全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Immunophenotypic Analysis of B Lymphocytes in Patients with Common Variable Immunodeficiency: Identification of CD23 as a Useful Marker in the Definition of the Disease

DOI: 10.1155/2013/512527

Full-Text   Cite this paper   Add to My Lib

Abstract:

Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by the failure of B lymphocytes differentiation leading to deficient immunoglobulins secretion. The identified genetic defects account only for a minority of cases. The importance of B cells immunophenotyping in the classification of CVID is known. This procedure can identify alterations on the cell surface molecules expression that could explain some immunological disorders characteristic of CVID. Moreover, some immunophenotypical aspects can correlate with clinical features of the disease. We used this procedure to analyze a cohort of 23 patients affected by CVID, in order to identify the novel alterations of B cells and to find the possible correlations with clinical features. Circulating B cells were studied by flow cytometry incubating whole blood with specific antibodies for B cell surface molecules including CD27, IgM, IgD, CD21, and CD23. We compared the population of “switched memory” IgD? CD27+ B lymphocytes with the population of “switched memory” IgM? IgD? CD23? CD27+ B cells. These last B cells were reduced in patients compared to healthy controls; moreover, IgM? IgD? CD23? CD27+ B cells were lower than IgD? CD27+ B cells in patients with CVID. The reduction of this subset of B lymphocytes correlates more tightly than IgD? CD27+ B cells with lymphadenopathy and airways infections. In conclusion, our findings may help in better identifying patients with CVID. 1. Introduction Common variable immunodeficiency (CVID) is the most common primary immunodeficiency in clinical practice. CVID represents a large heterogeneous group of syndromes characterized by low serum levels of IgG, IgA, and/or IgM, with decreased antibody production and impaired antibody response to both polysaccharide and protein antigens [1–3]. As a result of low antibody levels, most CVID patients have recurrent airway infections by capsulated bacteria. Autoimmune diseases, lymphoproliferative, granulomatous or neoplastic disorders, and intestinal dysfunctions may also affect CVID patients. The majority of the genetic mechanisms leading to CVID are still unclear. Defects in the genes that encode for inducible costimulator (ICOS), transmembrane activator and CAML interactor (TACI), CD19, B-cell activating factor receptor (BAFFR), CD81, CD20, and CD21 have been reported [1, 4–6]. The identification and analysis of these gene defects have led to novel hypothesis on the pathogenesis of CVID. However, gene defects have been identified in less than 10% of patients, and therefore they account only for

References

[1]  M. A. Park, J. T. Li, J. B. Hagan, D. E. Maddox, and R. S. Abraham, “Common variable immunodeficiency: a new look at an old disease,” The Lancet, vol. 372, no. 9637, pp. 489–502, 2008.
[2]  J. H. Park, E. S. Resnick, and C. Cunningham-Rundles, “Perspectives on common variable immune deficiency,” Annals of the New York Academy of Sciences, vol. 1246, no. 1, pp. 41–49, 2011.
[3]  P. F. K. Yong, J. E. D. Thaventhiran, and B. Grimbacher, “‘A rose is a rose is a rose,’ but CVID is Not CVID common variable immune deficiency (CVID), what do we know in 2011?” Advances in Immunology, vol. 111, pp. 47–107, 2011.
[4]  O. Kopecky and ?. Luke?ová, “Genetic defects in common variable immunodeficiency,” International Journal of Immunogenetics, vol. 34, no. 4, pp. 225–229, 2007.
[5]  S. Goldacker and K. Warnatz, “Tackling the heterogeneity of CVID,” Current Opinion in Allergy and Clinical Immunology, vol. 5, no. 6, pp. 504–509, 2005.
[6]  C. Bacchelli, S. Buckridge, A. J. Thrasher, and H. B. Gaspar, “Translational Mini-Review Series on Immunodeficiency: molecular defects in common variable immunodeficiency,” Clinical and Experimental Immunology, vol. 149, no. 3, pp. 401–409, 2007.
[7]  J. Pons, J. M. Ferrer, N. Martínez-Pomar, J. Iglesias-Alzueta, and N. Matamoros, “Costimulatory molecules and cytokine production by T lymphocytes in common variable immunodeficiency disease,” Scandinavian Journal of Immunology, vol. 63, no. 5, pp. 383–389, 2006.
[8]  J. S. Jaffe, E. Eisenstein, M. C. Sneller et al., “T-cell abnormalities in common variable immunodeficiency,” Pediatric Research, vol. 33, no. 1, supplement, pp. S24–S28, 1993.
[9]  A. Giovannetti, M. Pierdominici, F. Mazzetta et al., “Unravelling the complexity of T cell abnormalities in common variable immunodeficiency,” Journal of Immunology, vol. 178, no. 6, pp. 3932–3943, 2007.
[10]  A. Giovannetti, M. Pierdominici, and F. Aiuti, “T-cell homeostasis: the dark(ened) side of common variable immunodeficiency,” Blood, vol. 112, no. 2, p. 446, 2008.
[11]  S. F. Gonzalez, S. E. Degn, and L. A. Pitcher, “Trafficking of B cell antigen in lymph nodes,” Annual Review of Immunology, vol. 29, pp. 215–233, 2011.
[12]  M. Shapiro-Shelef and K. C. Calame, “Regulation of plasma-cell development,” Nature Reviews Immunology, vol. 5, no. 3, pp. 230–242, 2005.
[13]  J. Y. Bonnefoy, S. Lecoanet-Henchoz, J. P. Aubry, J. F. Gauchat, and P. Graber, “CD23 and B-cell activation,” Current Opinion in Immunology, vol. 7, no. 3, pp. 355–359, 1995.
[14]  U. Klein, R. Küppers, and K. Rajewsky, “Evidence for a large compartment of IgM-expressing memory B cells in humans,” Blood, vol. 89, no. 4, pp. 1288–1298, 1997.
[15]  S. G. Tangye and K. L. Good, “Human IgM+CD27+B cells: memory B cells or “memory” B cells?” Journal of Immunology, vol. 179, no. 1, pp. 13–19, 2007.
[16]  K. Warnatz, A. Denz, R. Dr?ger et al., “Severe deficiency of switched memory B cells (CD27+IgM-IgD-) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease,” Blood, vol. 99, no. 5, pp. 1544–1551, 2002.
[17]  B. Piqueras, C. Lavenu-Bombled, L. Galicier et al., “Common variable immunodeficiency patient classification based on impaired B cell memory differentiation correlates with clinical aspects,” Journal of Clinical Immunology, vol. 23, no. 5, pp. 385–400, 2003.
[18]  C. Wehr, T. Kivioja, C. Schmitt et al., “The EUROclass trial: defining subgroups in common variable immunodeficiency,” Blood, vol. 111, no. 1, pp. 77–85, 2008.
[19]  N. Taubenheim, M. Von Hornung, A. Durandy et al., “Defined blocks in terminal plasma cell differentiation of common variable immunodeficiency patients,” Journal of Immunology, vol. 175, pp. 5498–5503, 2005.
[20]  M. E. Conley, L. D. Notarangelo, and A. Etzioni, “Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies),” Clinical Immunology, vol. 93, no. 3, pp. 190–197, 1999.
[21]  D. Veneri, R. Ortolani, M. Franchini, G. Tridente, G. Pizzolo, and A. Vella, “Expression of CD27 and CD23 on peripheral blood B lymphocytes in humans of different ages,” Blood Transfusion, vol. 7, no. 1, pp. 29–34, 2009.
[22]  R. H. J. Verstegen, M. A. A. Kusters, E. F. A. Gemen, and E. De Vries, “Down syndrome B-lymphocyte subpopulations, intrinsic defect or decreased T-lymphocyte help,” Pediatric Research, vol. 67, no. 5, pp. 563–569, 2010.
[23]  H. J. Gould, R. Reljic, and J. Shi, IgE Homeostasis: Is CD23 the Safety Switch? IgE Regulation: Molecular Mechanisms, John Wiley & Sons, New York, NY, USA, 1997.
[24]  M. Seifert and R. Küppers, “Molecular footprints of a germinal center derivation of human IgM+(IgD+)CD27+B cells and the dynamics of memory B cell generation,” Journal of Experimental Medicine, vol. 206, no. 12, pp. 2659–2669, 2009.
[25]  F. Martin and J. F. Kearney, “Marginal-zone B cells,” Nature Reviews Immunology, vol. 2, pp. 323–335, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133