The NO/ONOO? cycle is a primarily local biochemical/physiological vicious cycle that appears to cause a series of chronic inflammatory diseases. This paper focuses on whether the cycle causes pulmonary arterial hypertension (PAH) when located in the pulmonary arteries. The cycle involves 12 elements, including superoxide, peroxynitrite (ONOO?), nitric oxide (NO), oxidative stress, NF-κB, inflammatory cytokines, iNOS, mitochondrial dysfunction, intracellular calcium, tetrahydrobiopterin depletion, NMDA activity, and TRP receptor activity. 10 of the 12 are elevated in PAH (NMDA?, NO?) and 11 have documented causal roles in PAH. Each stressor that initiates cases of PAH acts to raise cycle elements, and may, therefore, initiate the cycle in this way. PAH involves a primarily local mechanism as required by the cycle and the symptoms and signs of PAH are generated by elements of the cycle. Endothelin-1, which acts as a causal factor in PAH, acts as part of the cycle; its synthesis is stimulated by cycle elements, and it, in turn, increases each element of the cycle. This extraordinary fit to the principles of the NO/ONOO? cycle allows one to conclude that PAH is a NO/ONOO? cycle disease, and this fit supports the cycle as a major paradigm of chronic inflammatory disease. 1. Introduction Pulmonary arterial hypertension (PAH) is a progressive and often fatal disease characterized by several important properties including inflammation, oxidative/nitrosative stress, and mitochondrial dysfunction. Such hypertension leads to right ventricular dysfunction that leads in turn to subsequent right heart failure and death. A number of other chronic diseases that share properties described in the first sentence, above, are thought to be caused by a primarily local biochemical vicious cycle, known as the NO/ONOO? cycle (pronounced no, oh no!) [1–11]. Thus the hypothesis being explored in this paper is whether pulmonary hypertension is caused by the local action of the NO/ONOO? cycle in the pulmonary arteries. One of the testable properties of NO/ONOO? cycle diseases is that for the cycle to be causal, the symptoms and signs of the disease must be generated by elements of the cycle. The classic properties of PAH are vasoconstriction and pulmonary fibrosis and arterial remodeling. Hypertension can be generated by excessive peroxynitrite (ONOO?), which is a vasoconstrictor [12–16], acting in part via oxidative stress and consequent elevated isoprostanes, because isoprostanes are potent vasoconstrictors [12, 13]. Elevated ONOO? can lead to oxidation of tetrahydrobiopterin
References
[1]
M. L. Pall, Explaining,“Unexplained Illnesses”: Disease Paradigm for Chronic Fatigue Syndrome, Multiple Chemical Sensitivity, Fibromyalgia, Post-Traumatic Stress Disorder, Gulf War Syndrome and Others, Harrington Park Press, New York, NY, USA, 2007.
[2]
M. L. Pall, “Multiple chemical sensitivity: toxicological questions and mechanisms,” in General and Applied Toxicology, B. Ballantyne, T. C. Marrs, and T. Syversen, Eds., pp. 2303–2352, John Wiley and Sons, London, UK, 3rd edition, 2009.
[3]
M. L. Pall, “The NO/ONOO? cycle mechanism as the cause of chronic fatigue syndrome/myalgia encephalomyelitis,” in Chronic Fatigue Syndrome: Symptoms, Causes and Prevention, E. Svoboda and K. Zelenjcik, Eds., chapter 2, Nova, New York, NY, USA, 2009.
[4]
M. L. Pall, “The NO/ONOO? cycle as the cause of fibromyalgia and related illnesses: etiology, explanation and effective therapy,” in New Research in Fibromyalgia, J. A. Pederson, Ed., chapter 2, pp. 39–59, Nova Science, New York, NY, USA, 2006.
[5]
M. L. Pall, “Elevated, sustained peroxynitrite levels as the cause of chronic fatigue syndrome,” Medical Hypotheses, vol. 54, no. 1, pp. 115–125, 2000.
[6]
M. L. Pall, “Common etiology of posttraumatic stress disorder, fibromyalgia, chronic fatigue syndrome and multiple chemical sensitivity via elevated nitric oxide/peroxynitrite,” Medical Hypotheses, vol. 57, no. 2, pp. 139–145, 2001.
[7]
M. L. Pall and J. D. Satterlee, “Elevated nitric oxide/peroxynitrite mechanism for the common etiology of multiple chemical sensitivity, chronic fatigue syndrome, and posttraumatic stress disorder,” Annals of the New York Academy of Sciences, vol. 933, pp. 323–329, 2001.
[8]
M. L. Pall, “Nitric oxide synthase partial uncoupling as a key switching mechanism for the NO/ONOO? cycle,” Medical Hypotheses, vol. 69, no. 4, pp. 821–825, 2007.
[9]
M. L. Pall, “NMDA sensitization and stimulation by peroxynitrite, nitric oxide, and organic solvents as the mechanism of chemical sensitivity in multiple chemical sensitivity,” The FASEB Journal, vol. 16, no. 11, pp. 1407–1417, 2002.
[10]
M. L. Pall, “How can we cure NO/ONOO? cycle diseases? Approaches to curing chronic fatigue syndrome/myalgic encephalomyelitis, fibromyalgia, multiple chemical sensitivity, Gulf War syndrome and possibly many others,” Townsend Letter for Doctors and Patients, pp. 75–84, 2010.
[11]
M. L. Pall and S. A. Bedient, “The NO/ONOO? cycle as the etiological mechanism of tinnitus,” International Tinnitus Journal, vol. 13, no. 2, pp. 99–104, 2007.
[12]
J. C. Romero and J. F. Reckelhoff, “Role of angiotensin and oxidative stress in essential hypertension,” Hypertension, vol. 34, no. 4, pp. 943–949, 1999.
[13]
R. A. Cohen and X. Tong, “Vascular oxidative stress: the common link in hypertensive and diabetic vascular disease,” Journal of Cardiovascular Pharmacology, vol. 55, no. 4, pp. 308–316, 2010.
[14]
T. J. Guzik, S. Mussa, D. Gastaldi et al., “Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase,” Circulation, vol. 105, no. 14, pp. 1656–1662, 2002.
[15]
T. Münzel, T. Gori, R. M. Bruno, and S. Taddei, “Is oxidative stress a therapeutic target in cardiovascular disease?” European Heart Journal, vol. 31, no. 22, pp. 2741–2748, 2010.
[16]
S. Milstien and Z. Katusic, “Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function,” Biochemical and Biophysical Research Communications, vol. 263, no. 3, pp. 681–684, 1999.
[17]
P. Crosswhite and Z. Sun, “Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension,” Journal of Hypertension, vol. 28, no. 2, pp. 201–212, 2010.
[18]
L. J. Janssen, “Isoprostanes and lung vascular pathology,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 4, pp. 383–389, 2008.
[19]
R. Mathew, “Inflammation and pulmonary hypertension,” Cardiology in Review, vol. 18, no. 2, pp. 67–72, 2010.
[20]
P. Dromparis, G. Sutendra, and E. D. Michelakis, “The role of mitochondria in pulmonary vascular remodeling,” Journal of Molecular Medicine, vol. 88, no. 10, pp. 1003–1010, 2010.
[21]
P. M. Hassoun, L. Mouthon, J. A. Barberà et al., “Inflammation, growth factors, and pulmonary vascular remodeling,” Journal of the American College of Cardiology, vol. 54, supplement 1, pp. S10–S19, 2009.
[22]
S. Wedgwood and S. M. Black, “Role of reactive oxygen species in vascular remodeling associated with pulmonary hypertension,” Antioxidants and Redox Signaling, vol. 5, no. 6, pp. 759–769, 2003.
[23]
J. Long, M. J. Russo, C. Muller, and W. T. Vigneswaran, “Surgical treatment of pulmonary hypertension: lung transplantation,” Pulmonary Circulation, vol. 1, pp. 327–333, 2011.
[24]
B. S. Goldstein, S. C. Sweet, J. Mao, C. B. Huddleston, and R. M. Grady, “Lung transplantation in children with idiopathic pulmonary arterial hypertension: an 18-year experience,” Journal of Heart and Lung Transplantation, vol. 30, pp. 1148–1152, 2011.
[25]
E. P. Judge, A. Fabre, H. I. Adamali, and J. J. Egan, “Acute exacerbations and pulmonary hypertension in advanced idiopathic pulmonary fibrosis,” The European Respiratory Journal, vol. 40, no. 1, pp. 93–100, 2012.
[26]
V. Hampl, J. Bíbová, A. Baňasová et al., “Pulmonary vascular iNOS induction participates in the onset of chronic hypoxic pulmonary hypertension,” American Journal of Physiology, vol. 290, no. 1, pp. L11–L20, 2006.
[27]
S. A. Lorch, R. Foust, A. Gow et al., “Immunohistochemical localization of protein 3-nitrotyrosine and S- nitrosocysteine in a murine model of inhaled nitric oxide therapy,” Pediatric Research, vol. 47, no. 6, pp. 798–805, 2000.
[28]
R. Bowers, C. Cool, R. C. Murphy et al., “Oxidative stress in severe pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 6, pp. 764–769, 2004.
[29]
R. H. Foxton, J. M. Land, and S. J. R. Heales, “Tetrahydrobiopterin availability in Parkinson's and Alzheimer's disease; potential pathogenic mechanisms,” Neurochemical Research, vol. 32, no. 4-5, pp. 751–756, 2007.
[30]
J. S. Beckman and J. P. Crow, “Pathological implications of nitric oxide, superoxide and peroxynitrite formation,” Biochemical Society Transactions, vol. 21, no. 2, pp. 330–334, 1993.
[31]
W. H. Koppenol, J. J. Moreno, W. A. Pryor, H. Ischiropoulos, and J. S. Beckman, “Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide,” Chemical Research in Toxicology, vol. 5, no. 6, pp. 834–842, 1992.
[32]
Y. Hattori, K. Kasai, and S. S. Gross, “NO suppresses while peroxynitrite sustains NF-κB: a paradigm to rationalize cytoprotective and cytotoxic actions attributed to NO,” Cardiovascular Research, vol. 63, no. 1, pp. 31–40, 2004.
[33]
G. Gloire, S. Legrand-Poels, and J. Piette, “NF-κB activation by reactive oxygen species: fifteen years later,” Biochemical Pharmacology, vol. 72, no. 11, pp. 1493–1505, 2006.
[34]
C. L. M. Cooke and S. T. Davidge, “Peroxynitrite increases iNOS through NF-κB and decreases prostacyclin synthase in endothelial cells,” American Journal of Physiology, vol. 282, no. 2, pp. C395–C402, 2002.
[35]
S. V. Lymar, R. F. Khairutdinov, and J. K. Hurst, “Hydroxyl radical formation by O–O bond homolysis in peroxynitrous acid,” Inorganic Chemistry, vol. 42, no. 17, pp. 5259–5266, 2003.
[36]
R. Radi, “Nitric oxide, oxidants, and protein tyrosine nitration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 12, pp. 4003–4008, 2004.
[37]
Y. M. W. Janssen-Heininger, M. E. Poynter, and P. A. Baeuerle, “Recent advances towards understanding redox mechanisms in the activation of nuclear factor κB,” Free Radical Biology and Medicine, vol. 28, no. 9, pp. 1317–1327, 2000.
[38]
R. C. J. Langen, A. M. W. J. Schols, M. C. J. M. Kelders, E. F. M. Wouters, and Y. M. W. Janssen-Heininger, “Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-κB,” The FASEB Journal, vol. 15, no. 7, pp. 1169–1180, 2001.
[39]
Y. J. Surh, K. S. Chun, H. H. Cha et al., “Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation,” Mutation Research, vol. 480-481, pp. 243–268, 2001.
[40]
S. C. Chu, J. Marks-Konczalik, H. P. Wu, T. C. Banks, and J. Moss, “Analysis of the cytokine-stimulated human inducible nitric oxide synthase (iNOS) gene: characterization of differences between human and mouse iNOS promoters,” Biochemical and Biophysical Research Communications, vol. 248, no. 3, pp. 871–878, 1998.
[41]
M. Jaiswal, N. F. LaRusso, L. J. Burgart, and G. J. Gores, “Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism,” Cancer Research, vol. 60, no. 1, pp. 184–190, 2000.
[42]
C. Melchiorri, R. Meliconi, L. Frizziero, et al., “Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase in chondrocytes from patients with osteoarthritis,” Arthritis and Rheumatism, vol. 41, pp. 2165–2174, 1998.
[43]
Y. Gutiérrez-Martín, F. J. Martín-Romero, F. Henao, and C. Gutiérrez-Merino, “Synaptosomal plasma membrane Ca2+ pump activity inhibition by repetitive micromolar ONOO? pulses,” Free Radical Biology and Medicine, vol. 32, no. 1, pp. 46–55, 2002.
[44]
J. Gao, D. Yin, Y. Yao, T. D. Williams, and T. C. Squier, “Progressive decline in the ability of calmodulin isolated from aged brain to activate the plasma membrane Ca-ATPase,” Biochemistry, vol. 37, no. 26, pp. 9536–9548, 1998.
[45]
C. R. Hoyal, A. P. Thomas, and H. J. Forman, “Hydroperoxide-induced increases in intracellular calcium due to annexin VI translocation and inactivation of plasma membrane Ca2+-ATPase,” Journal of Biological Chemistry, vol. 271, no. 46, pp. 29205–29210, 1996.
[46]
D. Yin, K. Kuczera, and T. C. Squier, “The sensitivity of carboxyl-terminal methionines in calmodulin isoforms to oxidation by H2O2 modulates the ability to activate the plasma membrane Ca-ATPase,” Chemical Research in Toxicology, vol. 13, no. 2, pp. 103–110, 2000.
[47]
R. K. Bartlett, R. J. B. Urbauer, A. Anbanandam, H. S. Smallwood, J. L. Urbauer, and T. C. Squier, “Oxidation of Met144 and Met145 in calmodulin blocks calmodulin dependent activation of the plasma membrane Ca-ATPase,” Biochemistry, vol. 42, no. 11, pp. 3231–3238, 2003.
[48]
M. P. Kurnellas, A. Nicot, G. E. Shull, and S. Elkabes, “Plasma membrane calcium ATPase deficiency causes neuronal pathology in the spinal cord: a potential mechanism for neurodegeneration in multiple sclerosis and spinal cord injury,” The FASEB Journal, vol. 19, no. 2, pp. 298–300, 2005.
[49]
B. Khodorov, “Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones,” Progress in Biophysics and Molecular Biology, vol. 86, no. 2, pp. 279–351, 2004.
[50]
A. C. Rego and C. R. Oliveira, “Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases,” Neurochemical Research, vol. 28, no. 10, pp. 1563–1574, 2003.
[51]
J. T. Greenamyre, G. MacKenzie, T. I. Peng, and S. E. Stephans, “Mitochondrial dysfunction in Parkinson's disease,” Biochemical Society Symposium, vol. 66, pp. 85–97, 1999.
[52]
F. Buttgereit and M. D. Brand, “A hierarchy of ATP-consuming processes in mammalian cells,” Biochemical Journal, vol. 312, no. 1, pp. 163–167, 1995.
[53]
P. S. Brookes, Y. Yoon, J. L. Robotham, M. W. Anders, and S. S. Sheu, “Calcium, ATP, and ROS: a mitochondrial love-hate triangle,” American Journal of Physiology, vol. 287, no. 4, pp. C817–C833, 2004.
[54]
P. Pacher and C. Szabo, “Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease,” American Journal of Pathology, vol. 173, no. 1, pp. 2–13, 2008.
[55]
C. T. Taylor and S. Moncada, “Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 4, pp. 643–647, 2010.
[56]
J. J. Poderoso, “The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide,” Archives of Biochemistry and Biophysics, vol. 484, no. 2, pp. 214–220, 2009.
[57]
P. V. Finocchietto, M. C. Franco, S. Holod et al., “Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death,” Experimental Biology and Medicine, vol. 234, no. 9, pp. 1020–1028, 2009.
[58]
S. Moncada and J. P. Bola?os, “Nitric oxide, cell bioenergetics and neurodegeneration,” Journal of Neurochemistry, vol. 97, no. 6, pp. 1676–1689, 2006.
[59]
I. Wiswedel, A. Gardemann, A. Storch, D. Peter, and L. Schild, “Degradation of phospholipids by oxidative stress—exceptional significance of cardiolipin,” Free Radical Research, vol. 44, no. 2, pp. 135–145, 2010.
[60]
H. Bayir, V. A. Tyurin, Y. Y. Tyurina et al., “Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis,” Annals of Neurology, vol. 62, no. 2, pp. 154–169, 2007.
[61]
S. Pope, J. M. Land, and S. J. R. Heales, “Oxidative stress and mitochondrial dysfunction in neurodegeneration; cardiolipin a critical target?” Biochimica et Biophysica Acta, vol. 1777, no. 7-8, pp. 794–799, 2008.
[62]
G. Paradies, G. Petrosillo, V. Paradies, and F. M. Ruggiero, “Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease,” Cell Calcium, vol. 45, no. 6, pp. 643–650, 2009.
[63]
L. A. Macmillan-Crow, J. P. Crow, J. D. Kerby, J. S. Beckman, and J. A. Thompson, “Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 21, pp. 11853–11858, 1996.
[64]
L. A. MacMillan-Crow, J. P. Crow, and J. A. Thompson, “Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues,” Biochemistry, vol. 37, no. 6, pp. 1613–1622, 1998.
[65]
V. Demicheli, C. Quijano, B. Alvarez, and R. Radi, “Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide,” Free Radical Biology and Medicine, vol. 42, no. 9, pp. 1359–1368, 2007.
[66]
E. Cadenas and K. J. A. Davies, “Mitochondrial free radical generation, oxidative stress, and aging,” Free Radical Biology and Medicine, vol. 29, no. 3-4, pp. 222–230, 2000.
[67]
C. E. Berry and J. M. Hare, “Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications,” Journal of Physiology, vol. 555, pp. 589–606, 2004.
[68]
G. C. Brown and J. J. Neher, “Inflammatory neurodegeneration and mechanisms of microglial killing of neurons,” Molecular Neurobiology, vol. 41, no. 2-3, pp. 242–247, 2010.
[69]
A. M. Briones and R. M. Touyz, “Oxidative stress and hypertension: current concepts,” Current Hypertension Reports, vol. 12, no. 2, pp. 135–142, 2010.
[70]
A. L. Perraud, C. L. Takanishi, B. Shen et al., “Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels,” Journal of Biological Chemistry, vol. 280, no. 7, pp. 6138–6148, 2005.
[71]
M. Kolisek, A. Beck, A. Fleig, and R. Penner, “Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels,” Molecular Cell, vol. 18, no. 1, pp. 61–69, 2005.
[72]
B. F. Bessac and S. E. Jordt, “Breathtaking TRP channels: tRPA1 and TRPV1 in airway chemosensation and reflex control,” Physiology, vol. 23, no. 6, pp. 360–370, 2008.
[73]
M. Trevisani, J. Siemens, S. Materazzi et al., “4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 33, pp. 13519–13524, 2007.
[74]
D. A. Andersson, C. Gentry, S. Moss, and S. Bevan, “Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress,” Journal of Neuroscience, vol. 28, no. 10, pp. 2485–2494, 2008.
[75]
T. Yoshida, R. Inoue, T. Morii et al., “Nitric oxide activates TRP channels by cysteine S-nitrosylation,” Nature Chemical Biology, vol. 2, no. 11, pp. 596–607, 2006.
[76]
M. L. Pall and J. H. Anderson, “The vanilloid receptor as a putative target of diverse chemicals in multiple chemical sensitivity,” Archives of Environmental Health, vol. 59, no. 7, pp. 363–375, 2004.
[77]
D. P. Li, S. R. Chen, and H. L. Pan, “VR1 receptor activation induces glutamate release and postsynaptic firing in the paraventricular nucleus,” Journal of Neurophysiology, vol. 92, no. 3, pp. 1807–1816, 2004.
[78]
C. P. Bailey, K. A. Maubach, and R. S. G. Jones, “Neurokinin-1 receptors in the rat nucleus tractus solitarius: pre- and postsynaptic modulation of glutamate and GABA release,” Neuroscience, vol. 127, no. 2, pp. 467–479, 2004.
[79]
J. Kamei, H. Tanihara, H. Igarashi, and Y. Kasuya, “Effects of N-methyl-D-aspartate antagonists on the cough reflex,” European Journal of Pharmacology, vol. 168, no. 2, pp. 153–158, 1989.
[80]
T. J. Coderre and R. Melzack, “Central neural mediators of secondary hyperalgesia following heat injury in rats: neuropeptides and excitatory amino acids,” Neuroscience Letters, vol. 131, no. 1, pp. 71–74, 1991.
[81]
P. M. Dougherty and W. D. Willis, “Enhanced responses of spinothalamic tract neurons to excitatory amino acids accompany capsaicin-induced sensitization in the monkey,” Journal of Neuroscience, vol. 12, no. 3, pp. 883–894, 1992.
[82]
O. K. Andersen, S. Felsby, L. Nicolaisen, P. Bjerring, T. S. Jensen, and L. Arendt-Nielsen, “The effect of Ketamine on stimulation of primary and secondary hyperalgesic areas induced by capsaicin—a double-blind, placebo-controlled, human experimental study,” Pain, vol. 66, no. 1, pp. 51–62, 1996.
[83]
N. F. Sethna, M. Liu, R. Gracely, G. J. Bennett, and M. B. Max, “Analgesic and cognitive effects of intravenous ketamine-alfentanil combinations versus either drug alone after intradermal capsaicin in normal subjects,” Anesthesia and Analgesia, vol. 86, no. 6, pp. 1250–1256, 1998.
[84]
D. D. Mitsikostas, M. Sanchez del Rio, C. Waeber, M. A. Moskowitz, and F. M. Cutrer, “The NMDA receptor antagonist MK-801 reduces capsaicin-induced C-fos expression within rat trigeminal nucleus caudalis,” Pain, vol. 76, no. 1-2, pp. 239–248, 1998.
[85]
T. Kawamata, K. Omote, M. Toriyabe, M. Kawamata, and A. Namiki, “Involvement of capsaicin-sensitive fibers in spinal NMDA-induced glutamate release,” NeuroReport, vol. 12, no. 16, pp. 3447–3450, 2001.
[86]
A. Dray, “Neuropharmacological mechanisms of capsaicin and related substances,” Biochemical Pharmacology, vol. 44, no. 4, pp. 611–615, 1992.
[87]
E. Palazzo, V. de Novellis, I. Marabese et al., “Interaction between vanilloid and glutamate receptors in the central modulation of nociception,” European Journal of Pharmacology, vol. 439, no. 1–3, pp. 69–75, 2002.
[88]
D. K. Lam, B. J. Sessle, B. E. Cairns, and J. W. Hu, “Peripheral NMDA receptor modulation of jaw muscle electromyographic activity induced by capsaicin injection into the temporomandibular joint of rats,” Brain Research, vol. 1046, no. 1-2, pp. 68–76, 2005.
[89]
C. R. McNamara, J. Mandel-Brehm, D. M. Bautista et al., “TRPA1 mediates formalin-induced pain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 33, pp. 13525–13530, 2007.
[90]
L. H. Piao, T. Fujita, C. Y. Jiang et al., “TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase,” Biochemical and Biophysical Research Communications, vol. 379, no. 4, pp. 980–984, 2009.
[91]
M. Kosugi, T. Nakatsuka, T. Fujita, Y. Kuroda, and E. Kumamoto, “Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord,” Journal of Neuroscience, vol. 27, no. 16, pp. 4443–4451, 2007.
[92]
M. Scott, T. Gomeza, Z. Dinga, and B. Robert, “Differential behavioral effect of the TRPM8/TRPA1 channel agonist icilin (AG-3-5),” European Journal of Pharmacology, vol. 575, no. 1–3, pp. 103–104, 2007.
[93]
J. Werkheiser, A. Cowan, T. Gomez et al., “Icilin-induced wet-dog shakes in rats are dependent on NMDA receptor activation and nitric oxide production,” Pharmacology Biochemistry and Behavior, vol. 92, no. 3, pp. 543–548, 2009.
[94]
Z. Ding, A. Cowan, and S. M. Rawls, “Icilin induces a hyperthermia in rats that is dependent on nitric oxide production and NMDA receptor activation,” European Journal of Pharmacology, vol. 578, no. 2-3, pp. 201–208, 2008.
[95]
T. Yokoyama, T. Ohbuchi, T. Saito et al., “Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats,” European Journal of Pharmacology, vol. 655, no. 1–3, pp. 31–37, 2011.
[96]
C. J. Proudfoot, E. M. Garry, D. F. Cottrell et al., “Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain,” Current Biology, vol. 16, no. 16, pp. 1591–1605, 2006.
[97]
D. Penaloza and J. Arias-Stella, “The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness,” Circulation, vol. 115, no. 9, pp. 1132–1146, 2007.
[98]
X. Q. Xu and Z. C. Jing, “High-altitude pulmonary hypertension,” European Respiratory Review, vol. 18, pp. 13–17, 2009.
[99]
C. V. Remillard and J. X. J. Yuan, “High altitude pulmonary hypertension: role of K+ and Ca2+ channels,” High Altitude Medicine and Biology, vol. 6, no. 2, pp. 133–146, 2005.
[100]
T. N. Holt and R. J. Callan, “Pulmonary arterial pressure testing for high mountain disease in cattle,” Veterinary Clinics of North America, vol. 23, no. 3, pp. 575–596, 2007.
[101]
G. L. Colice, N. Hill, Y. J. Lee et al., “Exaggerated pulmonary hypertension with monocrotaline in rats susceptible to chronic mountain sickness,” Journal of Applied Physiology, vol. 83, no. 1, pp. 25–31, 1997.
[102]
J. P. Khoo, L. Zhao, N. J. Alp et al., “Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension,” Circulation, vol. 111, no. 16, pp. 2126–2133, 2005.
[103]
I. Fantozzi, S. Zhang, O. Platoshyn, C. V. Remillard, R. T. Cowling, and J. X. J. Yuan, “Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells,” American Journal of Physiology, vol. 285, no. 6, pp. L1233–L1245, 2003.
[104]
P. Bartsch, M. Maggiorini, M. Ritter, C. Noti, P. Vock, and O. Oelz, “Prevention of high-altitude pulmonary edema by nifedipine,” The New England Journal of Medicine, vol. 325, no. 18, pp. 1284–1289, 1991.
[105]
Y. X. Wang, J. Wang, C. Wang et al., “Functional expression of transient receptor potential vanilloid-related channels in chronically hypoxic human pulmonary arterial smooth muscle cells,” Journal of Membrane Biology, vol. 223, no. 3, pp. 151–159, 2008.
[106]
L. A. Palmer, G. L. Semenza, M. H. Stoler, and R. A. Johns, “Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1,” American Journal of Physiology, vol. 274, no. 2, pp. L212–L219, 1998.
[107]
A. E. Loot and I. Fleming, “Cytochrome P450-derived epoxyeicosatrienoic acids and pulmonary hypertension: central role of transient receptor potential C6 channels,” Journal of Cardiovascular Pharmacology, vol. 57, no. 2, pp. 140–147, 2011.
[108]
S. Goerre, M. Wenk, P. B?rtsch et al., “Endothelin-1 in pulmonary hypertension associated with high-altitude exposure,” Circulation, vol. 91, no. 2, pp. 359–364, 1995.
[109]
C. D. Cool, N. F. Voelkel, and T. Bull, “Viral infection and pulmonary hypertension: is there an association?” Expert Review of Respiratory Medicine, vol. 5, no. 2, pp. 207–216, 2011.
[110]
S. Cicalini, P. Chinello, and N. Petrosillo, “HIV infection and pulmonary arterial hypertension,” Expert Review of Respiratory Medicine, vol. 5, no. 2, pp. 257–266, 2011.
[111]
P. Y. Hsue, S. G. Deeks, H. H. Farah et al., “Role of HIV and human herpesvirus-8 infection in pulmonary arterial hypertension,” AIDS, vol. 22, no. 7, pp. 825–833, 2008.
[112]
T. M. Bull, C. A. Meadows, C. D. Coldren et al., “Human herpesvirus-8 infection of primary pulmonary microvascular endothelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 39, no. 6, pp. 706–716, 2008.
[113]
S. Janda, B. S. Quon, and J. Swiston, “HIV and pulmonary arterial hypertension: a systematic review,” HIV Medicine, vol. 11, no. 10, pp. 620–634, 2010.
[114]
A. Talwar, P. Sarkar, and M. J. Rosen, “Pulmonary arterial hypertension in human immunodeficiency virus infection,” Postgraduate Medicine, vol. 121, no. 5, pp. 56–67, 2009.
[115]
A. Cota-Gomez, A. C. Flores, X.-F. Ling, M. Varella-Garcia, and S. C. Flores, “HIV-1 Tat increases oxidant burden in the lungs of transgenic mice,” Free Radical Biology and Medicine, vol. 51, no. 9, pp. 1697–1707, 2011.
[116]
C. Tcherakian, é. Rivaud, é. Catherinot, D. Zucman, A.-C. Metivier, and L.-J. Couderc, “Pulmonary arterial hypertension related to HIV: is inflammation related to IL-6 the cornerstone?” Revue de Pneumologie Clinique, vol. 67, no. 4, pp. 250–257, 2011.
[117]
J.-L. Lü, J. Nurko, J. Jiang et al., “Nordihydroguaiaretic acid (NDGA) inhibits ritonavir-induced endothelial dysfunction in porcine pulmonary arteries,” Medical Science Monitor, vol. 17, no. 11, pp. BR312–BR318, 2011.
[118]
S. M. Weakley, J. Jiang, J. Lü et al., “Natural antioxidant dihydroxybenzyl alcohol blocks ritonavir-induced endothelial dysfunction in porcine pulmonary arteries and human endothelial cells,” Medical Science Monitor, vol. 17, no. 9, pp. BR235–BR241, 2011.
[119]
C. Cheng, X. Wang, S. M. Weakley et al., “The soybean isoflavonoid equol blocks ritonavir-induced endothelial dysfunction in porcine pulmonary arteries and human pulmonary artery endothelial cells,” Journal of Nutrition, vol. 140, no. 1, pp. 12–17, 2010.
[120]
H. Chai, S. Yan, P. Lin, A. B. Lumsden, Q. Yao, and C. Chen, “Curcumin blocks HIV protease inhibitor ritonavir-induced vascular dysfunction in porcine coronary arteries,” Journal of the American College of Surgeons, vol. 200, no. 6, pp. 820–830, 2005.
[121]
W. Deng, L. Baki, J. Yin, H. Zhou, and C. M. Baumgarten, “HIV protease inhibitors elicit volume-sensitive Cl? current in cardiac myocytes via mitochondrial ROS,” Journal of Molecular and Cellular Cardiology, vol. 49, no. 5, pp. 746–752, 2010.
[122]
Z. Vyslouzil, J. Polak, J. Widimsky, and M. Sukova, “Pathogenesis of pulmonary hypertension in tuberculosis,” Czechoslovak Medicine, vol. 3, no. 2, pp. 123–131, 1980.
[123]
A. E. H. Ahmed, A. S. Ibrahim, and S. M. Elshafie, “Pulmonary hypertension in patients with treated pulmonary tuberculosis: analysis of 14 consecutive cases,” Clinical Medicine Insights, vol. 5, no. 1, pp. 1–5, 2011.
[124]
K. Machida and R. Maekura, “State of the art: sequelae of tuberculosis,” Kekkaku, vol. 80, no. 10, pp. 655–674, 2005.
[125]
E. D. Chan, K. R. Morris, J. T. Belisle et al., “Induction of inducible nitric oxide synthase-NO* by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-κB signaling pathways,” Infection and Immunity, vol. 69, no. 4, pp. 2001–2010, 2001.
[126]
A. M. Siore, R. E. Parker, A. A. Stecenko et al., “Endotoxin-induced acute lung injury requires interaction with the liver,” American Journal of Physiology, vol. 289, no. 5, pp. L769–L776, 2005.
[127]
M. Lipcsey, E. S?derberg, S. Basu et al., “F-2-isoprostane, inflammation, cardiac function and oxygenation in the endotoxaemic pig,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 78, no. 3, pp. 209–217, 2008.
[128]
P. K. Gonzalez, J. Zhuang, S. R. Doctrow et al., “Role of oxidant stress in the adult respiratory distress syndrome: evaluation of a novel antioxidant strategy in a porcine model of endotoxin-induced acute lung injury,” Shock, vol. 6, supplement 6, pp. S23–S26, 1996.
[129]
R. H. Demling, M. Smith, R. Gunther, and T. Wandzilak, “Endotoxin-induced lung injury in unanesthetized sheep: effect of methylprednisolone,” Circulatory Shock, vol. 8, no. 3, pp. 351–360, 1981.
[130]
C. Boer, A. B. J. Groeneveld, G. J. Scheffer, J. J. De Lange, N. Westerhof, and P. Sipkema, “Induced nitric oxide impairs relaxation but not contraction in endotoxin-exposed rat pulmonary arteries,” Journal of Surgical Research, vol. 127, no. 2, pp. 197–202, 2005.
[131]
R. Rodrigo, O. Cauli, J. Boix, N. ElMlili, A. Agusti, and V. Felipo, “Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications,” Neurochemistry International, vol. 55, no. 1–3, pp. 113–118, 2009.
[132]
P. Monfort, E. Kosenko, S. Erceg, J. J. Canales, and V. Felipo, “Molecular mechanism of acute ammonia toxicity: role of NMDA receptors,” Neurochemistry International, vol. 41, no. 2-3, pp. 95–102, 2002.
[133]
C. Rose, “Increased extracellular brain glutamate in acute liver failure: decreased uptake or increased release?” Metabolic Brain Disease, vol. 17, no. 4, pp. 251–261, 2002.
[134]
P. Gustin, B. Urbain, J. F. Prouvost, and M. Ansay, “Effects of atmospheric ammonia on pulmonary hemodynamics and vascular permeability in pigs: interaction with endotoxins,” Toxicology and Applied Pharmacology, vol. 125, no. 1, pp. 17–26, 1994.
[135]
J. C. Leung, B. R. Travis, J. W. Verlander et al., “Expression and developmental regulation of the NMDA receptor subunits in the kidney and cardiovascular system,” American Journal of Physiology, vol. 283, no. 4, pp. R964–R971, 2002.
[136]
T. Nassar, K. Bdeir, S. Yarovoi et al., “tPA regulates pulmonary vascular activity through NMDA receptors,” American Journal of Physiology, vol. 301, no. 3, pp. L307–L314, 2011.
[137]
R. Ben-Abraham, M. Guttman, R. Flaishon, N. Marouani, D. Niv, and A. A. Weinbroum, “Mesenteric artery clamping/unclamping-induced acute lung injury is attenuated by N-methyl-D-aspartate antagonist dextromethorphan,” Lung, vol. 184, no. 6, pp. 309–317, 2006.
[138]
A. C. Arroliga, S. Sandur, D. W. Jacobsen et al., “Association between hyperhomocysteinemia and primary pulmonary hypertension,” Respiratory Medicine, vol. 97, no. 7, pp. 825–829, 2003.
[139]
I. H. Ozerol, F. A. Pac, E. Ozerol et al., “Plasma endothelin-1, homocysteine and serum nitric oxide values in patients with left-to-right shunt,” Indian Heart Journal, vol. 56, no. 6, pp. 653–657, 2004.
[140]
S. Szamosi, Z. Csiki, E. Szomják et al., “Plasma homocysteine levels, the prevalence of methylenetetrahydrofolate reductase gene C677T polymorphism and macrovascular disorders in systemic sclerosis: risk factors for accelerated macrovascular damage?” Clinical Reviews in Allergy and Immunology, vol. 36, no. 2-3, pp. 145–149, 2009.
[141]
P. H. Rolland, A. Friggi, A. Barlatier et al., “Hyperhomocysteinemia-induced vascular damage in the minipig: captopril-hydrochlorothiazide combination prevents elastic alterations,” Circulation, vol. 91, no. 4, pp. 1161–1174, 1995.
[142]
L. B. R. Zocrato, L. S. A. Capettini, B. A. Rezende et al., “Increased expression of endothelial iNOS accounts for hyporesponsiveness of pulmonary artery to vasoconstrictors after paraquat poisoning,” Toxicology in Vitro, vol. 24, no. 3, pp. 1019–1025, 2010.
[143]
M. Singh, V. Murthy, and C. Ramassamy, “Standardized extracts of Bacopa monniera protects against MPP+ and paraquat induce-toxicities by modulation mitochondrial activities, proteasomal functions and redox pathways,” Toxicological Sciences, vol. 125, no. 1, pp. 219–232, 2012.
[144]
A. Czerniczyniec, A. G. Karadayian, J. Bustamante, R. A. Cutrera, and S. Lores-Arnaiz, “Paraquat induces behavioral changes and cortical and striatal mitochondrial dysfunction,” Free Radical Biology and Medicine, vol. 51, pp. 1428–1436, 2011.
[145]
K. Shimizu, K. Matsubara, K. I. Ohtaki, and H. Shiono, “Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture,” Neuroscience Research, vol. 46, no. 4, pp. 523–532, 2003.
[146]
E. N. Mangano, D. Litteljohn, R. So et al., “Interferon-γ plays a role in paraquat-induced neurodegeneration involving oxidative and proinflammatory pathways,” Neurobiology of Aging, vol. 33, no. 7, pp. 1411–1426, 2011.
[147]
A. F. Fernandes, J. Zhou, X. Zhang et al., “Oxidative inactivation of the proteasome in retinal pigment epithelial cells: a potential link between oxidative stress and up-regulation of interleukin-8,” Journal of Biological Chemistry, vol. 283, no. 30, pp. 20745–20753, 2008.
[148]
S. L. Chow, V. Chandran, R. Fazelzad, and S. R. Johnson, “Prognostic factors for survival in systemic lupus erythematosus associated pulmonary hypertension,” Lupus, vol. 21, no. 4, pp. 353–364, 2012.
[149]
J. G. Coghlan, J. Pope, and C. P. Denton, “Assessment of endpoints in pulmonary arterial hypertension associated with connective tissue disease,” Current Opinion in Pulmonary Medicine, vol. 16, supplement 1, pp. S27–S34, 2010.
[150]
I. Koniari, S. N. Siminelakis, N. G. Baikoussis, G. Papadopoulos, J. Goudevenos, and E. Apostolakis, “Antiphospholipid syndrome; its implication in cardiovascular diseases: a review,” Journal of Cardiothoracic Surgery, vol. 5, no. 1, article 101, 2010.
[151]
S. R. Johnson and J. T. Granton, “Pulmonary hypertension in systemic sclerosis and systemic lupus erythematosus,” European Respiratory Review, vol. 20, no. 122, pp. 277–286, 2011.
[152]
R. Ahmad, Z. Rasheed, and H. Ahsan, “Biochemical and cellular toxicology of peroxynitrite: implications in cell death and autoimmune phenomenon,” Immunopharmacology and Immunotoxicology, vol. 31, no. 3, pp. 388–396, 2009.
[153]
M. Humbert, “Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: pathophysiology,” European Respiratory Review, vol. 19, no. 115, pp. 59–63, 2010.
[154]
K. L. Lane, M. Talati, E. Austin, et al., “Oxidative injury is a common consequence of BMPR2 mutations,” Pulmonary Circulation, vol. 1, pp. 72–83, 2011.
[155]
M. D. Bear, M. Li, Y. Liu, M. A. Giel-Moloney, B. L. Fanburg, and D. Toksoz, “The Lbc Rho guanine nucleotide exchange factor/α-catulin axis functions in serotonin-induced vascular smooth muscle cell mitogenesis and RhoA/ROCK activation,” Journal of Biological Chemistry, vol. 285, no. 43, pp. 32919–32926, 2010.
[156]
X. Y. Chen, J. N. Dun, Q. F. Miao, and Y. J. Zhang, “Fasudil hydrochloride hydrate, a Rho-kinase inhibitor, suppresses 5-hydroxytryptamine-induced pulmonary artery smooth muscle cell proliferation via JNK and ERK1/2 pathway,” Pharmacology, vol. 83, no. 2, pp. 67–79, 2009.
[157]
D. A. Zopf, L . A. D. Neves, K. J. Nikula, J. Huang, P. B. Senese, and M. R. Gralinski, “C-122, a novel antagonist of serotonin receptor 5-HT2B, prevents monocrotaline-induced pulmonary arterial hypertension in rats,” European Journal of Pharmacology, vol. 670, no. 1, pp. 195–203, 2011.
[158]
M. R. MacLean and Y. Dempsie, “The serotonin hypothesis of pulmonary hypertension revisited,” Advances in Experimental Medicine and Biology, vol. 661, pp. 309–322, 2010.
[159]
Y. Dempsie, I. Morecroft, D. J. Welsh et al., “Converging evidence in support of the serotonin hypothesis of dexfenfluramine-induced pulmonary hypertension with novel transgenic mice,” Circulation, vol. 117, no. 22, pp. 2928–2937, 2008.
[160]
C. M. Villalón and D. Centurión, “Cardiovascular responses produced by 5-hydroxytriptamine:a pharmacological update on the receptors/mechanisms involved and therapeutic implications,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 376, no. 1-2, pp. 45–63, 2007.
[161]
N. Desbuards, D. Antier, G. Y. Rochefort et al., “Dexfenfluramine discontinuous treatment does not worsen hypoxia-induced pulmonary vascular remodeling but activates RhoA/ROCK pathway: consequences on pulmonary hypertension,” European Journal of Pharmacology, vol. 602, no. 2-3, pp. 355–363, 2009.
[162]
A. R. Hemnes, A. Zaiman, and H. C. Champion, “PDE5A inhibition attenuates bleomycin-induced pulmonary fibrosis and pulmonary hypertension through inhibition of ROS generation and RhoA/Rho kinase activation,” American Journal of Physiology, vol. 294, no. 1, pp. L24–L33, 2008.
[163]
L. C. Price, D. Montani, C. Tcherakian et al., “Dexamethasone reverses monocrotaline-induced pulmonary arterial hypertension in rats,” European Respiratory Journal, vol. 37, no. 4, pp. 813–822, 2011.
[164]
M. Oka, N. Homma, and I. F. McMurtry, “Rho kinase-mediated vasoconstriction in rat models of pulmonary hypertension,” Methods in Enzymology, vol. 439, pp. 191–204, 2008.
[165]
I. F. McMurtry, K. Abe, H. Ota, K. A. Fagan, and M. Oka, “Rho kinase-mediated vasoconstriction in pulmonary hypertension,” Advances in Experimental Medicine and Biology, vol. 661, pp. 299–308, 2010.
[166]
M. J. Connolly and P. I. Aaronson, “Key role of the RhoA/Rho kinase system in pulmonary hypertension,” Pulmonary Pharmacology and Therapeutics, vol. 24, no. 1, pp. 1–14, 2011.
[167]
M. Thomas, “Pharmacological targets for pulmonary vascular disease: vasodilation versus anti-remodelling,” Advances in Experimental Medicine and Biology, vol. 661, pp. 475–490, 2010.
[168]
S. Shimizu, M. Tahara, S. Ogata et al., “Involvement of nuclear factor-kB activation through RhoA/Rho-kinase pathway in LPS-induced IL-8 production in human cervical stromal cells,” Molecular Human Reproduction, vol. 13, no. 3, pp. 181–187, 2007.
[169]
K. Goto, Y. Chiba, K. Matsusue et al., “The proximal STAT6 and NF-κB sites are responsible for IL-13- and TNF-α-induced RhoA transcriptions in human bronchial smooth muscle cells,” Pharmacological Research, vol. 61, no. 5, pp. 466–472, 2010.
[170]
K. Goto, Y. Chiba, H. Sakai, and M. Misawa, “Mechanism of inhibitory effect of prednisolone on RhoA upregulation in human bronchial smooth muscle cells,” Biological and Pharmaceutical Bulletin, vol. 33, no. 4, pp. 710–713, 2010.
[171]
E. Kakiashvili, Q. Dan, M. Vandermeer et al., “The epidermal growth factor receptor mediates tumor necrosis factor-α-induced activation of the ERK/GEF-H1/RhoA pathway in tubular epithelium,” Journal of Biological Chemistry, vol. 286, no. 11, pp. 9268–9279, 2011.
[172]
J. Peng, F. He, C. Zhang, X. Deng, and F. Yin, “Protein kinase C-α signals P115RhoGEF phosphorylation and RhoA activation in TNF-α-induced mouse brain microvascular endothelial cell barrier dysfunction,” Journal of Neuroinflammation, vol. 8, article 28, 2011.
[173]
T. Nakakuki, M. Ito, H. Iwasaki et al., “Rho/Rho-kinase pathway contributes to C-reactive protein-induced plasminogen activator inhibitor-1 expression in endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 10, pp. 2088–2093, 2005.
[174]
L. Jin, Z. Ying, and R. C. Webb, “Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta,” American Journal of Physiology, vol. 287, no. 4, pp. H1495–H1500, 2004.
[175]
S. Ryoo, A. Bhunia, F. Chang, A. Shoukas, D. E. Berkowitz, and L. H. Romer, “OxLDL-dependent activation of arginase II is dependent on the LOX-1 receptor and downstream RhoA signaling,” Atherosclerosis, vol. 214, no. 2, pp. 279–287, 2011.
[176]
S. Chandra, M. J. Romero, A. Shatanawi, A. M. Alkilany, R. B. Caldwell, and R. W. Caldwell, “Oxidative species increase arginase activity in endothelial cells through the RhoA/Rho kinase pathway,” British Journal of Pharmacology, vol. 165, no. 2, pp. 506–519, 2012.
[177]
T. C. Resta, B. R. S. Broughton, and N. L. Jernigan, “Reactive oxygen species and RhoA signaling in vascular smooth muscle: role in chronic hypoxia-induced pulmonary hypertension,” Advances in Experimental Medicine and Biology, vol. 661, pp. 355–373, 2010.
[178]
B. R. S. Broughton, N. L. Jernigan, C. E. Norton, B. R. Walker, and T. C. Resta, “Chronic hypoxia augments depolarization-induced Ca2+ sensitization in pulmonary vascular smooth muscle through superoxide-dependent stimulation of RhoA,” American Journal of Physiology, vol. 298, no. 2, pp. L232–L242, 2010.
[179]
J. Ren, J. Duan, D. P. Thomas et al., “IGF-I alleviates diabetes-induced RhoA activation, eNOS uncoupling, and myocardial dysfunction,” American Journal of Physiology, vol. 294, no. 3, pp. R793–R802, 2008.
[180]
L. Yao, M. J. Romero, H. A. Toque, G. Yang, R. B. Caldwell, and R. W. Caldwell, “The role of RhoA/Rho kinase pathway in endothelial dysfunction,” Journal of Cardiovascular Disease Research, vol. 1, no. 4, pp. 165–170, 2010.
[181]
L. Zhao, X. Wang, Q. Chang et al., “Neferine, a bisbenzylisoquinline alkaloid attenuates bleomycin-induced pulmonary fibrosis,” European Journal of Pharmacology, vol. 627, no. 1–3, pp. 304–312, 2010.
[182]
F. Dong, S. Soubeyrand, and R. J. G. Haché, “Activation of PARP-1 in response to bleomycin depends on the Ku antigen and protein phosphatase 5,” Oncogene, vol. 29, no. 14, pp. 2093–2103, 2010.
[183]
O. Mungunsukh, A. J. Griffin, Y. H. Lee, and R. M. Day, “Bleomycin induces the extrinsic apoptotic pathway in pulmonary endothelial cells,” American Journal of Physiology, vol. 298, no. 5, pp. L696–L703, 2010.
[184]
V. G. Desai, A. Aidoo, J. Li, L. E. Lyn-Cook, D. A. Casciano, and R. J. Feuers, “Effects of bleomycin on liver antioxidant enzymes and the electron transport system from ad libitum-fed and dietary-restricted female and male Fischer 344 rats,” Nutrition and Cancer, vol. 36, no. 1, pp. 42–51, 2000.
[185]
Z. Van Rheen, C. Fattman, S. Domarski et al., “Lung extracellular superoxide dismutase overexpression lessens bleomycin-induced pulmonary hypertension and vascular remodeling,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 4, pp. 500–508, 2011.
[186]
S. I. Said, S. A. Hamidi, K. G. Dickman et al., “Moderate pulmonary arterial hypertension in male mice lacking the vasoactive intestinal peptide gene,” Circulation, vol. 115, no. 10, pp. 1260–1268, 2007.
[187]
S. A. Hamidi, S. Prabhakar, and S. I. Said, “Enhancement of pulmonary vascular remodelling and inflammatory genes with VIP gene deletion,” European Respiratory Journal, vol. 31, no. 1, pp. 135–139, 2008.
[188]
S. A. Hamidi, R. Z. Lin, A. M. Szema, S. Lyubsky, Y. P. Jiang, and S. I. Said, “VIP and endothelin receptor antagonist: an effective combination against experimental pulmonary arterial hypertension,” Respiratory Research, vol. 12, article 141, 2011.
[189]
P. Z. Anastasiadis, L. Bezin, L. J. Gordon, B. Imerman, J. Blitz, and R. A. Levine, “Vasoactive intestinal peptide induces both tyrosine hydroxylase activity and tetrahydrobiopterin biosynthesis in PC12 cells,” Neuroscience, vol. 86, no. 1, pp. 179–189, 1998.
[190]
X. Z. Shi and S. K. Sarna, “Homeostatic and therapeutic roles of VIP in smooth muscle function: Myo-neuroimmune interactions,” American Journal of Physiology, vol. 297, no. 4, pp. G716–G725, 2009.
[191]
R. Yu, H. Zhang, L. Huang, X. Liu, and J. Chen, “Anti-hyperglycemic, antioxidant and anti-inflammatory effects of VIP and a VPAC1 agonist on streptozotocin-induced diabetic mice,” Peptides, vol. 32, no. 2, pp. 216–222, 2011.
[192]
M. Nandi, A. Miller, R. Stidwill et al., “Pulmonary hypertension in a GTP-cyclohydrolase 1-deficient mouse,” Circulation, vol. 111, no. 16, pp. 2086–2090, 2005.
[193]
J. Belik, B. A. S. McIntyre, M. Enomoto, J. Pan, H. Grasemann, and J. Vasquez-Vivar, “Pulmonary hypertension in the newborn GTP cyclohydrolase I-deficient mouse,” Free Radical Biology and Medicine, vol. 51, no. 12, pp. 2227–2233, 2011.
[194]
L. V. d'Uscio, “ENOS uncoupling in pulmonary hypertension,” Cardiovascular Research, vol. 92, no. 3, pp. 359–360, 2011.
[195]
M. Yanagisawa, H. Kurihara, S. Kimura et al., “A novel potent vasoconstrictor peptide produced by vascular endothelial cells,” Nature, vol. 332, no. 6163, pp. 411–415, 1988.
[196]
M. La and J. J. Reid, “Endothelin-1 and the regulation of vascular tone,” Clinical and Experimental Pharmacology and Physiology, vol. 22, no. 5, pp. 315–323, 1995.
[197]
A. Giaid, M. Yanagisawa, D. Langleben et al., “Expression of endothelin-1 in the lungs of patients with pulmonary hypertension,” The New England Journal of Medicine, vol. 328, no. 24, pp. 1732–1739, 1993.
[198]
R. N. Channick, G. Simonneau, O. Sitbon et al., “Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study,” The Lancet, vol. 358, no. 9288, pp. 1119–1123, 2001.
[199]
M. Woods, D. Bishop-Bailey, J. R. Pepper, T. W. Evans, J. A. Mitchell, and T. D. Warner, “Cytokine and lipopolysaccharide stimulation of endothelin-1 release from human internal mammary artery and saphenous vein smooth-muscle cells,” Journal of Cardiovascular Pharmacology, vol. 31, supplement 1, pp. S348–S350, 1998.
[200]
M. Woods, J. A. Mitchell, E. G. Wood et al., “Endothelin-1 is induced by cytokines in human vascular smooth muscle cells: evidence for intracellular endothelin-converting enzyme,” Molecular Pharmacology, vol. 55, no. 5, pp. 902–909, 1999.
[201]
S. Narayan, G. Prasanna, R. R. Krishnamoorthy, X. Zhang, and T. Yorio, “Endothelin-1 synthesis and secretion in human retinal pigment epithelial cells (ARPE-19): differential regulation by cholinergics and TNF-alpha,” Investigative Ophthalmology and Visual Science, vol. 44, no. 11, pp. 4885–4894, 2003.
[202]
J. Ruef, M. Moser, W. Kübler, and C. Bode, “Induction of endothelin-1 expression by oxidative stress in vascular smooth muscle cells,” Cardiovascular Pathology, vol. 10, no. 6, pp. 311–315, 2001.
[203]
S. J. An, R. Boyd, M. Zhu, A. Chapman, D. R. Pimentel, and H. D. Wang, “NADPH oxidase mediates angiotensin II-induced endothelin-1 expression in vascular adventitial fibroblasts,” Cardiovascular Research, vol. 75, no. 4, pp. 702–709, 2007.
[204]
R. Jiménez, R. López-Sepúlveda, M. Kadmiri et al., “Polyphenols restore endothelial function in DOCA-salt hypertension: role of endothelin-1 and NADPH oxidase,” Free Radical Biology and Medicine, vol. 43, no. 3, pp. 462–473, 2007.
[205]
M. Woods, E. G. Wood, S. C. Bardswell et al., “Role for nuclear factor-κB and signal transducer and activator of transcription 1/interferon regulatory factor-1 in cytokine-induced endothelin-1 release in human vascular smooth muscle cells,” Molecular Pharmacology, vol. 64, no. 4, pp. 923–931, 2003.
[206]
P. Henno, C. Maurey, C. Danel et al., “Pulmonary vascular dysfunction in endstage cystic fibrosis: role of NF-κB and endothelin-1,” European Respiratory Journal, vol. 34, no. 6, pp. 1329–1337, 2009.
[207]
D. N. Müller, A. Fiebeler, J. K. Park, R. Dechend, and F. C. Luft, “Angiotensin II and endothelin induce inflammation and thereby promote hypertension-induced end-organ damage,” Clinical Nephrology, vol. 60, supplement 1, pp. S2–S12, 2003.
[208]
D. Ramzy, V. Rao, L. C. Tumiati et al., “Tetrahydrobiopterin prevents cyclosporine-induced vasomotor dysfunction,” Transplantation, vol. 79, no. 8, pp. 876–881, 2005.
[209]
V. A. Ohanyan, G. Guarini, C. K. Thodeti et al., “Endothelin-mediated in vivo pressor responses following TRPV1 activation,” American Journal of Physiology, vol. 301, no. 3, pp. H1135–H1142, 2011.
[210]
C. Xie and D. H. Wang, “Ablation of transient receptor potential vanilloid 1 abolishes endothelin-induced increases in afferent renal nerve activity: mechanisms and functional significance,” Hypertension, vol. 54, no. 6, pp. 1298–1305, 2009.
[211]
H. B. He, D. Z. Dai, and Y. Dai, “CPU0213, a novel endothelin receptor antagonist, ameliorates septic renal lesion by suppressing ET system and NF-κB in rats,” Acta Pharmacologica Sinica, vol. 27, no. 9, pp. 1213–1221, 2006.
[212]
S. Wedgwood, D. M. McMullan, J. M. Bekker, J. R. Fineman, and S. M. Black, “Role for endothelin-1-induced superoxide and peroxynitrite production in rebound pulmonary hypertension associated with inhaled nitric oxide therapy,” Circulation Research, vol. 89, no. 4, pp. 357–364, 2001.
[213]
M. Romero, R. Jiménez, M. Sánchez et al., “Quercetin inhibits vascular superoxide production induced by endothelin-1: role of NADPH oxidase, uncoupled eNOS and PKC,” Atherosclerosis, vol. 202, no. 1, pp. 58–67, 2009.
[214]
E. D. Loomis, J. C. Sullivan, D. A. Osmond, D. M. Pollock, and J. S. Pollock, “Endothelin mediates superoxide production and vasoconstriction through activation of NADPH oxidase and uncoupled nitric-oxide synthase in the rat aorta,” Journal of Pharmacology and Experimental Therapeutics, vol. 315, no. 3, pp. 1058–1064, 2005.
[215]
J. S. Zheng, X. Q. Yang, K. J. Lookingland et al., “Gene transfer of human guanosine 5′-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension,” Circulation, vol. 108, no. 10, pp. 1238–1245, 2003.
[216]
R. H. Steinhorn, J. A. Russell, S. Lakshminrusimha, S. F. Gugino, S. M. Black, and J. R. Fineman, “Altered endothelium-dependent relaxations in lambs with high pulmonary blood flow and pulmonary hypertension,” American Journal of Physiology, vol. 280, no. 1, pp. H311–H317, 2001.
[217]
H. J. Xia, D. Z. Dai, and Y. Dai, “Up-regulated inflammatory factors endothelin, NFκB, TNFα and iNOS involved in exaggerated cardiac arrhythmias in l-thyroxine-induced cardiomyopathy are suppressed by darusentan in rats,” Life Sciences, vol. 79, no. 19, pp. 1812–1819, 2006.
[218]
K. Sato, D. M. Rodman, and I. F. McMurtry, “Hypoxia inhibits increased ET(B) receptor-mediated NO synthesis in hypertensive rat lungs,” American Journal of Physiology, vol. 276, no. 4, pp. L571–L581, 1999.
[219]
J. Hirahashi, T. Nakaki, K. Hishikawa et al., “Endothelin-1 inhibits induction of nitric oxide synthase and GTP cyclohydrolase I in rat mesangial cells,” Pharmacology, vol. 53, no. 4, pp. 241–249, 1996.
[220]
Y.-L. Lin, R.-J. Lin, K.-P. Shen et al., “Baicalein, isolated from Scutellaria baicalensis, protects against endothelin-1-induced pulmonary artery smooth muscle cell proliferation via inhibition of TRPC1 channel expression,” Journal of Ethnopharmacology, vol. 138, no. 2, pp. 373–381, 2011.
[221]
J. Liang, H. Bi, and W. Ji, “Involvement of TRPA1 in ET-1-induced pain-like behavior in mice,” NeuroReport, vol. 21, no. 3, pp. 201–205, 2010.
[222]
J. A. Murphy, M. L. Archibald, W. H. Baldridge, and B. C. Chauhan, “Endothelin-1-induced proliferation is reduced and Ca2+ signaling is enhanced in endothelin B-deficient optic nerve head astrocytes,” Investigative Ophthalmology and Visual Science, vol. 52, no. 10, pp. 7771–7777, 2011.
[223]
G. Bkaily, S. Choufani, L. Avedanian et al., “Nonpeptidic antagonists of ETA and ETB receptors reverse the ET-1-induced sustained increase of cytosolic and nuclear calcium in human aortic vascular smooth muscle cells,” Canadian Journal of Physiology and Pharmacology, vol. 86, no. 8, pp. 546–556, 2008.
[224]
S. de Frutos, J. M. R. Diaz, C. H. Nitta, M. L. Sherpa, and L. V. Bosc, “Endothelin-1 contributes to increased NFATc3 activation by chronic hypoxia in pulmonary arteries,” American Journal of Physiology, vol. 301, no. 2, pp. C441–C450, 2011.
[225]
Y. Liu, E. S. Ji, S. Xiang et al., “Exposure to cyclic intermittent hypoxia increases expression of functional NMDA receptors in the rat carotid body,” Journal of Applied Physiology, vol. 106, no. 1, pp. 259–267, 2009.
[226]
S. Moyanova, L. Kortenska, and R. Mitreva, “Endothelin-1-induced cerebral ischemia: effects of ketanserin and MK-801 on limb placing in rats,” International Journal of Neuroscience, vol. 117, no. 9, pp. 1361–1381, 2007.
[227]
W. Deng, L. Baki, and C. M. Baumgarten, “Endothelin signalling regulates volume-sensitive Cl? current via NADPH oxidase and mitochondrial reactive oxygen species,” Cardiovascular Research, vol. 88, no. 1, pp. 93–100, 2010.
[228]
V. C. De Giusti, M. V. Correa, M. C. Villa-Abrille et al., “The positive inotropic effect of endothelin-1 is mediated by mitochondrial reactive oxygen species,” Life Sciences, vol. 83, no. 7-8, pp. 264–271, 2008.
[229]
K. F. Beck, M. G. Mohaupt, and R. B. Sterzel, “Endothelin-1 inhibits cytokine-stimulated transcription of inducible nitric oxide synthase in glomerular mesangial cells,” Kidney International, vol. 48, no. 6, pp. 1893–1899, 1995.
[230]
M. Yoshida, N. Nakanishi, X. Wang, and Y. Hattori, “Exogenous biopterins requirement for iNOS function in vascular smooth muscle cells,” Journal of Cardiovascular Pharmacology, vol. 42, no. 2, pp. 197–203, 2003.
[231]
S. Lakshminrusimha, J. A. Russell, S. Wedgwood et al., “Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 12, pp. 1370–1377, 2006.
[232]
J. Herget, J. Wilhelm, J. Novotná et al., “A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension,” Physiological Research, vol. 49, no. 5, pp. 493–501, 2000.
[233]
N. Weissmann, R. T. Schermuly, H. A. Ghofrani et al., “Hypoxic pulmonary vasoconstriction—triggered by an increase in reactive oxygen species?” Novartis Foundation Symposium, vol. 272, pp. 196–208, 2006.
[234]
P. Dorfmüller, M.-C. Chaumais, M. Giannakouli et al., “Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension,” Respiratory Research, vol. 12, Article ID 119, 2011.
[235]
M. Rashid, A. Kotwani, and M. Fahim, “Long lasting phosphodiesterase 5 inhibitor, tadalafil, and superoxide dismutase mimic, tempol, protect against hypoxia-induced pulmonary hypertension in rats,” Human and Experimental Toxicology, vol. 31, no. 6, pp. 626–636, 2012.
[236]
X. Lu, T. C. Murphy, M. S. Nanes, and C. M. Hart, “PPARγ regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-κB,” American Journal of Physiology, vol. 299, no. 4, pp. L559–L566, 2010.
[237]
P. Oishi, A. Grobe, E. Benavidez et al., “Inhaled nitric oxide induced NOS inhibition and rebound pulmonary hypertension: a role for superoxide and peroxynitrite in the intact lamb,” American Journal of Physiology, vol. 290, no. 2, pp. L359–L366, 2006.
[238]
E. O. Agbani, P. Coats, and R. M. Wadsworth, “Acute hypoxia stimulates intracellular peroxynitrite formation associated with pulmonary artery smooth muscle cell proliferation,” Journal of Cardiovascular Pharmacology, vol. 57, no. 5, pp. 584–588, 2011.
[239]
S. Aggarwal, C. M. Gross, S. Kumar et al., “Attenuated vasodilatation in lambs with endogenous and exogenous activation of cGMP signaling: role of protein kinase G nitration,” Journal of Cellular Physiology, vol. 226, no. 12, pp. 3104–3113, 2011.
[240]
E. O. Agbani, P. Coats, A. Mills, and R. M. Wadsworth, “Peroxynitrite stimulates pulmonary artery endothelial and smooth muscle cell proliferation: involvement of ERK and PKC,” Pulmonary Pharmacology and Therapeutics, vol. 24, no. 1, pp. 100–109, 2011.
[241]
J. Belik, D. Stevens, J. Pan et al., “Pulmonary vascular and cardiac effects of peroxynitrite decomposition in newborn rats,” Free Radical Biology and Medicine, vol. 49, no. 8, pp. 1306–1314, 2010.
[242]
A. Masood, R. Belcastro, J. Li, C. Kantores, R. P. Jankov, and A. K. Tanswell, “A peroxynitrite decomposition catalyst prevents 60% O2-mediated rat chronic neonatal lung injury,” Free Radical Biology and Medicine, vol. 49, no. 7, pp. 1182–1191, 2010.
[243]
Z. Q. Liu, B. Liu, L. Yu, X. Q. Wang, J. Wang, and H. M. Liu, “Simvastatin has beneficial effect on pulmonary artery hypertension by inhibiting NF-κB expression,” Molecular and Cellular Biochemistry, vol. 354, no. 1-2, pp. 77–82, 2011.
[244]
J. Li, J. J. Li, J. G. He, J. L. Nan, Y. L. Guo, and C. M. Xiong, “Atorvastatin decreases C-reactive protein-induced inflammatory response in pulmonary artery smooth muscle cells by inhibiting nuclear factor-κb pathway,” Cardiovascular Therapeutics, vol. 28, no. 1, pp. 8–14, 2010.
[245]
S. Kimura, K. Egashira, L. Chen et al., “Nanoparticle-mediated delivery of nuclear factor KB decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension,” Hypertension, vol. 53, no. 5, pp. 877–883, 2009.
[246]
H. Sawada, Y. Mitani, J. Maruyama et al., “A nuclear factor-κB inhibitor pyrrolidine dithiocarbamate ameliorates pulmonary hypertension in rats,” Chest, vol. 132, no. 4, pp. 1265–1274, 2007.
[247]
J. Huang, P. M. Kaminski, J. G. Edwards et al., “Pyrrolidine dithiocarbamate restores endothelial cell membrane integrity and attenuates monocrotaline-induced pulmonary artery hypertension,” American Journal of Physiology, vol. 294, no. 6, pp. L1250–L1259, 2008.
[248]
M. V. Autieri, T. L. Yue, G. Z. Ferstein, and E. Ohlstein, “Antisense oligonucleotides to the p65 subunit of NF-κB inhibit human vascular smooth muscle cell adherence and proliferation and prevent neointima formation in rat carotid arteries,” Biochemical and Biophysical Research Communications, vol. 213, no. 3, pp. 827–836, 1995.
[249]
B. S. Zuckerbraun, C. A. McCloskey, R. S. Mahidhara, P. K. M. Kim, B. S. Taylor, and E. Tzeng, “Overexpression of mutated IκBα inhibits vascular smooth muscle cell proliferation and intimal hyperplasia formation,” Journal of Vascular Surgery, vol. 38, no. 4, pp. 812–819, 2003.
[250]
E. Soon, A. M. Holmes, C. M. Treacy et al., “Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension,” Circulation, vol. 122, no. 9, pp. 920–927, 2010.
[251]
M. Li, S. R. Riddle, M. G. Frid, et al., “Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension,” Journal of Immunology, vol. 187, no. 5, pp. 2711–2722, 2011.
[252]
T. M. Yu, Y. H. Chen, J. Y. Hsu et al., “Systemic inflammation is associated with pulmonary hypertension in patients undergoing haemodialysis,” Nephrology Dialysis Transplantation, vol. 24, no. 6, pp. 1946–1951, 2009.
[253]
D. D. Sin and S. F. P. Man, “Is systemic inflammation responsible for pulmonary hypertension in COPD?” Chest, vol. 130, no. 2, pp. 310–312, 2006.
[254]
K. R. Hamal, R. F. Wideman, N. B. Anthony, and G. F. Erf, “Differential gene expression of proinflammatory chemokines and cytokines in lungs of ascites-resistant and -susceptible broiler chickens following intravenous cellulose microparticle injection,” Veterinary Immunology and Immunopathology, vol. 133, no. 2–4, pp. 250–255, 2010.
[255]
N. F. Voelkel, R. M. Tuder, J. Bridges, and W. P. Arend, “Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline,” American Journal of Respiratory Cell and Molecular Biology, vol. 11, no. 6, pp. 664–675, 1994.
[256]
A. A. Wanderer, “Rationale for IL-1β targeted therapy for ischemia-reperfusion induced pulmonary and other complications in sickle cell disease,” Journal of Pediatric Hematology/Oncology, vol. 31, no. 8, pp. 537–538, 2009.
[257]
G. N. Kalambokis, A. Mouzaki, M. Rodi, K. Pappas, P. Korantzopoulos, and E. V. Tsianos, “Serum interleukin 6 levels and cirrhosis-associated pulmonary hypertension,” Angiology, vol. 62, no. 4, pp. 344–345, 2011.
[258]
A. Chaouat, L. Savale, C. Chouaid et al., “Role for interleukin-6 in COPD-related pulmonary hypertension,” Chest, vol. 136, no. 3, pp. 678–687, 2009.
[259]
Y. Furuya, T. Satoh, and M. Kuwana, “Interleukin-6 as a potential therapeutic target for pulmonary arterial hypertension,” International Journal of Rheumatology, vol. 2010, Article ID 720305, 2010.
[260]
M. K. Steiner, O. L. Syrkina, N. Kolliputi, E. J. Mark, C. A. Hales, and A. B. Waxman, “Interleukin-6 overexpression induces pulmonary hypertension,” Circulation Research, vol. 104, no. 2, pp. 236–244, 2009.
[261]
M. Seimetz, N. Parajuli, A. Pichl et al., “Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice,” Cell, vol. 147, no. 2, pp. 293–305, 2011.
[262]
J. Moral-Sanz, C. Menendez, L. Moreno, E. Moreno, A. Cogolludo, and F. Perez-Vizcaino, “Pulmonary arterial dysfunction in insulin resistant obese Zucker rats,” Respiratory Research, vol. 12, article 51, 2011.
[263]
T. P. Shanley, B. Zhao, D. R. Macariola, A. Denenberg, A. L. Salzman, and P. A. Ward, “Role of nitric oxide in acute lung inflammation: lessons learned from the inducible nitric oxide synthase knockout mouse,” Critical Care Medicine, vol. 30, no. 9, pp. 1960–1968, 2002.
[264]
G. Sutendra, P. Dromparis, P. Wright et al., “The role of nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension,” Science Translational Medicine, vol. 3, no. 88, Article ID 88ra55, 2011.
[265]
K. N. Farrow, S. Wedgwood, K. J. Lee et al., “Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn,” Respiratory Physiology and Neurobiology, vol. 174, no. 3, pp. 272–281, 2010.
[266]
J. Rehman and S. L. Archer, “A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the warburg model of pulmonary arterial hypertension,” Advances in Experimental Medicine and Biology, vol. 661, pp. 171–185, 2010.
[267]
R. Belostotsky, E. Ben-Shalom, C. Rinat et al., “Mutations in the mitochondrial Seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome,” American Journal of Human Genetics, vol. 88, no. 2, pp. 193–200, 2011.
[268]
S. L. Archer, M. Gomberg-Maitland, M. L. Maitland, S. Rich, J. G. N. Garcia, and E. K. Weir, “Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1α-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer,” American Journal of Physiology, vol. 294, no. 2, pp. H570–H578, 2008.
[269]
N. Weissmann, N. Ebert, M. Ahrens et al., “Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs,” American Journal of Respiratory Cell and Molecular Biology, vol. 29, no. 6, pp. 721–732, 2003.
[270]
K. Shimoda, K. Murakami, P. Enkhbaatar et al., “Effect of poly(ADP ribose) synthetase inhibition on burn and smoke inhalation injury in sheep,” American Journal of Physiology, vol. 285, no. 1, pp. L240–L249, 2003.
[271]
A. Tasatargil, G. Sadan, and E. Karasu, “Homocysteine-induced changes in vascular reactivity of guinea-pig pulmonary arteries: role of the oxidative stress and poly (ADP-ribose) polymerase activation,” Pulmonary Pharmacology and Therapeutics, vol. 20, no. 3, pp. 265–272, 2007.
[272]
Y. Yu, S. H. Keller, C. V. Remillard et al., “A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension,” Circulation, vol. 119, no. 17, pp. 2313–2322, 2009.
[273]
M. I. Townsley, J. A. King, and D. F. Alvarez, “Ca2+ channels and pulmonary endothelial permeability: Insights from study of intact lung and chronic pulmonary hypertension,” Microcirculation, vol. 13, no. 8, pp. 725–739, 2006.
[274]
A. L. Firth, C. V. Remillard, and J. X. J. Yuan, “TRP channels in hypertension,” Biochimica et Biophysica Acta, vol. 1772, no. 8, pp. 895–906, 2007.
[275]
K. R. Zhou and Y. L. Lai, “Capsaicin pretreatment attenuates monocrotaline-induced ventilatory dysfunction and pulmonary hypertension,” Journal of Applied Physiology, vol. 75, no. 6, pp. 2781–2788, 1993.
[276]
Y. L. Lai, C. F. Chen, C. T. Chien, H. L. Shiao, A. A. Thacker, and H. Q. Zhang, “Capsaicin pretreatment attenuates chronic hypoxic pulmonary hypertension,” Respiration Physiology, vol. 99, no. 2, pp. 283–289, 1995.
[277]
N. J. Katzman and Y. L. Lai, “Capsaicin pre- and post-treatment on rat monocrotaline pneumotoxicity,” Chinese Journal of Physiology, vol. 43, no. 4, pp. 171–178, 2000.
[278]
R. Goyal, D. G. Papamatheakis, M. Loftin et al., “Long-term maternal hypoxia: the role of extracellular Ca2+ entry during serotonin-mediated contractility in fetal ovine pulmonary arteries,” Reproductive Sciences, vol. 18, no. 10, pp. 948–962, 2011.
[279]
A. R. Tonelli, H. Alnuaimat, and K. Mubarak, “Pulmonary vasodilator testing and use of calcium channel blockers in pulmonary arterial hypertension,” Respiratory Medicine, vol. 104, no. 4, pp. 481–496, 2010.
[280]
D. Montani, L. Savale, D. Natali et al., “Long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension,” European Heart Journal, vol. 31, no. 15, pp. 1898–1907, 2010.
[281]
Y. Yang, M. Gao, Y. Guo, and J. Qiao, “Calcium antagonists, diltiazem and nifedipine, protect broilers against low temperature-induced pulmonary hypertension and pulmonary vascular remodeling,” Animal Science Journal, vol. 81, no. 4, pp. 494–500, 2010.
[282]
Y. Yang, J. Qiao, H. Wang et al., “Calcium antagonist verapamil prevented pulmonary arterial hypertension in broilers with ascites by arresting pulmonary vascular remodeling,” European Journal of Pharmacology, vol. 561, no. 1–3, pp. 137–143, 2007.
[283]
W. Ma, W. Han, P. A. Greer et al., “Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its inhibition attenuates pathologic features of disease,” Journal of Clinical Investigation, vol. 121, no. 11, pp. 4548–4566, 2011.
[284]
A. Malinovschi, D. Henrohn, A. Eriksson, J. O. Lundberg, K. Alving, and G. Wikstr?m, “Increased plasma and salivary nitrite and decreased bronchial contribution to exhaled NO in pulmonary arterial hypertension,” European Journal of Clinical Investigation, vol. 41, no. 8, pp. 889–897, 2011.
[285]
R. E. Girgis, H. C. Champion, G. B. Diette, R. A. Johns, S. Permutt, and J. T. Sylvester, “Decreased exhaled nitric oxide in pulmonary arterial hypertension: response to Bosentan therapy,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 3, pp. 352–357, 2005.
[286]
F. T. Kaneko, A. C. Arroliga, R. A. Dweik et al., “Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 3, pp. 917–923, 1998.
[287]
G. Rolla, P. Colagrande, E. Scappaticci et al., “Exhaled nitric oxide in systemic sclerosis: relationships with lung involvement and pulmonary hypertension,” Journal of Rheumatology, vol. 27, no. 7, pp. 1693–1698, 2000.
[288]
M. S. Riley, J. Pórszász, J. Miranda, M. P. K. J. Engelen, B. Brundage, and K. Wasserman, “Exhaled nitric oxide during exercise in primary pulmonary hypertension and pulmonary fibrosis,” Chest, vol. 111, no. 1, pp. 44–50, 1997.
[289]
S. L. Archer, K. Djaballah, M. Humbert et al., “Nitric oxide deficiency in fenfluramine- and dexfenfluramine-induced pulmonary hypertension,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 4, pp. 1061–1067, 1998.
[290]
Z. G?lba?, S. Din?er, H. Bayol et al., “Increased nitric oxide in exhaled air in patients with rheumatic heart disease,” European Journal of Heart Failure, vol. 3, no. 1, pp. 27–32, 2001.
[291]
C. R. Forrest, C. Y. Pang, A. G. Zhong, and M. L. Kreidstein, “Efficacy of intravenous infusion of prostacyclin (PGI2) or prostaglandin E1 (PGE1) in augmentation of skin flap blood flow and viability in the pig,” Prostaglandins, vol. 41, no. 6, pp. 537–558, 1991.
[292]
M. ?zkan, R. A. Dweik, D. Laskowski, A. C. Arroliga, and S. C. Erzurum, “High levels of nitric oxide in individuals with pulmonary hypertension receiving epoprostenol therapy,” Lung, vol. 179, no. 4, pp. 233–243, 2001.
[293]
B. Weinberger, L. Fakhrzadeh, D. E. Heck, J. D. Laskin, C. R. Gardner, and D. L. Laskin, “Inhaled nitric oxide primes lung macrophages to produce reactive oxygen and nitrogen intermediates,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 3, pp. 931–938, 1998.
[294]
I. M. Robbins, A. R. Hemnes, J. Simon Gibbs et al., “Safety of sapropterin dihydrochloride (6r-bh4) in patients with pulmonary hypertension,” Experimental Lung Research, vol. 37, no. 1, pp. 26–34, 2011.
[295]
R.-J. Teng, J. Du, H. Xu et al., “Sepiapterin improves angiogenesis of pulmonary artery endothelial cells with in utero pulmonary hypertension by recoupling endothelial nitric oxide synthase,” American Journal of Physiology, vol. 301, no. 3, pp. L334–L345, 2011.
[296]
M. Umehara, A. Yamaguchi, S. Itakura et al., “Repeated Waon therapy improves pulmonary hypertension during exercise in patients with severe chronic obstructive pulmonary disease,” Journal of Cardiology, vol. 51, no. 2, pp. 106–113, 2008.
[297]
M. L. Pall, “Do sauna therapy and exercise act by raising the availability of tetrahydrobiopterin?” Medical Hypotheses, vol. 73, no. 4, pp. 610–613, 2009.
[298]
F. Raimondi, F. Migliaro, L. Capasso et al., “Intravenous magnesium sulphate vs. inhaled nitric oxide for moderate, persistent pulmonary hypertension of the newborn. A multicentre, retrospective study,” Journal of Tropical Pediatrics, vol. 54, no. 3, pp. 196–199, 2008.
[299]
S. H. Daffa and W. A. Milaat, “Role of magnesium sulphate in treatment of severe persistent pulmonary hypertension of the neoborn,” Saudi Medical Journal, vol. 23, no. 10, pp. 1266–1269, 2002.
[300]
S. Chandran, E. Haque, H. T. Wickramasinghe, and Z. Wint, “Use of magnesium sulphate in severe persistent pulmonary hypertension of the newborn,” Journal of Tropical Pediatrics, vol. 50, no. 4, pp. 219–223, 2004.
[301]
J. F. Tolsa, J. Cotting, N. Sekarski, M. Payot, J. L. Micheli, and A. Calame, “Magnesium sulphate as an alternative and safe treatment for severe persistent pulmonary hypertension of the newborn,” Archives of Disease in Childhood, vol. 72, no. 3, pp. F184–F187, 1995.
[302]
S. Uslu, S. Kumtepe, A. Bulbul, S. Comert, F. Bolat, and A. Nuhoglu, “A comparison of magnesium sulphate and sildenafil in the treatment of the newborns with persistent pulmonary hypertension: a randomized controlled trial,” Journal of Tropical Pediatrics, vol. 57, no. 4, pp. 245–250, 2011.
[303]
N. Y. Boo, J. Rohana, S. C. Yong, A. Z. Bilkis, and F. Yong-Junina, “Inhaled nitric oxide and intravenous magnesium sulphate for the treatment of persistent pulmonary hypertension of the newborn,” Singapore Medical Journal, vol. 51, no. 2, pp. 144–150, 2010.
[304]
A. Csiszar, N. Labinskyy, A. Podlutsky et al., “Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations,” American Journal of Physiology, vol. 294, no. 6, pp. H2721–H2735, 2008.
[305]
A. Csiszar, N. Labinskyy, S. Olson et al., “Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats,” Hypertension, vol. 54, no. 3, pp. 668–675, 2009.
[306]
Z. Ungvari, N. Labinskyy, P. Mukhopadhyay et al., “Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells,” American Journal of Physiology, vol. 297, no. 5, pp. H1876–H1881, 2009.
[307]
A. Biala, E. Tauriainen, A. Siltanen et al., “Resveratrol induces mitochondrial biogenesis and ameliorates Ang II-induced cardiac remodeling in transgenic rats harboring human renin and angiotensinogen genes,” Blood Pressure, vol. 19, no. 3, pp. 196–205, 2010.
[308]
N. Xia, A. Daiber, A. Habermeier et al., “Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 335, no. 1, pp. 149–154, 2010.
[309]
Z. B. Gao, X. Q. Chen, and G. Y. Hu, “Inhibition of excitatory synaptic transmission by trans-resveratrol in rat hippocampus,” Brain Research, vol. 1111, no. 1, pp. 41–47, 2006.
[310]
H. Zhang, G. P. Schools, T. Lei, W. Wang, H. K. Kimelberg, and M. Zhou, “Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices caused by oxygen-glucose deprivation,” Experimental Neurology, vol. 212, no. 1, pp. 44–52, 2008.
[311]
A. P. Raval, H. W. Lin, K. R. Dave et al., “Resveratrol and ischemic preconditioning in the brain,” Current Medicinal Chemistry, vol. 15, no. 15, pp. 1545–1551, 2008.
[312]
A. Quincozes-Santos and C. Gottfried, “Resveratrol modulates astroglial functions: neuroprotective hypothesis,” Annals of the New York Academy of Sciences, vol. 1215, no. 1, pp. 72–78, 2011.
[313]
L. G. Chicoine, J. A. Stewart Jr., and P. A. Lucchesi, “Is resveratrol the magic bullet for pulmonary hypertension?” Hypertension, vol. 54, no. 3, pp. 473–474, 2009.
[314]
M. C. Zillikens, J. B. J. van Meurs, E. J. G. Sijbrands et al., “SIRT1 genetic variation and mortality in type 2 diabetes: interaction with smoking and dietary niacin,” Free Radical Biology and Medicine, vol. 46, no. 6, pp. 836–841, 2009.