Garrido-Mesa, P. Utrilla, M. Comalada et al., “The association of minocycline and the probiotic Escherichia coli Nissle 1917 results in an additive beneficial effect in a DSS model of reactivated colitis in mice,” Biochemical Pharmacology, vol. 82, no. 12, pp. 1891–1900, 2011.
[58]  T. Kinugasa, T. Sakaguchi, X. Gu, and H. Reinecker, “Claudins regulate the intestinal barrier in response to immune mediators,” Gastroenterology, vol. 118, no. 6, pp. 1001–1011, 2000.
[59]  K. Sugimoto, A. Ogawa, E. Mizoguchi et al., “IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis,” The Journal of Clinical Investigation, vol. 118, no. 2, pp. 534–544, 2008.
[60]  L. A. Zenewicz, G. D. Yancopoulos, D. M. Valenzuela, A. J. Murphy, S. Stevens, and R. A. Flavell, “Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease,” Immunity, vol. 29, no. 6, pp. 947–957, 2008.
[61]  W. Ouyang, S. H. Ranganath, K. Weindel et al., “Inhibition of Th1 development mediated by GATA-3 through an IL-4- independent mechanism,” Immunity, vol. 9, no. 5, pp. 745–755, 1998.
[62]  L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005.
[63]  Y. K. Lee, H. Turner, C. L. Maynard et al., “Late developmental plasticity in the T helper 17 lineage,” Immunity, vol. 30, no. 1, pp. 92–107, 2009.
[64]  K. Hirota, J. H. Duarte, M. Veldhoen et al., “Fate mapping of IL-17-producing T cells in inflammatory responses,” Nature Immunology, vol. 12, no. 3, pp. 255–263, 2011.
[65]  D. Bending, H. de La Pe?a, M. Veldhoen et al., “Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice,” The Journal of Clinical Investigation, vol. 119, no. 3, pp. 565–572, 2009.
[66]  G. Wei, L. Wei, J. Zhu et al., “Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells,” Immunity, vol. 30, no. 1, pp. 155–167, 2009.
[67]  K. Nistala, S. Adams, H. Cambrook et al., “Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 33, pp. 14751–14756, 2010.
[68]  L. Cosmi, R. Cimaz, L. Maggi et al., “Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis,” Arthritis and Rheumatism, vol. 63, no. 8, pp. 2504–2515, 2011.
[69]  L. Zhou, J. E. Lopes, M. M. W. Chong et al., “TGF-Β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function,” Nature, vol. 453, no. 7192, pp. 236–240, 2008.
[70]  L. Xu, A. Kitani, I. Fuss, and W. Strober, “Cutting edge: regulatory T cells induce CD4+CD25?Foxp3? T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β,” The Journal of Immunology, vol. 178, no. 11, pp. 6725–6729, 2007.
[71]  C. Baecher-Allan, E. Wolf, and D. A. Hafter, “MHC class II expression identifies functionally distinct human regulatory T cells,” The Journal of Immunology, vol. 176, no. 8, pp. 4622–4631, 2006.
[72]  I. I. Ivanov, R. D. L. Frutos, N. Manel et al., “Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine,” Cell Host and Microbe, vol. 4, no. 4, pp. 337–349, 2008.
[73]  P. R. Mangan, L. E. Harrington, D. B. O'Quinn et al., “Transforming growth factor-β induces development of the 17 lineage,” Nature, vol. 441, no. 7090, pp. 231–234, 2006.
[74]  M. O. Li and R. A. Flavell, “TGF-β: a master of all T cell trades,” Cell, vol. 134, no. 3, pp. 392–404, 2008.
[75]  Y. Chen, P. Thai, Y. Zhao, Y. Ho, M. M. DeSouza, and R. Wu, “Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop,” The Journal of Biological Chemistry, vol. 278, no. 19, pp. 17036–17043, 2003.
[76]  J. Zhu and W. E. Paul, “Heterogeneity and plasticity of T helper cells,” Cell Research, vol. 20, no. 1, pp. 4–12, 2010.
[77]  M. J. McGeachy and D. J. Cua, “The link between IL-23 and Th17 cell-mediated immune pathologies,” Seminars in Immunology, vol. 19, no. 6, pp. 372–376, 2007.
[78]  A. Izcue, S. Hue, S. Buonocore et al., “Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis,” Immunity, vol. 28, no. 4, pp. 559–570, 2008.
[79]  D. Mucida, Y. Park, G. Kim et al., “Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid,” Science, vol. 317, no. 5835, pp. 256–260, 2007.
[80]  M. J. Benson, K. Pino-Lagos, M. Rosemblatt, and R. J. Noelle, “All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation,” The Journal of Experimental Medicine, vol. 204, no. 8, pp. 1765–1774, 2007.
[81]  J. D. Milner, J. M. Brenchley, A. Laurence et al., “Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome,” Nature, vol. 452, no. 7188, pp. 773–776, 2008.
[82]  L. de Beaucoudtey, A. Puel, O. Filipe-Santos et al., “Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells,” The Journal of Experimental Medicine, vol. 205, no. 7, pp. 1543–1550, 2008.
[83]  T. J. Harris, J. F. Grosso, H. Yen et al., “Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity,” The Journal of Immunology, vol. 179, no. 7, pp. 4313–4317, 2007.
[84]  E. V. Dang, J. Barbi, H. Yang et al., “Control of TH17/Treg balance by hypoxia-inducible factor 1,” Cell, vol. 146, no. 5, pp. 772–784, 2011.
[85]  A. Hot and P. Miossec, “Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes,” Annals of the Rheumatic Diseases, vol. 70, no. 5, pp. 727–732, 2011.
[86]  C. L. Maynard, C. O. Elson, R. D. Hatton, and C. T. Weaver, “Reciprocal interactions of the intestinal microbiota and immune system,” Nature, vol. 489, pp. 231–241, 2012.
[87]  M. Asquith and F. Powrie, “An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer,” The Journal of Experimental Medicine, vol. 207, no. 8, pp. 1573–1577, 2010.
[88]  C. Manichanh, N. Borruel, F. Casellas, and F. Guarner, “The gut microbiota in IBD,” Nature Reviews Gastroenterology and Hepatology, vol. 9, pp. 599–608, 2012.
[89]  P. Lepage, R. H?sler, M. E. Spehlmann et al., “Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis,” Gastroenterology, vol. 141, no. 1, pp. 227–236, 2011.
[90]  C. Manichanh, L. Rigottier-Gois, E. Bonnaud et al., “Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach,” Gut, vol. 55, no. 2, pp. 205–211, 2006.
[91]  F. Guarner, R. Bourdet-Sicard, P. Brandtzaeg et al., “Mechanisms of disease: the hygiene hypothesis revisited,” Nature Clinical Practice Gastroenterology and Hepatology, vol. 3, no. 5, pp. 275–284, 2006.
[92]  C. Ohnmacht, R. Marques, L. Presley, S. Sawa, M. Lochner, and G. Eberl, “Intestinal microbiota, evolution of the immune system and the bad reputation of pro-inflammatory immunity,” Cellular Microbiology, vol. 13, no. 5, pp. 653–659, 2011.
[93]  I. I. Ivanov, K. Atarashi, N. Manel et al., “Induction of intestinal Th17 cells by segmented filamentous bacteria,” Cell, vol. 139, no. 3, pp. 485–498, 2009.
[94]  S. Wu, K. Rhee, E. Albesiano et al., “A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses,” Nature Medicine, vol. 15, no. 9, pp. 1016–1022, 2009.
[95]  Y. K. Lee, J. S. Menezes, Y. Umesaki, and S. K. Mazmanian, “Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 1, pp. 4615–4622, 2011.
[96]  S. Uematsu, M. H. Jang, N. Chevrier et al., “Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells,” Nature Immunology, vol. 7, no. 8, pp. 868–874, 2006.
[97]  K. Atarashi, J. Nishimura, T. Shima et al., “ATP drives lamina propria TH17 cell differentiation,” Nature, vol. 455, no. 7214, pp. 808–812, 2008.
[98]  V. Gaboriau-Routhiau, S. Rakotobe, E. Lécuyer et al., “The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses,” Immunity, vol. 31, no. 4, pp. 677–689, 2009.
[99]  S. Uematsu and S. Akira, “Toll-like receptors and innate immunity,” Journal of Molecular Medicine, vol. 84, no. 9, pp. 712–725, 2006.
[100]  T. Prakash, K. Oshima, H. Morita et al., “Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation,” Cell Host and Microbe, vol. 10, no. 3, pp. 273–284, 2011.
[101]  A. Sczesnak, N. Segata, X. Qin et al., “The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment,” Cell Host and Microbe, vol. 10, no. 3, pp. 260–272, 2011.
[102]  M. A. Kinnebrew, C. G. Buffie, G. E. Diehl et al., “Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense,” Immunity, vol. 36, no. 2, pp. 276–287, 2012.
[103]  S. Lee, J. B. McLachlan, J. R. Kurtz et al., “Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development,” PLoS Pathogens, vol. 8, no. 1, Article ID e1002499, 2012.
[104]  M. H. Shaw, N. Kamada, Y. Kim, and G. Nú?ez, “Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine,” The Journal of Experimental Medicine, vol. 209, no. 2, pp. 251–258, 2012.
[105]  T. L. Denning, B. A. Norris, O. Medina-Contreras et al., “Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization,” The Journal of Immunology, vol. 187, no. 2, pp. 733–747, 2011.
[106]  M. B. Torchinsky, J. Garaude, A. P. Martin, and J. M. Blander, “Innate immune recognition of infected apoptotic cells directs T H17 cell differentiation,” Nature, vol. 458, no. 7234, pp. 78–82, 2009.
[107]  C. O. Elson, Y. Cong, C. T. Weaver et al., “Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice,” Gastroenterology, vol. 132, no. 7, pp. 2359–2370, 2007.
[108]  W. S. Garrett, J. I. Gordon, and L. H. Glimcher, “Homeostasis and inflammation in the intestine,” Cell, vol. 140, no. 6, pp. 859–870, 2010.
[109]  R. Stepankova, F. Powrie, O. Kofronova et al., “Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells,” Inflammatory Bowel Diseases, vol. 13, no. 10, pp. 1202–1211, 2007.
[110]  C. Stolfi, A. Rizzo, E. Franzè et al., “Involvement of interleukin-21 in the regulation of colitis-associated colon cancer,” The Journal of Experimental Medicine, vol. 208, no. 11, pp. 2279–2290, 2011.
[111]  C. Becker, H. Dornhoff, C. Neufert et al., “Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis,” The Journal of Immunology, vol. 177, no. 5, pp. 2760–2764, 2006.
[112]  D. Yen, J. Cheung, H. Scheerens et al., “IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6,” The Journal of Clinical Investigation, vol. 116, no. 5, pp. 1310–1316, 2006.
[113]  W. J. Sandborn, C. Gasink, L. L. Gao, et al., “Ustekinumab induction and maintenance therapy in refractory Crohn's disease,” The New England Journal of Medicine, vol. 367, no. 16, pp. 1519–1528, 2012.
[114]  Z. Zhang, M. Zheng, J. Bindas, P. Schwarzenberger, and J. K. Kolls, “Critical role of IL-17 receptor signaling in acute TNBS-induced colitis,” Inflammatory Bowel Diseases, vol. 12, no. 5, pp. 382–388, 2006.
[115]  L. P. McLean, R. K. Cross, and T. Shea-Donohue, “Combined blockade of IL-17A and IL-17F may prevent the development of experimental colitis,” Immunotherapy, vol. 5, pp. 923–925, 2013.
[116]  E. G. W. Schmidt, H. L. Larsen, N. N. Kristensen et al., “TH17 cell induction and effects of IL-17A and IL-17F blockade in experimental colitis,” Inflammatory Bowel Diseases, vol. 19, no. 8, pp. 1567–1576, 2013.
[117]  L. R. Fitzpatrick, J. S. Small, R. Doblhofer, and A. Ammendola, “Vidofludimus inhibits colonic interleukin-17 and improves hapten-induced colitis in rats by a unique dual mode of action,” Journal of Pharmacology and Experimental Therapeutics, vol. 342, no. 3, pp. 850–860, 2012.
[118]  K. R. Herrlinger, M. Diculescu, K. Fellermann et al., “Efficacy, safety and tolerability of vidofludimus in patients with inflammatory bowel disease: the ENTRANCE study,” Journal of Crohn's and Colitis, vol. 7, no. 8, pp. 636–643, 2013.
[119]  M. Veldhoen, K. Hirota, A. M. Westendorf et al., “The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins,” Nature, vol. 453, no. 7191, pp. 106–109, 2008.
[120]  F. J. Quintana, A. S. Basso, A. H. Iglesias et al., “Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor,” Nature, vol. 453, no. 7191, pp. 65–71, 2008.
[121]  C. Esser, A. Rannug, and B. Stockinger, “The aryl hydrocarbon receptor in immunity,” Trends in Immunology, vol. 30, no. 9, pp. 447–454, 2009.
[122]  S. Trifari, C. D. Kaplan, E. H. Tran, N. K. Crellin, and H. Spits, “Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells,” Nature Immunology, vol. 10, no. 8, pp. 864–871, 2009.
[123]  M. S. Alam, Y. Maekawa, A. Kitamura et al., “Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 13, pp. 5943–5948, 2010.
[124]  I. Monteleone, A. Rizzo, M. Sarra et al., “Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract,” Gastroenterology, vol. 141, no. 1, pp. 237.e1–248.e1, 2011.
[125]  L. Klotz, S. Burgdorf, I. Dani et al., “The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity,” The Journal of Experimental Medicine, vol. 206, no. 10, pp. 2079–2089, 2009.
[126]  R. Hontecillas, W. T. Horne, M. Climent et al., “Immunoregulatory mechanisms of macrophage PPAR-γ in mice with experimental inflammatory bowel disease,” Mucosal Immunology, vol. 4, no. 3, pp. 304–313, 2011.
[127]  Q. Q. Chen, L. Yan, C. Z. Wang et al., “Mesenchymal stem cells alleviate TNBS-induced colitis by modulating inflammatory and autoimmune responses,” World Journal of Gastroenterology, vol. 19, no. 29, pp. 4702–4717, 2013.
[128]  L. R. Fitzpatrick, “Inhibition of IL-17 as a pharmacological approach for IBD,” International Reviews of Immunology, vol. 32, no. 5-6, pp. 544–555, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133