全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Analgesics on Monoclonal Antibody Ascites Production in Mice Administered Upon Recognition of Pain

DOI: 10.1155/2014/350796

Full-Text   Cite this paper   Add to My Lib

Abstract:

Monoclonal antibody (mAb) ascites fluid production in mice is a well described method of antibody production, although ethical questions regarding the pain and distress of the animals utilized in this process have been raised. In this study, mice were injected with pristane to initiate granuloma formation, followed by an injection of murine hybridoma PA 2II 2F9-1-1 (2F9) to produce IgG1 subclass mAb directed against protective antigen (PA) protein of Bacillus anthracis. Upon the recognition of pain or distress, characterized by well accepted clinical signs, analgesics were administered by treatment group. The control group (A) received saline, group (B) received meloxicam, group (C) received buprenorphine, and group (D) received both meloxicam and buprenorphine. Analgesics were administered by group for a total of 36–48 hours prior to the second ascites fluid collection. There was no statistical difference in the antibody titer or functionality between treatment groups at the first or the second collection time points. As reported here, analgesics may be administered upon recognition of pain in mice used for mAb ascites fluid production without affecting antibody concentration or quality and may warrant further evaluation as a refinement in other hybridoma cell lines. 1. Introduction Monoclonal antibody (mAb) ascites fluid production in mice is a well described method of antibody production [1–3]. mAb ascites fluid is typically produced in mice that are induced to form granulomas by intraperitoneal injection of pristane about fourteen days before injecting the hybridoma cell line. Pristane prevents the removal of hybridoma cells from the peritoneal cavity to the peripheral circulation, allowing growth of the hybridoma cells and the accumulation of ascites fluid containing the desired antibody [4, 5]. Ascites production is affected by several factors including the hybridoma cell line, timing of pristane injection in relation to inoculation of the hybridoma cells, and the age of mice [1, 6, 7]. The volume of pristane injected, the number of hybridoma cells injected, the frequency and method of abdominal paracentesis, and the hybridoma growth characteristics may all influence pain, distress, and survival [1, 6, 7]. Based upon observed clinical, pathophysiological, and pathological findings, the production of ascites is considered to cause pain and distress in mice [3, 6–8]. The injection of pristane induces a chronic inflammatory response in the development of granulomatous tissue and is not considered to cause pain in the short term [1, 8]. However, the

References

[1]  Institute for Laboratory Animal Research, Monoclonal Antibody Production, Institute for Laboratory Animal Research, Washington, DC, USA, 1999.
[2]  B. R. Brodeur, P. Tsang, and Y. Larose, “Parameters affecting ascites tumour formation in mice and monoclonal antibody production,” Journal of Immunological Methods, vol. 71, no. 2, pp. 265–272, 1984.
[3]  C. F. M. Hendriksen and W. De Leeuw, “Production of monoclonal antibodies by the ascites method in laboratory animals,” Research in Immunology, vol. 149, no. 6, pp. 535–542, 1998.
[4]  H. L. Amyx, “Control of animal pain and distress in antibody production and infectious disease studies,” Journal of the American Veterinary Medical Association, vol. 191, no. 10, pp. 1287–1289, 1987.
[5]  J. M. Moore and T. V. Rajan, “Pristane retards clearance of particulate materials from the peritoneal cavity of laboratory mice,” Journal of Immunological Methods, vol. 173, no. 2, pp. 273–278, 1994.
[6]  L. R. Jackson, L. J. Trudel, J. G. Fox, and N. S. Lipman, “Monoclonal antibody production in murine ascites II. Production characteristics,” Laboratory Animal Science, vol. 49, no. 1, pp. 81–86, 1999.
[7]  L. R. Jackson, L. J. Trudel, J. G. Fox, and N. S. Lipman, “Monoclonal antibody production in murine ascites I. Clinical and pathologic features,” Laboratory Animal Science, vol. 49, no. 1, pp. 70–80, 1999.
[8]  N. C. Peterson, “Behavioral, clinical, and physiologic analysis of mice used for ascites monoclonal antibody production,” Comparative Medicine, vol. 50, no. 5, pp. 516–526, 2000.
[9]  N. C. Peterson and J. E. Peavey, “Comparison of in vitro monoclonal antibody production methods with an in vivo ascites production technique,” Contemporary Topics in Laboratory Animal Science, vol. 37, no. 5, pp. 61–66, 1998.
[10]  M. Potter, J. S. Wax, A. O. Anderson, and R. P. Nordan, “Inhibition of plasmacytoma development in BALB/c mice by indomethacin,” Journal of Experimental Medicine, vol. 161, no. 5, pp. 996–1012, 1985.
[11]  F. E. Piersma, M. A. R. C. Daemen, A. E. J. M. Vd Bogaard, and W. A. Buurman, “Interference of pain control employing opioids in in vivo immunological experiments,” Laboratory Animals, vol. 33, no. 4, pp. 328–333, 1999.
[12]  A. Z. Karas, P. J. Dannenman, and J. M. Cadillac, “Strategies for assessing and minimizing pain,” in Anesthesia and Analgesia in Laboratory Animals, R. E. Fish, M. J. Brown, P. J. Danneman, and A. Z. Kara, Eds., pp. 195–218, Academies Press, San Diego, Calif, USA, 2nd edition, 2008.
[13]  B. Rouveix, “Opiates and immune function. Consequences on infectious diseases with special reference to AIDS,” Therapie, vol. 47, no. 6, pp. 503–512, 1992.
[14]  E. P. Ryan, S. J. Pollack, T. I. Murant, S. H. Bernstein, R. E. Felgar, and R. P. Phipps, “Activated human B lymphocytes express cyclooxygenase-2 and cyclooxygenase inhibitors attenuate antibody production,” Journal of Immunology, vol. 174, no. 5, pp. 2619–2626, 2005.
[15]  E. Shacter, G. K. Arzadon, and J. Williams, “Elevation of interleukin-6 in response to a chronic inflammatory stimulus in mice: inhibition by indomethacin,” Blood, vol. 80, no. 1, pp. 194–202, 1992.
[16]  A. M. Kolstad, R. M. Rodriguiz, C. J. Kim, and L. P. Hale, “Effect of pain management on immunization efficacy in mice,” Journal of the American Association for Laboratory Animal Science, vol. 51, pp. 488–457, 2012.
[17]  D. J. Gaertner, T. M. Hallman, F. C. Hankenson, and M. A. Batchelder, “Anesthesia and analgesia for laboratory rodents,” in Anesthesia and Analgesia in Laboratory Animals, R. E. Fish, M. J. Brown, P. J. Danneman, and A. Z. Karas, Eds., pp. 239–297, Academies Press, San Diego, Calif, USA, 2nd edition, 2008.
[18]  Institute for Laboratory Animal Research, Recognition and Alleviation of Pain in Laboratory Animals, Washington, DC, USA, 2009.
[19]  S. F. Little, S. H. Leppla, and E. Cora, “Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin,” Infection and Immunity, vol. 56, pp. 1807–1813, 1988.
[20]  N. Mohamed, J. Li, C. S. Ferreira et al., “Enhancement of anthrax lethal toxin cytotoxicity: a subset of monoclonal antibodies against protective antigen increases lethal toxin-mediated killing of murine macrophages,” Infection and Immunity, vol. 72, no. 6, pp. 3276–3283, 2004.
[21]  S. F. Little, W. M. Webster, and D. E. Fisher, “Monoclonal antibodies directed against protective antigen of Bacillus anthracis enhance lethal toxin activity in vivo,” FEMS Immunology and Medical Microbiology, vol. 62, no. 1, pp. 11–22, 2011.
[22]  S. F. Little, W. M. Webster, S. L. W. Norris, and G. P. Andrews, “Evaluation of an anti-rPA IgG ELISA for measuring the antibody response in mice,” Biologicals, vol. 32, no. 2, pp. 62–69, 2004.
[23]  R. De Deken, J. Brandt, F. Ceulemans, S. Geerts, and R. Beudeker, “Influence of priming and inoculation dose on the production of monoclonal antibodies in two age groups of BALB/c mice,” Hybridoma, vol. 13, no. 1, pp. 53–57, 1994.
[24]  S. Bancos, M. P. Bernard, D. J. Topham, and R. P. Phipps, “Ibuprofen and other widely used non-steroidal anti-inflammatory drugs inhibit antibody production in human cells,” Cellular Immunology, vol. 258, no. 1, pp. 18–28, 2009.
[25]  R. Prymula, C.-A. Siegrist, R. Chlibek et al., “Effect of prophylactic paracetamol administration at time of vaccination on febrile reactions and antibody responses in children: two open-label, randomised controlled trials,” The Lancet, vol. 374, no. 9698, pp. 1339–1350, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133