全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Coevolution of Mucosal Immunoglobulins and the Polymeric Immunoglobulin Receptor: Evidence That the Commensal Microbiota Provided the Driving Force

DOI: 10.1155/2014/541537

Full-Text   Cite this paper   Add to My Lib

Abstract:

Immunoglobulins (Igs) in mucosal secretions contribute to immune homeostasis by limiting access of microbial and environmental antigens to the body proper, maintaining the integrity of the epithelial barrier and shaping the composition of the commensal microbiota. The emergence of IgM in cartilaginous fish represented the primordial mucosal Ig, which is expressed in all higher vertebrates. Expansion and diversification of the mucosal Ig repertoire led to the emergence of IgT in bony fishes, IgX in amphibians, and IgA in reptiles, birds, and mammals. Parallel evolution of cellular receptors for the constant (Fc) regions of Igs provided mechanisms for their transport and immune effector functions. The most ancient of these Fc receptors is the polymeric Ig receptor (pIgR), which first appeared in an ancestor of bony fishes. The pIgR transports polymeric IgM, IgT, IgX, and IgA across epithelial cells into external secretions. Diversification and refinement of the structure of mucosal Igs during tetrapod evolution were paralleled by structural changes in pIgR, culminating in the multifunctional secretory IgA complex in mammals. In this paper, evidence is presented that the mutualistic relationship between the commensal microbiota and the vertebrate host provided the driving force for coevolution of mucosal Igs and pIgR. 1. Introduction The mucosal surfaces of the body form the primary interface with the outside world, providing a conduit for intake of nutrients and air and a home for beneficial microbes that act as “extended self” [1]. Host cells that populate mucosal surfaces must carry out the challenging task of maintaining a mutualistic relationship with the resident microbiota, while protecting the body proper against potential pathogens, toxic environmental substances, and soluble dietary antigens that could act as systemic allergens. Adaptive immune systems, characterized by clonally expressed, somatically diversified antigen receptors in lymphocytes, first emerged in a common ancestor of modern vertebrates [2, 3] (Figure 1). Jawless fish of the superclass Agnatha (hagfishes and lampreys) generate variable-like receptors (VLRs) for antigen (Ag) by a mechanism involving gene conversion. The evolution of the RAG1/2 dependent mechanism of V(D)J somatic recombination in an ancestor of modern jawed vertebrates led to the first appearance of Ag-specific immunoglobulins (Igs) and T-cell antigen receptors [4, 5]. The basic structural unit of Igs comprises 2 identical light chains, encoded by IGL genes, and 2 identical heavy chains, encoded by IGH genes

References

[1]  C. L. Maynard, C. O. Elson, R. D. Hatton, and C. T. Weaver, “Reciprocal interactions of the intestinal microbiota and immune system,” Nature, vol. 489, no. 7415, pp. 231–241, 2012.
[2]  M. F. Flajnik and M. Kasahara, “Origin and evolution of the adaptive immune system: genetic events and selective pressures,” Nature Reviews Genetics, vol. 11, no. 1, pp. 47–59, 2010.
[3]  M. F. Flajnik and L. du Pasquier, “Evolution of the immune system,” in Fundamental Immunology, W. E. Paul, Ed., chapter 4, pp. 67–128, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2012.
[4]  M. Hirano, S. Das, P. Guo, and M. D. Cooper, “The evolution of adaptive immunity in vertebrates,” Advances in Immunology, vol. 109, pp. 125–157, 2011.
[5]  T. Boehm, N. McCurley, Y. Sutoh, M. Schorpp, M. Kasahara, and M. D. Cooper, “VLR-based adaptive immunity,” Annual Review of Immunology, vol. 30, pp. 203–220, 2012.
[6]  T. Hunkapiller and L. Hood, “Immunology: the growing immunoglobulin gene superfamily,” Nature, vol. 323, no. 6083, pp. 15–16, 1986.
[7]  P. Bork, L. Holm, and C. Sander, “The immunoglobulin fold structural classification, sequence patterns and common core,” Journal of Molecular Biology, vol. 242, no. 4, pp. 309–320, 1994.
[8]  C. S. Kaetzel and M. W. Russell, “Phylogeny and comparative physiology of IgA,” in Mucosal Immunology, J. Mestecky, W. Strober, H. Cheroutre, B. Kelsall, B. N. Lambrecht, and M. W. Russell, Eds., chapter 19, Academic Press/Elsevier, Waltham, Mass, USA, 2014.
[9]  Y. He and P. J. Bjorkman, “Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 30, pp. 12431–12436, 2011.
[10]  J. M. Woof and D. R. Burton, “Human antibody-Fc receptor interactions illuminated by crystal structures,” Nature Reviews Immunology, vol. 4, no. 2, pp. 89–99, 2004.
[11]  W. L. Martin, A. P. West Jr., L. Gan, and P. J. Bjorkman, “Crystal structure at 2.8 ? of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding,” Molecular Cell, vol. 7, no. 4, pp. 867–877, 2001.
[12]  E. S. Ward, “Acquiring maternal immunoglobulin: different receptors, similar functions,” Immunity, vol. 20, no. 5, pp. 507–508, 2004.
[13]  C. S. Kaetzel, “The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces,” Immunological Reviews, vol. 206, no. 1, pp. 83–99, 2005.
[14]  M. Acharya, G. Borland, A. L. Edkins et al., “CD23/FcεRII: molecular multi-tasking,” Clinical and Experimental Immunology, vol. 162, no. 1, pp. 12–23, 2010.
[15]  V. B. Klimovich, “IgM and its receptors: structural and functional aspects,” Biochemistry, vol. 76, no. 5, pp. 534–549, 2011.
[16]  J. M. Woof and M. W. Russell, “Structure and function relationships in IgA,” Mucosal Immunology, vol. 4, no. 6, pp. 590–597, 2011.
[17]  F.-E. Johansen and C. S. Kaetzel, “Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity,” Mucosal Immunology, vol. 4, no. 6, pp. 598–602, 2011.
[18]  F. Kokubu, K. Hinds, R. Litman, M. J. Shamblott, and G. W. Litman, “Extensive families of constant region genes in a phylogenetically primitive vertebrate indicate an additional level of immunoglobulin complexity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 16, pp. 5868–5872, 1987.
[19]  A. S. Greenberg, A. L. Hughes, J. Guo, D. Avila, E. C. McKinney, and M. F. Flajnik, “A novel “chimeric” antibody class in cartilaginous fish: IgM may not be the primordial immunoglobulin,” European Journal of Immunology, vol. 26, no. 5, pp. 1123–1129, 1996.
[20]  H. Dooley and M. F. Flajnik, “Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum,” European Journal of Immunology, vol. 35, no. 3, pp. 936–945, 2005.
[21]  S. F. Schluter, R. M. Bernstein, and J. J. Marchalonis, “Molecular origins and evolution of immunoglobulin heavy-chain genes of jawed vertebrates,” Immunology Today, vol. 18, no. 11, pp. 543–549, 1997.
[22]  Y. Ohta and M. Flajnik, “IgD, like IgM, is a primordial immunoglobulin class perpetuated in most jawed vertebrates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10723–10728, 2006.
[23]  S. Fillatreau, A. Six, S. Magadan, R. Castro, J. O. Sunyer, and P. Boudinot, “The astonishing diversity of Ig classes and B cell repertoires in teleost fish,” Frontiers in Immunology, vol. 4, no. 28, 2013.
[24]  W. Harriman, H. V?lk, N. Defranoux, and M. Wabl, “Immunoglobulin class switch recombination,” Annual Review of Immunology, vol. 11, pp. 361–384, 1993.
[25]  J. Stavnezer and C. T. Amemiya, “Evolution of isotype switching,” Seminars in Immunology, vol. 16, no. 4, pp. 257–275, 2004.
[26]  V. M. Barreto, Q. Pan-Hammarstrom, Y. Zhao, L. Hammarstrom, Z. Misulovin, and M. C. Nussenzweig, “AID from bony fish catalyzes class switch recombination,” Journal of Experimental Medicine, vol. 202, no. 6, pp. 733–738, 2005.
[27]  T. C. Fletcher and A. White, “Antibody production in the plaice (Pleuronectes platessa L.) after oral and parenteral immunization with Vibrio anguillarum antigens,” Aquaculture, vol. 1, pp. 417–428, 1972.
[28]  J. W. H. M. Rombout, L. J. Blok, C. H. J. Lamers, and E. Egberts, “Immunization of carp (Cyprinus carpio) with a Vibrio anguillarum bacterin: indications for a common mucosal immune system,” Developmental and Comparative Immunology, vol. 10, no. 3, pp. 341–351, 1986.
[29]  U. Georgopoulou and J.-M. Vernier, “Local immunological response in the posterior intestinal segment of the rainbow trout after oral administration of macromolecules,” Developmental and Comparative Immunology, vol. 10, no. 4, pp. 529–537, 1986.
[30]  C. J. Lobb, “Secretory immunity induced in catfish, Ictalurus punctatus, following bath immunization,” Developmental and Comparative Immunology, vol. 11, no. 4, pp. 727–738, 1987.
[31]  J. D. Hansen, E. D. Landis, and R. B. Phillips, “Discovery of a unique Ig heavy-chain (IgT) in rainbow trout: implications for a distinctive B cell developmental pathway in teleost fish,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 19, pp. 6919–6924, 2005.
[32]  N. Danilova, J. Bussmann, K. Jekosch, and L. A. Steiner, “The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z,” Nature Immunology, vol. 6, no. 3, pp. 295–302, 2005.
[33]  R. Savan, A. Aman, K. Sato, R. Yamaguchi, and M. Sakai, “Discovery of a new class of immunoglobulin heavy chain from fugu,” European Journal of Immunology, vol. 35, no. 11, pp. 3320–3331, 2005.
[34]  R. Savan, A. Aman, M. Nakao, H. Watanuki, and M. Sakai, “Discovery of a novel immunoglobulin heavy chain gene chimera from common carp (Cyprinus carpio L.),” Immunogenetics, vol. 57, no. 6, pp. 458–463, 2005.
[35]  F. Gambón-Deza, C. Sánchez-Espinel, and S. Magadán-Mompó, “Presence of an unique IgT on the IGH locus in three-spined stickleback fish (Gasterosteus aculeatus) and the very recent generation of a repertoire of VH genes,” Developmental and Comparative Immunology, vol. 34, no. 2, pp. 114–122, 2010.
[36]  T. M. Tadiso, K. K. Lie, and I. Hordvik, “Molecular cloning of IgT from Atlantic salmon, and analysis of the relative expression of τ, μ and δ in different tissues,” Veterinary Immunology and Immunopathology, vol. 139, no. 1, pp. 17–26, 2011.
[37]  S. Mashoof, C. Pohlenz, P. L. Chen et al., “Expressed IgH μ and τ transcripts share diversity segment in ranched Thunnus orientalis,” Developmental and Comparative Immunology, vol. 43, no. 1, pp. 76–86, 2014.
[38]  Y.-A. Zhang, I. Salinas, J. Li et al., “IgT, a primitive immunoglobulin class specialized in mucosal immunity,” Nature Immunology, vol. 11, no. 9, pp. 827–835, 2010.
[39]  S. Magadán-Mompó, C. Sánchez-Espinel, and F. Gambón-Deza, “Immunoglobulin heavy chains in medaka (Oryzias latipes),” BMC Evolutionary Biology, vol. 11, no. 1, article 165, 2011.
[40]  C. T. Amemiya, J. Alfoldi, A. P. Lee et al., “The African coelacanth genome provides insights into tetrapod evolution,” Nature, vol. 496, no. 7445, pp. 311–316, 2013.
[41]  T. Ota, J. P. Rast, G. W. Litman, and C. T. Amemiya, “Lineage-restricted retention of a primitive immunoglobulin heavy chain isotype within the Dipnoi reveals an evolutionary paradox,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2501–2506, 2003.
[42]  Y. Sun, Z. Wei, N. Li, and Y. Zhao, “A comparative overview of immunoglobulin genes and the generation of their diversity in tetrapods,” Developmental and Comparative Immunology, vol. 39, no. 1-2, pp. 103–109, 2013.
[43]  I. Hadji-Azimi, “Anuran immunoglobulins: a review,” Developmental and Comparative Immunology, vol. 3, no. 2, pp. 223–243, 1979.
[44]  E. Hsu, M. F. Flajnik, and L. du Pasquier, “A third immunoglobulin class in amphibians,” The Journal of Immunology, vol. 135, no. 3, pp. 1998–2004, 1985.
[45]  C. T. Amemiya, R. N. Haire, and G. W. Litman, “Nucleotide sequence of a cDNA encoding a third distinct Xenopus immunoglobulin heavy chain isotype,” Nucleic Acids Research, vol. 17, no. 13, p. 5388, 1989.
[46]  R. Mu?mann, M. Wilson, A. Marcuz, M. Courtet, and L. du Pasquier, “Membrane exon sequences of the three Xenopus Ig classes explain the evolutionary origin of mammalian isotypes,” European Journal of Immunology, vol. 26, no. 2, pp. 409–414, 1996.
[47]  R. Mu?mann, L. du Pasquier, and E. Hsu, “Is Xenopus IgX an analog of IgA?” European Journal of Immunology, vol. 26, no. 12, pp. 2823–2830, 1996.
[48]  B. Schaerlinger and J.-P. Frippiat, “IgX antibodies in the urodele amphibian Ambystoma mexicanum,” Developmental and Comparative Immunology, vol. 32, no. 8, pp. 908–915, 2008.
[49]  B. Schaerlinger, M. Bascove, and J.-P. Frippiat, “A new isotype of immunoglobulin heavy chain in the urodele amphibian Pleurodeles waltl predominantly expressed in larvae,” Molecular Immunology, vol. 45, no. 3, pp. 776–786, 2008.
[50]  S. Mashoof, A. Goodroe, C. C. Du et al., “Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in Xenopus laevis,” Mucosal Immunology, vol. 6, no. 2, pp. 358–368, 2013.
[51]  J. P. Vaerman, J. Picard, and J. F. Heremans, “Structural data on chicken IgA and failure to identify the IgA of the tortoise,” in Immunologic Phylogeny, vol. 64 of Advances in Experimental Medicine and Biology, pp. 185–195, Springer, New York, NY, USA, 1975.
[52]  J. L. Portis and J. E. Coe, “IgM the secretory immunoglobulin of reptiles and amphibians,” Nature, vol. 258, no. 5535, pp. 547–548, 1975.
[53]  J. E. Coe, D. Leong, J. L. Portis, and L. A. Thomas, “Immune response in the garter snake (Thamnophis ordinoides),” Immunology, vol. 31, no. 3, pp. 417–424, 1976.
[54]  D. H?dge and H. Ambrosius, “Evolution of low molecular weight immunoglobulins—IV. IgY-like immunoglobulins of birds, reptiles and amphibians, precursors of mammalian IgA,” Molecular Immunology, vol. 21, no. 8, pp. 699–707, 1984.
[55]  D. H?dge and H. Ambrosius, “Evolution of low molecular weight immunoglobulins V. Degree of antigenic relationship between the 7S immunoglobulins of mammals, birds, and lower vertebrates to the turkey IgY,” Developmental and Comparative Immunology, vol. 10, no. 3, pp. 377–385, 1986.
[56]  S. Magadan-Mompo, C. Sanchez-Espinel, and F. Gambon-Deza, “Immunoglobulin genes of the turtles,” Immunogenetics, vol. 65, no. 3, pp. 227–237, 2013.
[57]  Z. Wei, Q. Wu, L. Ren et al., “Expression of IgM, IgD, and IgY in a reptile, Anolis carolinensis,” The Journal of Immunology, vol. 183, no. 6, pp. 3858–3864, 2009.
[58]  F. Gambón-Deza, C. Sánchez-Espinel, and J. V. Beneitez, “A novel IgA-like immunoglobulin in the reptile Eublepharis macularius,” Developmental and Comparative Immunology, vol. 31, no. 6, pp. 596–605, 2007.
[59]  G. Cheng, Y. Gao, T. Wang et al., “Extensive diversification of IgH subclass-encoding genes and IgM subclass switching in crocodilians,” Nature Communications, vol. 4, article 1337, 2013.
[60]  S. Magadan-Mompo, C. Sanchez-Espinel, and F. Gambon-Deza, “IgH loci of American alligator and saltwater crocodile shed light on IgA evolution,” Immunogenetics, vol. 65, no. 7, pp. 531–541, 2013.
[61]  E. Orlans and M. E. Rose, “An IgA-like immunoglobulin in the fowl,” Immunochemistry, vol. 9, no. 8, pp. 833–838, 1972.
[62]  G. A. Leslie and L. N. Martin, “Studies on the secretory immunologic system of fowl. 3. Serum and secretory IgA of the chicken,” The Journal of Immunology, vol. 110, no. 1, pp. 1–9, 1973.
[63]  J. Bienenstock, D. Y. Perey, J. Gauldie, and B. J. Underdown, “Chicken γA: physicochemical and immunochemical characteristics,” The Journal of Immunology, vol. 110, no. 2, pp. 524–533, 1973.
[64]  A. M. Lebacq-Verheyden, J. P. Vaerman, and J. F. Heremans, “Quantification and distribution of chicken immunoglobulins IgA, IgM and IgG in serum and secretions,” Immunology, vol. 27, no. 4, pp. 683–692, 1974.
[65]  J. Goudswaard, A. Noordzij, R. H. van Dam, J. A. vander Donk, and J. P. Vaerman, “The immunoglobulins of the turkey (Meleagris gallopavo). Isolation and characterization of IgG, IgM and IgA in body fluids, eggs and intraocular tissues,” Poultry science, vol. 56, no. 6, pp. 1847–1851, 1977.
[66]  D. Hadge and H. Ambrosius, “Comparative studies on the structure of biliary immunoglobulins of some avian species. II. Antigenic properties of the biliary immunoglobulins of chicken, turkey, duck and goose,” Developmental and Comparative Immunology, vol. 12, no. 2, pp. 319–329, 1988.
[67]  J. Goudswaard, J. P. Vaerman, and J. F. Heremans, “Three immunoglobulin classes in the pigeon (Columbia livia),” International Archives of Allergy and Applied Immunology, vol. 53, no. 5, pp. 409–419, 1977.
[68]  P. L. K. Ng and D. A. Higgins, “Bile immunoglobulin of the duck (Anas platyrhynchos). I. Preliminary characterization and ontogeny,” Immunology, vol. 58, no. 2, pp. 323–327, 1986.
[69]  K. E. Magor, G. W. Warr, Y. Bando, D. L. Middleton, and D. A. Higgins, “Secretory immune system of the duck (Anas platyrhynchos). Identification and expression of the genes encoding IgA and IgM heavy chains,” European Journal of Immunology, vol. 28, no. 3, pp. 1063–1068, 1998.
[70]  Y. Zhao, H. Rabbani, A. Shimizu, and L. Hammarstr?m, “Mapping of the chicken immunoglobulin heavy-chain constant region gene locus reveals an inverted α gene upstream of a condensed υ gene,” Immunology, vol. 101, no. 3, pp. 348–353, 2000.
[71]  M. L. Lundqvist, D. L. Middleton, S. Hazard, and G. W. Warr, “The immunoglobulin heavy chain locus of the duck: genomic organization and expression of D, J, and C region genes,” The Journal of Biological Chemistry, vol. 276, no. 50, pp. 46729–46736, 2001.
[72]  T. Huang, M. Zhang, Z. Wei et al., “Analysis of immunoglobulin transcripts in the ostrich Struthio camelus, a primitive avian species,” PLoS ONE, vol. 7, no. 3, Article ID e34346, 2012.
[73]  K. H. Roux, “Immunoglobulin structure and function as revealed by electron microscopy,” International Archives of Allergy and Immunology, vol. 120, no. 2, pp. 85–99, 1999.
[74]  F. Gambón-Deza, C. Sánchez-Espinel, and S. Magadán-Mompó, “The immunoglobulin heavy chain locus in the platypus (Ornithorhynchus anatinus),” Molecular Immunology, vol. 46, no. 13, pp. 2515–2523, 2009.
[75]  Y. Zhao, H. Cui, C. M. Whittington et al., “Ornithorhynchus anatinus (platypus) links the evolution of immunoglobulin genes in eutherian mammals and nonmammalian tetrapods,” The Journal of Immunology, vol. 183, no. 5, pp. 3285–3293, 2009.
[76]  M. Aveskogh and L. Hellman, “Evidence for an early appearance of modern post-switch isotypes in mammalian evolution, cloning of IgE, IgG and IgA from the marsupial Monodelphis domestica,” European Journal of Immunology, vol. 28, no. 9, pp. 2738–2750, 1998.
[77]  K. Belov, G. A. Harrison, and D. W. Cooper, “Molecular cloning of the cDNA encoding the constant region of the immunoglobulin a heavy chain (Cα) from a marsupial: Trichosurus vulpecula (common brushtail possum),” Immunology Letters, vol. 60, no. 2-3, pp. 165–170, 1998.
[78]  K. Belov, K. R. Zenger, L. Hellman, and D. W. Cooper, “Echidna IgA supports mammalian unity and traditional Therian relationship,” Mammalian Genome, vol. 13, no. 11, pp. 656–663, 2002.
[79]  K. Belov and L. Hellman, “Immunoglobulin genetics of Ornithorhynchus anatinus (platypus) and Tachyglossus aculeatus (short-beaked echidna),” Comparative Biochemistry and Physiology, vol. 136, no. 4, pp. 811–819, 2003.
[80]  M. Vernersson, M. Aveskogh, B. Munday, and L. Hellman, “Evidence for an early appearance of modern post-switch immunoglobulin isotypes in mammalian evolution (II), cloning of IgE, IgG1 and IgG2 from a monotreme, the duck-billed platypus, Ornithorhynchus anatinus,” European Journal of Immunology, vol. 32, no. 8, pp. 2145–2155, 2002.
[81]  C. Auffray, R. Nageotte, and J. L. Sikorav, “Mouse immunoglobulin A: nucleotide sequence of the structural gene for the α heavy chain derived from cloned cDNAs,” Gene, vol. 13, no. 4, pp. 365–374, 1981.
[82]  T. Ukaji, D. Sumiyama, and O. Kai, “Sequence determination of the heavy-chain constant region in four immunoglobulin classes of Mongolian gerbils (Meriones unguiculatus),” Experimental Animals, vol. 61, no. 2, pp. 99–107, 2012.
[83]  R. C. Burnett, W. C. Hanly, S. K. Zhai, and K. L. Knight, “The IgA heavy chain gene family in rabbit: cloning and sequence analysis of 13 Cα genes,” The EMBO Journal, vol. 8, no. 13, pp. 4041–4047, 1989.
[84]  D. K. Lanning, S.-K. Zhai, and K. L. Knight, “Analysis of the 3′ Cμ region of the rabbit Ig heavy chain locus,” Gene, vol. 309, no. 2, pp. 135–144, 2003.
[85]  F. Ros, J. Puels, N. Reichenberger, W. van Schooten, R. Buelow, and J. Platzer, “Sequence analysis of 0.5?Mb of the rabbit germline immunoglobulin heavy chain locus,” Gene, vol. 330, no. 1-2, pp. 49–59, 2004.
[86]  M. Patel, D. Selinger, G. E. Mark, G. J. Hickey, and G. F. Hollis, “Sequence of the dog immunoglobulin alpha and epsilon constant region genes,” Immunogenetics, vol. 41, no. 5, pp. 282–286, 1995.
[87]  Z. Zhao, Y. Zhao, Q. Pan-Hammarstr?m et al., “Physical mapping of the giant panda immunoglobulin heavy chain constant region genes,” Developmental and Comparative Immunology, vol. 31, no. 10, pp. 1034–1049, 2007.
[88]  W. R. Brown and J. E. Butler, “Characterization of a Cα gene of swine,” Molecular Immunology, vol. 31, no. 8, pp. 633–642, 1994.
[89]  W. R. Brown, H. Rabbani, J. E. Butler, and L. Hammarstr?m, “Characterization of the bovine Cα gene,” Immunology, vol. 91, no. 1, pp. 1–6, 1997.
[90]  G. P. White, P. Roche, M. R. Brandon, S. E. Newton, and E. N. T. Meeusen, “Cloning and characterization of sheep (Ovis aries) immunoglobulin α chain,” Immunogenetics, vol. 48, no. 5, pp. 359–362, 1998.
[91]  A. Mancia, T. A. Romano, H. A. Gefroh et al., “Characterization of the immunoglobulin A heavy chain gene of the Atlantic bottlenose dolphin (Tursiops truncatus),” Veterinary Immunology and Immunopathology, vol. 118, no. 3-4, pp. 304–309, 2007.
[92]  B. Wagner, I. Greiser-Wilke, and D. F. Antczak, “Characterization of the horse [Equus caballus] IGHA gene,” Immunogenetics, vol. 55, no. 8, pp. 552–560, 2003.
[93]  N. Takahashi, S. Ueda, and M. Obata, “Structure of human immunoglobulin gamma genes: implications for evolution of a gene family,” Cell, vol. 29, no. 2, pp. 671–679, 1982.
[94]  J. G. Flanagan, M.-P. Lefranc, and T. H. Rabbitts, “Mechanisms of divergence and convergence of the human immunoglobulin α1 and α2 constant region gene sequences,” Cell, vol. 36, no. 3, pp. 681–688, 1984.
[95]  S. Kawamura, K. Omoto, and S. Ueda, “Evolutionary hypervariability in the hinge region of the immunoglobulin alpha gene,” Journal of Molecular Biology, vol. 215, no. 2, pp. 201–206, 1990.
[96]  F. Scinicariello, F. Masseoud, L. Jayashankar, and R. Attanasio, “Sooty mangabey (Cercocebus torquatus atys) IGHG and IGHA genes,” Immunogenetics, vol. 58, no. 12, pp. 955–965, 2006.
[97]  K. A. Rogers, L. Jayashankar, F. Scinicariello, and R. Attanasio, “Nonhuman primate IgA: genetic heterogeneity and interactions with CD89,” The Journal of Immunology, vol. 180, no. 7, pp. 4816–4824, 2008.
[98]  S. Kawamura, N. Saitou, and S. Ueda, “Concerted evolution of the primate immunoglobulin α-gene through gene conversion,” The Journal of Biological Chemistry, vol. 267, no. 11, pp. 7359–7367, 1992.
[99]  S. Kawamura and S. Ueda, “Immunoglobulin CH gene family in hominoids and its evolutionary history,” Genomics, vol. 13, no. 1, pp. 194–200, 1992.
[100]  A. Brusco, U. Cariota, A. Bottaro et al., “Structural and immunologic analysis of gene triplications in the Ig heavy chain constant region locus,” The Journal of Immunology, vol. 152, no. 1, pp. 129–135, 1994.
[101]  H. Rabbani, Q. Pan, N. Kondo, C. I. E. Smith, and L. Hammarstr?m, “Duplications and deletions of the human IGHC locus: evolutionary implications,” Immunogenetics, vol. 45, no. 2, pp. 136–141, 1996.
[102]  P. F. Weinheimer, J. Mestecky, and R. T. Acton, “Species distribution of J chain,” The Journal of Immunology, vol. 107, no. 4, pp. 1211–1212, 1971.
[103]  F. P. Inman and J. Mestecky, “The J chain of polymeric immunoglobulins,” in Contemporary Topics in Molecular Immunology, vol. 3, pp. 111–141, Springer, New York, NY, USA, 1974.
[104]  P. Brandtzaeg, “Presence of J chain in human immunocytes containing various immunoglobulin classes,” Nature, vol. 252, no. 5482, pp. 418–420, 1974.
[105]  L. Tacchi, E. Larragoite, and I. Salinas, “Discovery of J chain in African lungfish (Protopterus dolloi, Sarcopterygii) using high throughput transcriptome sequencing: implications in mucosal immunity,” PLoS ONE, vol. 8, no. 8, Article ID e70650, 2013.
[106]  I. K. Zarkadis, D. Mastellos, and J. D. Lambris, “Phylogenetic aspects of the complement system,” Developmental and Comparative Immunology, vol. 25, no. 8-9, pp. 745–762, 2001.
[107]  A. P. West Jr., A. B. Herr, and P. J. Bjorkman, “The chicken yolk sac IgY receptor, a functional equivalent of the mammalian MHC-related Fc receptor, is a phospholipase A2 receptor homolog,” Immunity, vol. 20, no. 5, pp. 601–610, 2004.
[108]  D. B. Tesar, E. J. Cheung, and P. J. Bjorkman, “The chicken yolk sac IgY receptor, a mammalian mannose receptor family member, transcytoses IgY across polarized epithelial cells,” Molecular Biology of the Cell, vol. 19, no. 4, pp. 1587–1593, 2008.
[109]  A. I. Taylor, R. L. Beavil, B. J. Sutton, and R. A. Calvert, “A monomeric chicken IgY receptor binds IgY with 2:1 stoichiometry,” The Journal of Biological Chemistry, vol. 284, no. 36, pp. 24168–24175, 2009.
[110]  K. Baker, S.-W. Qiao, T. Kuo et al., “Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn,” Seminars in Immunopathology, vol. 31, no. 2, pp. 223–236, 2009.
[111]  K. Baker, R. S. Blumberg, and C. S. Kaetzel, “Immunoglobulin transport and immunoglobulin receptors,” in Mucosal Immunology, J. Mestecky, W. Strober, H. Cheroutre, B. Kelsall, B. N. Lambrecht, and M. W. Russell, Eds., chapter 20, Academic Press/Elsevier, Waltham, Mass, USA, 2014.
[112]  C. S. Kaetzel, “The polymeric immunoglobulin receptor,” in eLS, John Wiley & Sons, Chichester, UK, 2013.
[113]  N. J. Mantis, N. Rol, and B. Corthésy, “Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut,” Mucosal Immunology, vol. 4, no. 6, pp. 603–611, 2011.
[114]  J. V. Peppard, M. E. Rose, and P. Hesketh, “A functional homologue of mammalian secretory component exists in chickens,” European Journal of Immunology, vol. 13, no. 7, pp. 566–570, 1983.
[115]  K. E. Mostov, M. Friedlander, and G. Blobel, “The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains,” Nature, vol. 308, no. 5954, pp. 37–43, 1984.
[116]  P. Krajci, R. Solberg, M. Sandberg, O. Oyen, T. Jahnsen, and P. Brandtzaeg, “Molecular cloning of the human transmembrane secretory component (poly-Ig receptor) and its mRNA expression in human tissues,” Biochemical and Biophysical Research Communications, vol. 158, no. 3, pp. 783–789, 1989.
[117]  P. Krajci, D. Kvale, K. Tasken, and P. Brandtzaeg, “Molecular cloning and exon-intron mapping of the gene encoding human transmembrane secretory component (the poly-Ig receptor),” European Journal of Immunology, vol. 22, no. 9, pp. 2309–2315, 1992.
[118]  J. F. Piskurich, J. A. France, C. M. Tamer, C. A. Willmer, C. S. Kaetzel, and D. M. Kaetzel, “Interferon-γ induces polymeric immunoglobulin receptor mRNA in human intestinal epithelial cells by a protein synthesis dependent mechanism,” Molecular Immunology, vol. 30, no. 4, pp. 413–421, 1993.
[119]  J. F. Piskurich, M. H. Blanchard, K. R. Youngman, J. A. France, and C. S. Kaetzel, “Molecular cloning of the mouse polymeric Ig receptor: functional regions of the molecule are conserved among five mammalian species,” The Journal of Immunology, vol. 154, no. 4, pp. 1735–1747, 1995.
[120]  M. A. Kulseth, P. Krajci, O. Myklebost, and S. Rogne, “Cloning and characterization of two forms of bovine polymeric immunoglobulin receptor cDNA,” DNA and Cell Biology, vol. 14, no. 3, pp. 251–256, 1995.
[121]  K. S. Koch, A. S. Gleiberman, T. Aoki et al., “Discordant expression and variable numbers of neighboring GGA- and GAA-rich triplet repeats in the 3′ untranslated regions of two groups of messenger RNAs encoded by the rat polymeric immunoglobulin receptor gene,” Nucleic Acids Research, vol. 23, no. 7, pp. 1098–1112, 1995.
[122]  F. M. Adamski and J. Demmer, “Two stages of increased IgA transfer during lactation in the marsupial, Trichosurus vulpecula (brushtail possum),” The Journal of Immunology, vol. 162, no. 10, pp. 6009–6015, 1999.
[123]  H. Kumura, T. Sone, K.-I. Shimazaki, and E. Kobayashi, “Sequence analysis of porcine polymeric immunoglobulin receptor from mammary epithelial cells present in colostrum,” The Journal of Dairy Research, vol. 67, no. 4, pp. 631–636, 2000.
[124]  C. L. Taylor, G. A. Harrison, C. M. Watson, and E. M. Deane, “cDNA cloning of the polymeric immunoglobulin receptor of the marsupial Macropus eugenii (tammar wallaby),” European Journal of Immunogenetics, vol. 29, no. 2, pp. 87–93, 2002.
[125]  R. Braathen, V. S. Hohman, P. Brandtzaeg, and F.-E. Johansen, “Secretory antibody formation: conserved binding interactions between J chain and polymeric Ig receptor from humans and amphibians,” The Journal of Immunology, vol. 178, no. 3, pp. 1589–1597, 2007.
[126]  M. J. Lewis, B. Wagner, R. M. Irvine, and J. M. Woof, “IgA in the horse: cloning of equine polymeric Ig receptor and J chain and characterization of recombinant forms of equine IgA,” Mucosal Immunology, vol. 3, no. 6, pp. 610–621, 2010.
[127]  A. J. Leon, D. Banner, L. Xu et al., “Sequencing, annotation, and characterization of the influenza ferret infectome,” Journal of Virology, vol. 87, no. 4, pp. 1957–1966, 2013.
[128]  W. H. Wieland, D. Orzáez, A. Lammers, H. K. Parmentier, M. W. A. Verstegen, and A. Schots, “A functional polymeric immunoglobulin receptor in chicken (Gallus gallus) indicates ancient role of secretory IgA in mucosal immunity,” Biochemical Journal, vol. 380, no. 3, pp. 669–676, 2004.
[129]  K. Hamuro, H. Suetake, N. R. Saha, K. Kikuchi, and Y. Suzuki, “A teleost polymeric Ig receptor exhibiting two Ig-like domains transports tetrameric IgM into the skin,” The Journal of Immunology, vol. 178, no. 9, pp. 5682–5689, 2007.
[130]  J. H. W. M. Rombout, S. J. L. van der Tuin, G. Yang et al., “Expression of the polymeric immunoglobulin receptor (pIgR) in mucosal tissues of common carp (Cyprinus carpio L.),” Fish and Shellfish Immunology, vol. 24, no. 5, pp. 620–628, 2008.
[131]  L.-N. Feng, D.-Q. Lu, J.-X. Bei et al., “Molecular cloning and functional analysis of polymeric immunoglobulin receptor gene in orange-spotted grouper (Epinephelus coioides),” Comparative Biochemistry and Physiology B, vol. 154, no. 3, pp. 282–289, 2009.
[132]  A. E. ?stergaard, S. A. M. Martin, T. Wang, R. J. M. Stet, and C. J. Secombes, “Rainbow trout (Oncorhynchus mykiss) possess multiple novel immunoglobulin-like transcripts containing either an ITAM or ITIMs,” Developmental and Comparative Immunology, vol. 33, no. 4, pp. 525–532, 2009.
[133]  H. Eiffert, E. Quentin, and J. Decker, “The primary structure of the human free secretory component and the arrangement of disulfide bonds,” Hoppe-Seyler's Zeitschrift fur Physiologische Chemie, vol. 365, no. 12, pp. 1489–1495, 1984.
[134]  E. Fallgreen-Gebauer, W. Gebauer, A. Bastian et al., “The covalent linkage of secretory component to IgA. Structure of sIgA,” Biological Chemistry Hoppe-Seyler, vol. 374, no. 11, pp. 1023–1028, 1993.
[135]  J. M. Woof, “The structure of IgA,” in Mucosal Immune Defense: Immunoglobulin A, C. S. Kaetzel, Ed., chapter 1, pp. 1–24, Springer, New York, NY, USA, 2007.
[136]  A. Bonner, A. Almogren, P. B. Furtado, M. A. Kerr, and S. J. Perkins, “Location of secretory component on the Fc edge of dimeric IgA1 reveals insight into the role of secretory IgA1 in mucosal immunity,” Mucosal Immunology, vol. 2, no. 1, pp. 74–84, 2009.
[137]  A. Bonner, A. Almogren, P. B. Furtado, M. A. Kerr, and S. J. Perkins, “The nonplanar secretory IgA2 and near planar secretory IgA1 solution structures rationalize their different mucosal immune responses,” The Journal of Biological Chemistry, vol. 284, no. 8, pp. 5077–5087, 2009.
[138]  J. Johansen, B. Braathen, and P. Brandtzaeg, “Role of J chain in secretory immunoglobulin formation,” Scandinavian Journal of Immunology, vol. 52, no. 3, pp. 240–248, 2000.
[139]  B. A. Hendrickson, D. A. Conner, D. J. Ladd et al., “Altered hepatic transport of immunoglobulin A in mice lacking the J chain,” Journal of Experimental Medicine, vol. 182, no. 6, pp. 1905–1911, 1995.
[140]  B. A. Hendrickson, L. Rindisbacher, B. Corthesy et al., “Lack of association of secretory component with IgA in J chain-deficient mice,” The Journal of Immunology, vol. 157, no. 2, pp. 750–754, 1996.
[141]  N. Lycke, L. Erlandsson, L. Ekman, K. Sch?n, and T. Leanderson, “Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection,” The Journal of Immunology, vol. 163, no. 2, pp. 913–919, 1999.
[142]  F.-E. Johansen, R. Braathen, and P. Brandtzaeg, “The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA,” The Journal of Immunology, vol. 167, no. 9, pp. 5185–5192, 2001.
[143]  R. E. Ley, D. A. Peterson, and J. I. Gordon, “Ecological and evolutionary forces shaping microbial diversity in the human intestine,” Cell, vol. 124, no. 4, pp. 837–848, 2006.
[144]  M. McFall-Ngai, “Adaptive immunity: care for the community,” Nature, vol. 445, no. 7124, p. 153, 2007.
[145]  A. J. Macpherson, K. D. McCoy, F.-E. Johansen, and P. Brandtzaeg, “The immune geography of IgA induction and function,” Mucosal Immunology, vol. 1, no. 1, pp. 11–22, 2008.
[146]  D. Kvale and P. Brandtzaeg, “Constitutive and cytokine induced expression of HLA molecules, secretory component, and intercellular adhesion molecule-1 is modulated by butyrate in the colonic epithelial cell line HT-29,” Gut, vol. 36, no. 5, pp. 737–742, 1995.
[147]  L. V. Hooper, M. H. Wong, A. Thelin, L. Hansson, P. G. Falk, and J. I. Gordon, “Molecular analysis of commensal host-microbial relationships in the intestine,” Science, vol. 291, no. 5505, pp. 881–884, 2001.
[148]  S. Hapfelmeier, M. A. E. Lawson, E. Slack et al., “Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses,” Science, vol. 328, no. 5986, pp. 1705–1709, 2010.
[149]  D. H. Reikvam, M. Derrien, R. Islam et al., “Epithelial-microbial cross-talk in polymeric Ig receptor deficient mice,” European Journal of Immunology, vol. 42, no. 11, pp. 2959–2970, 2012.
[150]  E. W. Rogier, A. L. Frantz, M. E. C. Bruno et al., “Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 8, pp. 3074–3079, 2014.
[151]  G. M. Barton and R. Medzhitov, “Toll-like receptor signaling pathways,” Science, vol. 300, no. 5625, pp. 1524–1525, 2003.
[152]  K. Takeda and S. Akira, “Toll receptors and pathogen resistance,” Cellular Microbiology, vol. 5, no. 3, pp. 143–153, 2003.
[153]  E. Cario and D. K. Podolsky, “Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease,” Infection and Immunity, vol. 68, no. 12, pp. 7010–7017, 2000.
[154]  M. Hausmann, S. Kiessling, S. Mestermann et al., “Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation,” Gastroenterology, vol. 122, no. 7, pp. 1987–2000, 2002.
[155]  M. T. Abreu, L. S. Thomas, S. Y. Tesfay et al., “Regulation of TLR4 and MD-2 in the intestinal epithelium: evidence for dysregulated LPS signaling in human inflammatory bowel disease,” in Proceedings of the 90th Annual Meeting of the American Association for Immunologists, Abstract 36.34, Denver, Colo, USA, 2003.
[156]  T. A. Schneeman, M. E. C. Bruno, H. Schjerven, F.-E. Johansen, L. Chady, and C. S. Kaetzel, “Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: linking innate and adaptive immune responses,” The Journal of Immunology, vol. 175, no. 1, pp. 376–384, 2005.
[157]  M. E. C. Bruno, A. L. Frantz, E. W. Rogier, F.-E. Johansen, and C. S. Kaetzel, “Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells,” Mucosal Immunology, vol. 4, no. 4, pp. 468–478, 2011.
[158]  M. E. C. Bruno, E. W. Rogier, A. L. Frantz, A. T. Stefka, S. N. Thompson, and C. S. Kaetzel, “Regulation of the polymeric immunoglobulin receptor in intestinal epithelial cells by Enterobacteriaceae: implications for mucosal homeostasis,” Immunological Investigations, vol. 39, no. 4-5, pp. 356–382, 2010.
[159]  A. L. Frantz, E. W. Rogier, C. R. Weber et al., “Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides,” Mucosal Immunology, vol. 5, no. 5, pp. 501–512, 2012.
[160]  E. W. Rogier, A. L. Frantz, M. E. C. Bruno, and C. S. Kaetzel, “Secretory IgA is concentrated in the outer layer of intestinal mucus along with gut bacteria,” Pathogens. In press.
[161]  M. B. Geuking, K. D. McCoy, and A. J. Macpherson, “The function of secretory IgA in the context of the intestinal continuum of adaptive immune responses in host-microbial mutualism,” Seminars in Immunology, vol. 24, no. 1, pp. 36–42, 2012.
[162]  L. V. Hooper, D. R. Littman, and A. J. Macpherson, “Interactions between the microbiota and the immune system,” Science, vol. 336, no. 6086, pp. 1268–1273, 2012.
[163]  A. J. Macpherson, M. B. Geuking, E. Slack, S. Hapfelmeier, and K. D. McCoy, “The habitat, double life, citizenship, and forgetfulness of IgA,” Immunological Reviews, vol. 245, no. 1, pp. 132–146, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133