It was previously demonstrated that mice of I/StSnEgYCit (I/St) strain are more susceptible to tuberculosis infection than A/SnYCit (A/Sn) mice, and this susceptibility was controlled by a few interacting QTLs mapped to chromosomes 3, 9, 17. It was also shown, that I/St mice displayed higher susceptibility to acute salmonella disease after intraperitoneal challenge with S. enterica serovar Typhimurium. Genetic mapping showed the involvement of Tbs2 (D9Mit89) loci in control of both salmonella and tuberculosis infections. In this study we define the immunological correlates of susceptibility in I/St mice after oral administration of S. enterica serovar Typhimurium. We found that resistance/susceptibility in I/St and A/Sn mice in our experiments correlated with differential pattern of early local and systemic responses of innate cells and specifically with higher involvement of Gr-1+ cells in local responses of resistant mice. This correlated with higher mucosal antibody production in A/Sn mice compared to I/St. I/St mice had predominant local involvement of CD11c+ cells and lack of mucosal antibodies. CD11c+ cells were the major type of cells that facilitated dissemination of salmonella to the target organs, while Gr-1+ cells contributed to exaggerated systemic inflammatory responses later in the course of infection. Our observations regarding the role of different cell populations in local and systemic immunity in susceptible and resistant mice are of importance for understanding of salmonella-induced cellular pathology and development of the strategy of its control. 1. Introduction Salmonella are intracellular gram-negative bacteria found ubiquitously in nature and still representing a major public health problem [1]. Over 16 million cases of salmonella are associated with enteric fever, and 600000 deaths from untreated infection are reported annually in developing countries worldwide [1]. An increased incidence of nontyphoid salmonella infections with most cases tracing back to food contamination is experienced in industrialized countries [1]. The risks and outcome of salmonella infection are influenced by many factors such as antimicrobials, integrity of the host endogenous flora, loss of the gastric acid barrier, HIV infection, and host genetics [1]. Some of mouse salmonella resistance genes such as Ity, Lps, and xid were widely studied in the past decades [2–4]. Some new loci, such as Tbc2 (D9Mit89), were identified recently [5]. However, the links between susceptible host phenotype and newly identified locus were not studied in detail. Salmonella
References
[1]
M. F. Roy and D. Malo, “Genetic regulation of host responses to Salmonella infection in mice,” Genes and Immunity, vol. 3, pp. 381–393, 2002.
[2]
A. Sansone, P. R. Watson, T. S. Wallis, P. R. Langford, and J. S. Kroll, “The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis,” Microbiology, vol. 148, no. 3, pp. 719–726, 2002.
[3]
N. Arpaia, J. Godec, L. Lau et al., “TLR signaling is required for Salmonella typhimurium virulence,” Cell, vol. 144, no. 5, pp. 675–688, 2011.
[4]
S. S. Pecquet, C. Ehrat, and P. B. Ernst, “Enhancement of mucosal antibody responses to Salmonella typhimurium and the microbial hapten phosphorylcholine in mice with X-linked immunodeficiency by B-cell precursors from the peritoneal cavity,” Infection and Immunity, vol. 60, no. 2, pp. 503–509, 1991.
[5]
L. N. Nesterenko, N. V. Kobets, and D. V. Balunets, “Model of chronic salmonellosis: parameters of infection and immune response in inbred mice genetically variable in susceptibility to salmonellosis,” Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii, vol. 4, pp. 9–14, 2012.
[6]
M. J. Wick, “Innate immune control of Salmonella enterica serovar typhimurium: mechanisms contributing to combating systemic Salmonella infection,” Journal of Innate Immunity, vol. 3, no. 6, pp. 543–549, 2011.
[7]
L. A. Knodler, B. A. Vallance, J. Celli et al., “Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, pp. 17733–17738.
[8]
S. E. Winter, M. G. Winter, I. Godinez et al., “A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella,” PLOS Pathogens, vol. 6, no. 8, Article ID e1001060, 2010.
[9]
I. Trebichavsky, I. Splíchal, and A. Splíchalová, “Innate immune response in the gut against Salmonella: review,” Folia Microbiologica, vol. 55, no. 3, Article ID 20526845, pp. 295–300, 2010.
[10]
A. D. Cameron and C. J. Dorman, “fundamental regulatory mechanism operating through OmpR and DNA topology controls expression of Salmonella pathogenicity islands SPI-1 and SPI-2,” PLoS Genetics, vol. 8, Article ID e1002615, 2012.
[11]
B. Coburn, Y. Li, D. Owen, B. A. Vallance, and B. B. Finlay, “Salmonella enterica serovar Typhimurium pathogenicity island 2 is necessary for complete virulence in a mouse model of infectious enterocolitis,” Infection and Immunity, vol. 73, no. 6, pp. 3219–3227, 2005.
[12]
J. L. Arques, I. Hautefort, K. Ivory et al., “Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen,” Gastroenterology, vol. 137, no. 2, pp. 579–587, 2009.
[13]
F. Sánchez, T. V. Radaeva, B. V. Nikonenko et al., “Multigenic control of disease severity after virulent Mycobacterium tuberculosis infection in mice,” Infection and Immunity, vol. 71, no. 1, pp. 126–131, 2003.
[14]
L. N. Nesterenko, D. V. Balunets, A. S. Tomova et al., “Mycobacterium tuberculosis-susceptible I/St mice develop severe disease following infection with taxonomically distant bacteria, Salmonella enterica and Chlamydia pneumoniae,” Clinical and Experimental Immunology, vol. 146, no. 1, pp. 93–100, 2006.
[15]
N. Kobets, K. Kennedy, D. O'Donnell, and P. Garside, “An investigation of the ability of orally primed and tolerised T cells to help B cells upon mucosal challenge,” Immunology, vol. 112, no. 4, pp. 550–558, 2004.
[16]
D. M. Monack, D. M. Bouley, and S. Falkow, “Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNγ neutralization,” Journal of Experimental Medicine, vol. 199, no. 2, pp. 231–241, 2004.
[17]
A. A. Navarini, K. S. Lang, A. Verschoor et al., “Innate immune-induced depletion of bone marrow neutrophils aggravates systemic bacterial infections,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 17, pp. 7107–7112, 2009.
[18]
T. K. Kondratieva, E. I. Rubakova, I. A. Linge, V. V. Evstifeev, K. B. Majorov, and A. S. Apt, “B cells delay neutrophil migration toward the site of stimulus: tardiness critical for effective bacillus Calmette-Guérin vaccination against tuberculosis infection in mice,” Journal of Immunology, vol. 184, no. 3, pp. 1227–1234, 2010.
[19]
E. Kondratieva, N. Logunova, K. Majorov, M. Averbakh, and A. Apt, “Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium,” PloS one, vol. 5, no. 5, p. e10515, 2010.
[20]
L. Le Bourhis, J. G. Magalhaes, T. Selvanantham et al., “Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1-independent Salmonella enterica serovar typhimurium infection,” Infection and Immunity, vol. 77, no. 11, pp. 4480–4486, 2009.