全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Atorvastatin on Atherosclerosis and Atherogenesis in Systemic Lupus Erythematosus: A Pilot Study

DOI: 10.1155/2014/295239

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. The effect of statins on atherogenesis in systemic lupus erythematosus (SLE) is poorly known. To inform a wider trial we performed a pilot study evaluating the intima-media thickness of the common carotid artery (CIMT) and some oxidative [beta-2-glycoprotein-1 complexed with oxidised low density lipoprotein ( 2GPIoxLDL)], metabolic [paraoxonase (PON), nitrate ( ), nitrite ( ) and nitrotyrosine (NT)], inflammatory [C-reactive protein (CRP) and serum amyloid A (SAA)], and lipid markers before and after 1 year of treatment with 40?mg of oral atorvastatin (AT). Methods. Randomised, double blind, placebo controlled pilot study on consecutive SLE patients: 17 SLE patients were randomised into the AT arm and 20 into the placebo arm. CIMT was measured by high-resolution sonography, PONa by a spectrophotometric method, and by a colorimetric assay and oxLDL- 2GPI, NT, CRP, and SAA by Elisa. Results. After correction for age and disease duration oxLDL- 2GPI decreased by 27% ( ) and PON/HDL ratio increased by 12% ( ) but CIMT did not change. Conclusion. This pilot study revealed a decrease of oxLDL- 2GPI (oxidant marker) and an increase of PON/HDL ratio (antioxidant activity) after AT indicating a favourable effect of the drug on atherogenic pathways that should be explored on larger trials. 1. Introduction Coronary artery disease (CAD) accounts for significant morbidity and mortality in patients with systemic lupus erythematosus (SLE) [1] being 8-fold more common than in the normal population after correction for the traditional Framingham risk factors [2]. First myocardial infarction occurs almost 20 years earlier than in the general population [3] with 90% of SLE women deceased between 16 to 37 years of age having severe atherosclerosis with greater than 75% occlusion in at least one coronary artery [4]. CAD explains the second curve of the bimodal mortality pattern in SLE, with early deaths attributed to the disease itself [5]. Because of the longer life expectancy of SLE early intervention is paramount to decrease the risk of vascular related death. Using high-resolution carotid ultrasound investigators have detected greater intima-media thickness of carotid arteries (CIMT) [6] and/or a greater frequency of carotid plaques in patients with SLE [7, 8] independently related to CAD [8]. Natural statins reduce cardiovascular risk and atherosclerosis progression [9] whereas synthetic statins such as atorvastatin (AT) induced a significant regression of CIMT in familial hypercholesterolaemia [10]. Accordingly we started a one-year placebo controlled pilot

References

[1]  H. Jonsson, O. Nived, and G. Sturfelt, “Outcome in systemic lupus erythematosus: a prospective study of patients from a defined population,” Medicine, vol. 68, no. 3, pp. 141–150, 1989.
[2]  S. Manzi, E. N. Meilahn, J. E. Rairie et al., “Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study,” American Journal of Epidemiology, vol. 145, no. 5, pp. 408–415, 1997.
[3]  I. N. Bruce, D. D. Gladman, and M. B. Urowitz, “Premature atherosclerosis in systemic lupus erythematosus,” Rheumatic Disease Clinics of North America, vol. 26, no. 2, pp. 257–278, 2000.
[4]  Y. S. Haider and W. C. Roberts, “Coronary arterial disease in systemic lupus erythematosus. Quantification of degrees of narrowing in 22 necropsy patients [21 women] aged 16 to 37 years,” American Journal of Medicine, vol. 70, no. 4, pp. 775–781, 1981.
[5]  M. Abu-Shakra, M. B. Urowitz, D. D. Gladman, and J. Gough, “Mortality studies in systemic lupus erythematosus. Results from a single center. I. Causes of death,” Journal of Rheumatology, vol. 22, no. 7, pp. 1259–1264, 1995.
[6]  E. Svenungsson, K. Jensen-Urstad, M. Heimbürger et al., “Risk factors for cardiovascular disease in systemic lupus erythematosus,” Circulation, vol. 104, no. 16, pp. 1887–1893, 2001.
[7]  M. J. Roman, J. E. Salmon, R. Sobel et al., “Prevalence and relation to risk factors of carotid atherosclerosis and left ventricular hypertrophy in systemic lupus erythematosus and antiphospholipid antibody syndrome,” American Journal of Cardiology, vol. 87, no. 5, pp. 663–666, 2001.
[8]  S. Manzi, F. Selzer, K. Sutton-Tyrrell, et al., “Prevalence and risk factors of carotid plaque in women with systemic lupus erythematosus,” Arthritis & Rheumatology, vol. 42, pp. 51–60, 1999.
[9]  S. Kang, Y. Wu, and X. Li, “Effects of statin therapy on the progression of carotid atherosclerosis: a systematic review and meta-analysis,” Atherosclerosis, vol. 177, no. 2, pp. 433–442, 2004.
[10]  T. J. Smilde, S. Van Wissen, H. Wollersheim, M. D. Trip, J. J. P. Kastelein, and A. F. H. Stalenhoef, “Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial,” The Lancet, vol. 357, no. 9256, pp. 577–581, 2001.
[11]  E. M. Tan, A. S. Cohen, and J. F. Fries, “The 1982 revised criteria for the classification of systemic lupus erythrematosus,” Arthritis and Rheumatism, vol. 25, no. 11, pp. 1271–1277, 1982.
[12]  G. A. Lancaster, S. Dodd, and P. R. Williamson, “Design and analysis of pilot studies: recommendations for good practice,” Journal of Evaluation in Clinical Practice, vol. 10, no. 2, pp. 307–312, 2004.
[13]  M. A. Petri, A. N. Kiani, W. Post, L. Christopher-Stine, and L. S. Magder, “Lupus Atherosclerosis Prevention Study (LAPS),” Annals of the Rheumatic Diseases, vol. 70, no. 5, pp. 760–765, 2011.
[14]  J. Kasahara, K. Kobayashi, Y. Maeshima et al., “Clinical significance of serum oxidized low-density lipoprotein/β2-glycoprotein I complexes in patients with chronic renal diseases,” Nephron—Clinical Practice, vol. 98, no. 1, pp. c15–c24, 2004.
[15]  S. A. Julious, “Sample size of 12 per group rule of thumb for a pilot study,” Pharmaceutical Statistics, vol. 4, no. 4, pp. 287–291, 2005.
[16]  C. C. Mok, C. K. Wong, C. H. To, J. P. S. Lai, and C. S. Lam, “Effects of rosuvastatin on vascular biomarkers and carotid atherosclerosis in lupus: a randomized, double-blind, placebo-controlled trial,” Arthritis Care and Research, vol. 63, no. 6, pp. 875–883, 2011.
[17]  G. A. Ferreira, T. P. Navarro, R. W. Telles, L. E. C. Andrade, and E. I. Sato, “Atorvastatin therapy improves endothelial-dependent vasodilation in patients with systemic lupus erythematosus: an 8 weeks controlled trial,” Rheumatology, vol. 46, no. 10, pp. 1560–1565, 2007.
[18]  K. H. Costenbader, M. H. Liang, L. B. Chibnik et al., “A pravastatin dose-escalation study in systemic lupus erythematosus,” Rheumatology International, vol. 27, no. 11, pp. 1071–1077, 2007.
[19]  M. D. De Kruif, M. Limper, H. R. Hansen et al., “Effects of a 3-month course of rosuvastatin in patients with systemic lupus erythematosus,” Annals of the Rheumatic Diseases, vol. 68, no. 10, p. 1654, 2009.
[20]  G. E. Norby, I. Holme, B. Fellstr?m et al., “Effect of fluvastatin on cardiac outcomes in kidney transplant Patients with systemic lupus erythematosus a randomized placebo-controlled study,” Arthritis and Rheumatism, vol. 60, no. 4, pp. 1060–1064, 2009.
[21]  D. Steinberg and J. L. Witztum, “History of discovery: oxidized low-density lipoprotein and atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 12, pp. 2311–2316, 2010.
[22]  K. Kobayashi, M. Kishi, T. Atsumi et al., “Circulating oxidized LDL forms complexes with β2-glycoprotein I: implication as an atherogenic autoantigen,” Journal of Lipid Research, vol. 44, no. 4, pp. 716–726, 2003.
[23]  P. R. J. Ames, J. Alves, I. Murat, D. A. Isenberg, and J. Nourooz-Zadeh, “Oxidative stress in systemic lupus erythematosus and allied conditions with vascular involvement,” Rheumatology, vol. 38, no. 6, pp. 529–534, 1999.
[24]  D. Lopez, I. Garcia-Valladares, C. A. Palafox-Sanchez et al., “Oxidized low-density lipoprotein/β2-glycoprotein I complexes and autoantibodies to oxLig-1/β2-glycoprotein I in patients with systemic lupns erythematosus and antiphospholipid syndrome,” American Journal of Clinical Pathology, vol. 121, no. 3, pp. 426–436, 2004.
[25]  L. R. Lopez, B. L. Hurley, D. F. Simpson, and E. Matsuura, “Oxidized low-density lipoprotein/β2-glycoprotein I complexes and autoantibodies in patients with type 2 diabetes mellitus,” Annals of the New York Academy of Sciences, vol. 1051, pp. 97–103, 2005.
[26]  M. M. Elahi, K. M. Naseem, and B. M. Matata, “Nitric oxide in blood: the nitrosative-oxidative disequilibrium hypothesis on the pathogenesis of cardiovascular disease,” FEBS Journal, vol. 274, no. 4, pp. 906–923, 2007.
[27]  G. Wang, S. S. Pierangeli, E. Papalardo, G. A. S. Ansari, and M. F. Khan, “Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity,” Arthritis and Rheumatism, vol. 62, no. 7, pp. 2064–2072, 2010.
[28]  P. R. J. Ames, J. R. Batuca, A. Ciampa, L. Iannaccone, and J. Delgado Alves, “Clinical relevance of nitric oxide metabolites and nitrative stress in thrombotic primary antiphospholipid syndrome,” The Journal of Rheumatology, vol. 37, pp. 2523–2530, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133