全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synergy in B-Cell Activation between Toll-Like Receptor 9 and Transmembrane Activator and Calcium-Modulating Cyclophilin Ligand Interactor (TACI) in A181E/C104R Compound Heterozygous Siblings

DOI: 10.1155/2013/365916

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. Approximately 9% of common variable immunodeficiency (CVID) patients harbor variants in the transmembrane activator and CAML interactor gene, TACI, which contribute to CVID development. We found identical compound heterozygous TACI variants (C104R and A181E) in kindred of which one sibling had severe CVID with refractory auto immunity, and a second sibling remained asymptomatic. This study investigated possible differences in B-cell phenotype and function that could explain this divergent clinical expression. Methods. C104R and A181E TACI variants were identified through Sanger sequencing. Phenotypic evaluation of the lymphocyte compartment was performed by flow cytometry analyses. Lymphoblastoid cell lines (LCL) from the index patient, asymptomatic sibling, and controls were generated. Intracellular TACI expression was determined, and activation-associated calcium flux capacity was measured. In vitro stimulation assays and RT PCR were performed. Results. Both intracellular levels and surface expressed TACI protein were higher in the asymptomatic sibling than the CVID patient as were TACI-triggering-induced mRNA expression AID and production of Ig class-switched antibodies. In analogy, the asymptomatic sibling displayed enhanced Toll-like receptor 9 expression and signaling, suggesting a compensatory immune mechanism. Conclusions. Posttranscriptional regulation of TACI protein and cross-talk with TLR9 signaling may contribute to phenotypic diversity between individuals with TACI variants. 1. Introduction Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by recurrent bacterial infections, hypogammaglobulinemia, and impaired antigen-specific antibody synthesis [1]. In approximately 10% of patients, a genetic defect has been identified. In addition, functional defects have been described, for example, in Toll-like receptor (TLR) signaling [2, 3]. The most prevalent genetic alterations are located in the TNFRSF13B gene encoding transmembrane activator, calcium modulator, and cyclophilin ligand (CAML) interactor (TACI) [4]. TACI is mainly expressed on B-cells and belongs to the tumor necrosis factor receptor (TNFR) family [4]. Two ligands for TACI have been described: B-cell activating factor (BAFF) [5] and a proliferation-inducing ligand (APRIL) [6, 7]. In addition, TACI may bind proteoglycans including syndecan-2 that stimulate TACI-mediated signaling [8, 9]. BAFF and APRIL also bind B-cell maturation antigen (BCMA) [10], and BAFF has a third receptor, BAFFR [11]. This versatility complicates studying the precise

References

[1]  M. A. Park, J. T. Li, J. B. Hagan, D. E. Maddox, and R. S. Abraham, “Common variable immunodeficiency: a new look at an old disease,” The Lancet, vol. 372, no. 9637, pp. 489–502, 2008.
[2]  C. Cunningham-Rundles, L. Radigan, A. K. Knight, L. Zhang, L. Bauer, and A. Nakazawa, “TLR9 activation is defective in common variable immune deficiency,” Journal of Immunology, vol. 176, no. 3, pp. 1978–1987, 2006.
[3]  J. E. Yu, A. K. Knight, L. Radigan et al., “Toll-like receptor 7 and 9 defects in common variable immunodeficiency,” Journal of Allergy and Clinical Immunology, vol. 124, no. 2, pp. 349–356, 2009.
[4]  G.-U. Von Bülow and R. J. Bram, “NF-AT activation induced by a CAML-interacting member of the tumor necrosis factor receptor superfamily,” Science, vol. 278, no. 5335, pp. 138–141, 1997.
[5]  P. Schneider, F. Mackay, V. Steiner et al., “BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth,” Journal of Experimental Medicine, vol. 189, no. 11, pp. 1747–1756, 1999.
[6]  Y. Wu, D. Bressette, J. A. Carrell et al., “Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS,” Journal of Biological Chemistry, vol. 275, no. 45, pp. 35478–35485, 2000.
[7]  S. A. Marsters, M. Yan, R. M. Pitti, P. E. Haas, V. M. Dixit, and A. Ashkenazi, “Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI,” Current Biology, vol. 10, no. 13, pp. 785–788, 2000.
[8]  D. Bischof, S. F. Elsawa, G. Mantchev et al., “Selective activation of TACI by syndecan-2,” Blood, vol. 107, no. 8, pp. 3235–3242, 2006.
[9]  F. Mackay, P. Schneider, P. Rennert, and J. Browning, “BAFF and APRIL: a tutorial on B cell survival,” Annual Review of Immunology, vol. 21, pp. 231–264, 2003.
[10]  Y. Laabi, M. P. Gras, F. Carbonnel et al., “A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p13) translocation in a malignant T cell lymphoma,” EMBO Journal, vol. 11, no. 11, pp. 3897–3904, 1992.
[11]  J. S. Thompson, S. A. Bixler, F. Qian et al., “BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF,” Science, vol. 293, no. 5537, pp. 2108–2111, 2001.
[12]  J. Hauer, S. Püschner, P. Ramakrishnan et al., “TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-κB pathway by TRAF-binding TNFRs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 8, pp. 2874–2879, 2005.
[13]  E. Castigli, S. A. Wilson, A. Elkhal, E. Ozcan, L. Garibyan, and R. S. Geha, “Transmembrane activator and calcium modulator and cyclophilin ligand interactor enhances CD40-driven plasma cell differentiation,” Journal of Allergy and Clinical Immunology, vol. 120, no. 4, pp. 885–891, 2007.
[14]  E. Ozcan, L. Garibyan, J. J.-Y. Lee, R. J. Bram, K.-P. Lam, and R. S. Geha, “Transmembrane activator, calcium modulator, and cyclophilin ligand interactor drives plasma cell differentiation in LPS-activated B cells,” Journal of Allergy and Clinical Immunology, vol. 123, no. 6, pp. 1277–1286, 2009.
[15]  E. Ozcan, I. Rauter, L. Garibyan, S. R. Dillon, and R. S. Geha, “Toll-like receptor 9, transmembrane activator and calcium-modulating cyclophilin ligand interactor, and CD40 synergize in causing B-cell activation,” Journal of Allergy and Clinical Immunology, vol. 128, no. 3, pp. 601–609, 2011.
[16]  B. He, R. Santamaria, W. Xu et al., “The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88,” Nature Immunology, vol. 11, no. 9, pp. 836–845, 2010.
[17]  U. Salzer, C. Bacchelli, S. Buckridge et al., “Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes,” Blood, vol. 113, no. 9, pp. 1967–1976, 2009.
[18]  L. Zhang, L. Radigan, U. Salzer et al., “Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: clinical and immunologic outcomes in heterozygotes,” Journal of Allergy and Clinical Immunology, vol. 120, no. 5, pp. 1178–1185, 2007.
[19]  Q. Pan-Hammarstr?m, U. Salzer, L. Du et al., “Reexamining the role of TACI coding variants in common variable immunodeficiency and selective IgA deficiency,” Nature Genetics, vol. 39, no. 4, pp. 429–430, 2007.
[20]  R. M. Locksley, N. Killeen, and M. J. Lenardo, “The TNF and TNF receptor superfamilies: integrating mammalian biology,” Cell, vol. 104, no. 4, pp. 487–501, 2001.
[21]  L. Garibyan, A. A. Lobito, R. M. Siegel, M. E. Call, K. W. Wucherpfennig, and R. S. Geha, “Dominant-negative effect of the heterozygous C104R TACI mutation in common variable immunodeficiency (CVID),” Journal of Clinical Investigation, vol. 117, no. 6, pp. 1550–1557, 2007.
[22]  S. G. Hymowitz, D. R. Patel, H. J. A. Wallweber et al., “Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding,” Journal of Biological Chemistry, vol. 280, no. 8, pp. 7218–7227, 2005.
[23]  E. Castigli, S. A. Wilson, L. Garibyan et al., “TACI is mutant in common variable immunodeficiency and IgA deficiency,” Nature Genetics, vol. 37, no. 8, pp. 829–834, 2005.
[24]  U. Salzer, H. M. Chapel, A. D. B. Webster et al., “Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans,” Nature Genetics, vol. 37, no. 8, pp. 820–828, 2005.
[25]  C. Bacchelli, K. F. Buckland, S. Buckridge et al., “The C76R transmembrane activator and calcium modulator cyclophilin ligand interactor mutation disrupts antibody production and B-cell homeostasis in heterozygous and homozygous mice,” Journal of Allergy and Clinical Immunology, vol. 127, no. 5, pp. 1253–1259, 2011.
[26]  A. J. Fried, I. Rauter, S. R. Dillon, H. H. Jabara, and R. S. Geha, “Functional analysis of transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) mutations associated with common variable immunodeficiency,” Journal of Allergy and Clinical Immunology, vol. 128, no. 1, pp. 226–228, 2011.
[27]  J. J. Lee, H. H. Jabara, L. Garibyan et al., “The C104R mutant impairs the function of transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) through haploinsufficiency,” Journal of Allergy and Clinical Immunology, vol. 126, no. 6, pp. 1234–e2, 2010.
[28]  J. J. Lee, I. Rauter, L. Garibyan et al., “The murine equivalent of the A181E TACI mutation associated with common variable immunodeficiency severely impairs B-cell function,” Blood, vol. 114, no. 11, pp. 2254–2262, 2009.
[29]  A. A. J. M. van de Ven, L. van de Corput, C. M. van Tilburg et al., “Lymphocyte characteristics in children with common variable immunodeficiency,” Clinical Immunology, vol. 135, no. 1, pp. 63–71, 2010.
[30]  E. Latz, A. Schoenemeyer, A. Visintin et al., “TLR9 signals after translocating from the ER to CpG DNA in the lysosome,” Nature Immunology, vol. 5, no. 2, pp. 190–198, 2004.
[31]  C. Foerster, N. Voelxen, M. Rakhmanov et al., “B cell receptor-mediated calcium signaling is impaired in B lymphocytes of type Ia patients with common variable immunodeficiency,” Journal of Immunology, vol. 184, no. 12, pp. 7305–7313, 2010.
[32]  M. C. Van Zelm, J. Smet, B. Adams et al., “CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1265–1274, 2010.
[33]  M. Malphettes, L. Gérard, M. Carmagnat et al., “Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect,” Clinical Infectious Diseases, vol. 49, no. 9, pp. 1329–1338, 2009.
[34]  F. Dedeoglu, B. Horwitz, J. Chaudhuri, F. W. Alt, and R. S. Geha, “Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFκB,” International Immunology, vol. 16, no. 3, pp. 395–404, 2004.
[35]  M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai, and T. Honjo, “Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme,” Cell, vol. 102, no. 5, pp. 553–563, 2000.
[36]  P. Revy, T. Muto, Y. Levy et al., “Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2),” Cell, vol. 102, no. 5, pp. 565–575, 2000.
[37]  A. M. Krieg, “CpG motifs in bacterial DNA and their immune effects,” Annual Review of Immunology, vol. 20, pp. 709–760, 2002.
[38]  T. Kawai and S. Akira, “Innate immune recognition of viral infection,” Nature Immunology, vol. 7, no. 2, pp. 131–137, 2006.
[39]  E. Latz, A. Verma, A. Visintin et al., “Ligand-induced conformational changes allosterically activate Toll-like receptor 9,” Nature Immunology, vol. 8, no. 7, pp. 772–779, 2007.
[40]  S. Sato, H. Sanjo, K. Takeda et al., “Essential function for the kinase TAK1 in innate and adaptive immune responses,” Nature Immunology, vol. 6, no. 11, pp. 1087–1095, 2005.
[41]  F. Mackay and H. Leung, “The role of the BAFF/APRIL system on T cell function,” Seminars in Immunology, vol. 18, no. 5, pp. 284–289, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133