As a group, cardiovascular disease (CVD) is the leading cause of death worldwide. It killed twice as many people as infectious and parasitic disease and three times as many people as all forms of cancer. There are other crucial risk factors next to the major risk factors identified by the Framingham Heart Study. In the last few years, detailed studies showed the correlation between environmental pollution and the development of CVD. The question, which environmental toxin is particularly harmful, is answered by CERCLA Priority List of Hazardous Substances with the following toxins: arsenic, lead, and mercury. The effect of these potential toxic metals on the development of cardiovascular diseases includes pathomechanisms as the accumulation of free radicals, damage of endothelial nitric oxide synthase, lipid peroxidation, and endocrine influences. This leads to the damage of vascular endothelium, atherosclerosis, high blood pressure, and an increased mortality from cardiovascular diseases. The cardiovascular effects of arsenic, lead, and mercury exposure and its impact on cardiovascular mortality need to be included in the diagnosis and the treatment of CVD. 1. Introduction Cardiovascular disease is the genus for pathological change of heart, blood vessels, and blood flow. The fibrous change of arterial vascular walls is the mutual pathological correlate. Usually, it is caused by the damage of endothelium, which is the boundary layer between blood stream and vascular wall and has important functions in vasodilatation, modulation of inflammatory processes, and haemostasis. The interaction of nitric oxide (NO) via oxygen radicals, the reduction of nitric oxide synthase (NOS) cofactors as well as the inhibition of endothelial NOS itself through phosphorylation are regarded as central mechanisms of pathophysiology of endothelial dysfunction [1]. In the pathophysiology of atherosclerosis, the endothelial dysfunction fosters the adhesiveness of vascular wall for leukocytes, monocytes recruitment and transformation into foam cells, and finally the formation of vascular plaques. The endothelial dysfunction is considered as a great influence on the development of atherosclerosis and correlates with cardiovascular morbidity and mortality [2, 3]. In 2009, barely 42% of all cases of death were caused by cardiovascular diseases. Those diseases particularly result in death among elderly people: most of the deceased people (91%) were 65 years old and elder. All together, 150 334 men and 206 128 women died by the influence of vascular diseases. 60 153 people died of a
References
[1]
P. R?sen, “Endothelial dysfunction: a synonym for functional atherosclerosis,” Journal fur Kardiologie, vol. 9, no. 12, pp. 556–562, 2002.
[2]
J. A. Suwaidi, S. Hamasaki, S. T. Higano, R. A. Nishimura, D. R. Holmes, and A. Lerman, “Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction,” Circulation, vol. 101, no. 9, pp. 948–954, 2000.
[3]
V. Sch?chinger, M. B. Britten, and A. M. Zeiher, “Prognostic impact of coronary vasodilator dysfunction on adverse long- term outcome of coronary heart disease,” Circulation, vol. 101, no. 16, pp. 1899–1906, 2000.
[4]
Statistisches Bundesamt, Wirtschaft und Statistik, p. 891, 2010.
[5]
M. P. Heron, D. L. Hoyert, S. L. Murphy, J. Q. Xu, K. D. Kochanek, and B. Tejada-Vera, “Deaths: final data for 2006,” National Vital Statistics Reports, vol. 57, no. 14, pp. 1–134, 2009.
[6]
D. Lloyd-Jones, R. Adams, M. Carnethon, et al., “Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation, vol. 119, no. 3, pp. 480–486, 2009.
[7]
World Health Organization, The Global Burden of Disease, 2004.
[8]
R. B. D'Agostino, R. S. Vasan, M. J. Pencina et al., “General cardiovascular risk profile for use in primary care: the Framingham heart study,” Circulation, vol. 117, no. 6, pp. 743–753, 2008.
[9]
B. Weinhold, “Environmental cardiology: getting to the heart of the matter,” Environmental Health Perspectives, vol. 112, no. 15, pp. A880–A887, 2004.
[10]
A. Bhatnagar, “Environmental cardiology: studying mechanistic links between pollution and heart disease,” Circulation Research, vol. 99, no. 7, pp. 692–705, 2006.
[11]
CERCLA Priority List of Hazardous Substances, 2012, http://www.atsdr.cdc.gov/SPL/index.html.
[12]
“Toxicological Profile For Arsenic,” 2012, http://www.atsdr.cdc.gov/ToxProfiles/tp2.pdf.
[13]
J. St Petery, C. Gross, and B. E. Victorica, “Ventricular fibrillation caused by arsenic poisoning,” American Journal of Diseases of Children, vol. 120, no. 4, pp. 367–371, 1970.
[14]
J. C. Hall and R. Harruff, “Fatal cardiac arrhythmia in a patient with interstitial myocarditis related to chronic arsenic poisoning,” Southern Medical Journal, vol. 82, no. 12, pp. 1557–1560, 1989.
[15]
R. E. Little, G. N. Kay, J. B. Cavender, A. E. Epstein, and V. J. Plumb, “Torsade de pointes and T-U wave alternans associated with arsenic poisoning,” Pacing and Clinical Electrophysiology, vol. 13, no. 2, pp. 164–170, 1990.
[16]
J. L. Mumford, K. Wu, Y. Xia et al., “Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study,” Environmental Health Perspectives, vol. 115, no. 5, pp. 690–694, 2007.
[17]
P. Westervelt, R. A. Brown, D. R. Adkins et al., “Sudden death among patients with acute promyelocytic leukemia treated with arsenic trioxide,” Blood, vol. 98, no. 2, pp. 266–271, 2001.
[18]
A. Navas-Acien, A. R. Sharrett, E. K. Silbergeld et al., “Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence,” American Journal of Epidemiology, vol. 162, no. 11, pp. 1037–1049, 2005.
[19]
L. Geyer, “Ueber die chronischen Hautver?nderungen beim Arsenicismus und Betrachtungen über die Massenerkrankungen in Reichenstein in Schlesien,” Archiv für Dermatologie und Syphilis, vol. 43, no. 1, pp. 221–280, 1898.
[20]
K. H. Butzengeiger, “über Periphere Zirkulationsst?rungen bei Chronischer Arsenvergiftung,” Klinische Wochenschrift, vol. 19, no. 22, pp. 523–527, 1940.
[21]
W. P. Tseng, “Effects and dose response relationships of skin cancer and blackfoot disease with arsenic,” Environmental Health Perspectives, vol. 19, pp. 109–119, 1977.
[22]
W. P. Tseng, “Blackfoot disease in Taiwan: a 30-year follow-up study,” Angiology, vol. 40, no. 6, pp. 547–558, 1989.
[23]
C. H. Wang, J. S. Jeng, P. K. Yip et al., “Biological gradient between long-term arsenic exposure and carotid atherosclerosis,” Circulation, vol. 105, no. 15, pp. 1804–1809, 2002.
[24]
R. Zaldivar and A. Guillier, “Environmental and clinical investigations on endemic chronic arsenic poisoning in infants and children,” Zentralblatt fur Bakteriologie B, vol. 165, no. 2, pp. 226–234, 1977.
[25]
H. G. Rosenberg, “Systemic arterial disease and chronic arsenicism in infants,” Archives of Pathology and Laboratory Medicine, vol. 97, no. 6, pp. 360–365, 1974.
[26]
C. H. Tseng, C. K. Chong, C. J. Chen, B. J. Lin, and T. Y. Tai, “Abnormal peripheral microcirculation in seemingly normal subjects living in blackfoot-disease-hyperendemic villages in Taiwan,” International Journal of Microcirculation, Clinical and Experimental, vol. 15, no. 1, pp. 21–27, 1995.
[27]
Y. Chen and H. Ahsan, “Cancer burden from arsenic in drinking water in Bangladesh,” American Journal of Public Health, vol. 94, no. 5, pp. 741–744, 2004.
[28]
Y. Chen, J. H. Graziano, F. Parvez et al., “Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study,” British Medical Journal, vol. 342, no. 7806, 2011.
[29]
Y. Yuan, G. Marshall, C. Ferreccio et al., “Acute myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region II of Chile from 1950 to 2000,” American Journal of Epidemiology, vol. 166, no. 12, pp. 1381–1391, 2007.
[30]
S. L. Wang, J. M. Chiou, C. J. Chen et al., “Prevalence of non-insulin-dependent diabetes mellitus and related vascular diseases in southwestern arseniasis-endemic and nonendemic areas in Taiwan,” Environmental Health Perspectives, vol. 111, no. 2, pp. 155–159, 2003.
[31]
WHO, “Environmental Health Criteria, Arsenic,” pp 1–174. World Health Organization, Geneva, Switzerland, 1981.
[32]
WHO, “Environmental Health Criteria 224: Arsenic and Arsenic Compounds,” 2nd ed, pp 385–392, World Health Organization, Geneva, Switzerland, 2001.
[33]
J. Pi, Y. Kumagai, G. Sun et al., “Decreased serum concentrations of nitric oxide metabolites among Chinese in an endemic area of chronic arsenic poisoning in inner Mongolia,” Free Radical Biology and Medicine, vol. 28, no. 7, pp. 1137–1142, 2000.
[34]
Y. Kumagai and J. Pi, “Molecular basis for arsenic-induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction,” Toxicology and Applied Pharmacology, vol. 198, no. 3, pp. 450–457, 2004.
[35]
M. Y. Lee, B. I. Jung, S. M. Chung et al., “Arsenic-induced dysfunction in relaxation of blood vessels,” Environmental Health Perspectives, vol. 111, no. 4, pp. 513–517, 2003.
[36]
M. Bunderson, J. D. Coffin, and H. D. Beall, “Arsenic induces peroxynitrite generation and cyclooxygenase-2 protein expression in aortic endothelial cells: possible role in atherosclerosis,” Toxicology and Applied Pharmacology, vol. 184, no. 1, pp. 11–18, 2002.
[37]
J. Hakim, “Reactive oxygen species and inflammation,” Comptes Rendus des Séances de la Société de Biologie et de ses Filiales, vol. 187, no. 3, pp. 286–295, 1993.
[38]
G. Kojda and D. Harrison, “Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure,” Cardiovascular Research, vol. 43, no. 3, pp. 562–571, 1999.
[39]
A. L. Luna, L. C. Acosta-Saavedra, L. Lopez-Carrillo et al., “Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children,” Toxicology and Applied Pharmacology, vol. 245, no. 2, pp. 244–251, 2010.
[40]
T. S. Wang, C. F. Kuo, K. Y. Jan, et al., “Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species,” Journal of Cellular Physiology, vol. 169, pp. 256–268, 1996.
[41]
M. M. Wu, H. Y. Chiou, T. W. Wang et al., “Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of Northeastern Taiwan,” Environmental Health Perspectives, vol. 109, no. 10, pp. 1011–1017, 2001.
[42]
A. Y. Andreyev, Y. E. Kushnareva, and A. A. Starkov, “Mitochondrial metabolism of reactive oxygen species,” Biokhimiya, vol. 70, no. 2, pp. 246–264, 2005.
[43]
L. Packer, “Metabolic and structural states of mitochondria. II. Regulation by phosphate,” The Journal of Biological Chemistry, vol. 236, pp. 214–220, 1961.
[44]
B. Chen, C. T. Burt, P. L. Goering, B. A. Fowler, and R. E. London, “In vivo 31P nuclear magnetic resonance studies of arsenite induced changes in hepatic phosphate levels,” Biochemical and Biophysical Research Communications, vol. 139, no. 1, pp. 228–234, 1986.
[45]
K. V. Chin, S. Tanaka, G. Darlington, I. Pastan, and M. M. Gottesman, “Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells,” The Journal of Biological Chemistry, vol. 265, no. 1, pp. 221–226, 1990.
[46]
J. Pi, H. Yamauchi, Y. Kumagai et al., “Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water,” Environmental Health Perspectives, vol. 110, no. 4, pp. 331–336, 2002.
[47]
Y. H. Liao, L. C. Hwang, J. S. Kao et al., “Lipid peroxidation in workers exposed to aluminium, gallium, indium, arsenic, and antimony in the optoelectronic industry,” Journal of Occupational and Environmental Medicine, vol. 48, no. 8, pp. 789–793, 2006.
[48]
R. Chowdhury, R. Chatterjee, A. K. Giri, C. Mandal, and K. Chaudhuri, “Arsenic-induced cell proliferation is associated with enhanced ROS generation, Erk signaling and CyclinA expression,” Toxicology Letters, vol. 198, no. 2, pp. 263–271, 2010.
[49]
Y. C. Chen, S. Y. Lin-Shiau, and J. K. Lin, “Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis,” Journal of Cellular Physiology, vol. 177, pp. 324–333, 1998.
[50]
H. Ohkawara, T. Ishibashi, K. Ando, et al., “Akt cooperates with membrane type 1-matrix metalloproteinase (MT1-MMP) in TNF-alpha-induced signaling pathways of endothelial dysfunction and haemostasis,” Circulation, vol. 120, pp. S1029–S1030, 2009.
[51]
P. Balakumar and J. Kaur, “Arsenic exposure and cardiovascular disorders: an overview,” Cardiovascular Toxicology, vol. 9, no. 4, pp. 169–176, 2009.
[52]
M. Y. Lee, O. N. Bae, S. M. Chung, et al., “Enhancement of platelet aggregation and thrombus formation by arsenic in drinking water: a contributing factor to cardiovascular disease,” Toxicology and Applied Pharmacology, vol. 179, no. 2, pp. 83–88, 2002.
[53]
M. L. Kile, E. A. Houseman, E. Rodrigues, et al., “Polymorphisms, and arsenic exposure from drinking water toenail arsenic concentrations, GSTT1 gene,” Cancer Epidemiology, Biomarkers & Prevention, vol. 14, no. 10, pp. 2419–2426, 2005.
[54]
J. C. States, S. Srivastava, Y. Chen, and A. Barchowsky, “Arsenic and cardiovascular disease,” Toxicological Sciences, vol. 107, no. 2, pp. 312–323, 2009.
[55]
Y. C. Hsieh, F. I. Hsieh, L. M. Lien, Y. L. Chou, H. Y. Chiou, and C. J. Chen, “A significantly age- and gender-adjusted odds ratio of 2.0 for the development of carotid atherosclerosis was observed in study subjects with epsilon4 allele of APOE than those without epsilon4 allele,” Toxicology and Applied Pharmacology, vol. 227, no. 1, pp. 1–7, 2008.
[56]
Department of Ecology State of Washington, “Lead Poisoning,” http://www.ecy.wa.gov/programs/hwtr/dangermat/lead.html.
[57]
A. Navas-Acien, E. Guallar, E. K. Silbergeld, and S. J. Rothenberg, “Lead exposure and cardiovascular disease—a systematic review,” Environmental Health Perspectives, vol. 115, no. 3, pp. 472–482, 2007.
[58]
D. Nash, L. Magder, M. Lustberg et al., “Blood lead, blood pressure, and hypertension in perimenopausal and postmenopausal women,” Journal of the American Medical Association, vol. 289, no. 12, pp. 1523–1532, 2003.
[59]
S. W. Tsaih, S. Korrick, J. Schwartz et al., “Influence of bone resorption on the mobilization of lead from bone among middle-aged and elderly men: the normative aging study,” Environmental Health Perspectives, vol. 109, no. 10, pp. 995–999, 2001.
[60]
C. Yazbeck, O. Thiebaugeorges, T. Moreau et al., “Maternal blood lead levels and the risk of pregnancy-induced hypertension: the EDEN cohort study,” Environmental Health Perspectives, vol. 117, no. 10, pp. 1526–1530, 2009.
[61]
S. Skerfving, “Criteria Document for Swedish Occupational Standards. Inorganic lead—an update 1991–2004,” 2005, http://ebib.arbetslivsinstitutet.se/ah/2005/ah2005_03.pdf.
[62]
M. Lustberg and E. Silbergeld, “Blood lead levels and mortality,” Archives of Internal Medicine, vol. 162, no. 21, pp. 2443–2449, 2002.
[63]
A. Menke, P. Muntner, V. Batuman, E. K. Silbergeld, and E. Guallar, “Blood lead below 0.48 μmol/L (10 μg/dL) and mortality among US adults,” Circulation, vol. 114, no. 13, pp. 1388–1394, 2006.
[64]
L. Moller and T. S. Kristensen, “Blood lead as a cardiovascular risk factor,” American Journal of Epidemiology, vol. 136, no. 9, pp. 1091–1100, 1992.
[65]
R. A. Goyer, “Lead and the kidney,” Current Topics in Pathology, vol. 55, pp. 147–176, 1971.
[66]
J. J. Chisolm and N. B. Leahy, “Aminoaciduria as a manifestation of renal tubular injury in lead intoxication and a comparison with patterns of aminoaciduria seen in other diseases,” The Journal of Pediatrics, vol. 60, no. 1, pp. 1–17, 1962.
[67]
K. Cramér, R. A. Goyer, R. Jagenburg, et al., “Renal ultrastructure, renal function, and parameters of lead toxicity in workers with different periods of lead exposure,” British Journal of Industrial Medicine, vol. 31, no. 2, pp. 113–127, 1974.
[68]
J. A. Staessen, R. R. Lauwerys, J.-P. Buchet et al., “Impairment of renal function with increasing blood lead concentrations in the general population,” The New England Journal of Medicine, vol. 327, no. 3, pp. 151–156, 1992.
[69]
V. Batuman, E. Landy, J. K. Maesaka, and R. P. Wedeen, “Contribution of lead to hypertension with renal impairment,” The New England Journal of Medicine, vol. 309, no. 1, pp. 17–21, 1983.
[70]
P. C. Hsu and Y. L. Guo, “Antioxidant nutrients and lead toxicity,” Toxicology, vol. 180, no. 1, pp. 33–44, 2002.
[71]
L. Patrick, “Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity,” Alternative Medicine Review, vol. 11, no. 2, pp. 114–127, 2006.
[72]
N. T. Christie and M. Costa, “In vitro assessment of the toxicity of metal compounds. IV. Disposition of metals in cells: Interactions with membranes, glutathione, metallothionein, and DNA,” Biological Trace Element Research, vol. 6, no. 2, pp. 139–158, 1984.
[73]
M. Ahamed, S. Verma, A. Kumar, and M. K. J. Siddiqui, “Environmental exposure to lead and its correlation with biochemical indices in children,” Science of the Total Environment, vol. 346, no. 1–3, pp. 48–55, 2005.
[74]
G. Gar?on, B. Leleu, F. Zerimech et al., “Biologic markers of oxidative stress and nephrotoxicity as studied in biomonitoring of adverse effects of occupational exposure to lead and cadmium,” Journal of Occupational and Environmental Medicine, vol. 46, no. 11, pp. 1180–1186, 2004.
[75]
A. Hunaiti, M. Soud, and A. Khalil, “Lead concentration and the level of glutathione, glutathione S-transferase, reductase and peroxidase in the blood of some occupational workers from Irbid City, Jordan,” Science of the Total Environment, vol. 170, no. 1-2, pp. 95–100, 1995.
[76]
R. Sandhir, D. Julka, and K. D. Gill, “Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes,” Pharmacology and Toxicology, vol. 74, no. 2, pp. 66–71, 1994.
[77]
M. Kuzuya, M. Naito, C. Funaki, T. Hayashi, K. Asai, and F. Kuzuya, “Protective role of intracellular glutathione against oxidized low density lipoprotein in cultured endothelial cells,” Biochemical and Biophysical Research Communications, vol. 163, no. 3, pp. 1466–1472, 1989.
[78]
H. Gurer and N. Ercal, “Can antioxidants be beneficial in the treatment of lead poisoning?” Free Radical Biology and Medicine, vol. 29, no. 10, pp. 927–945, 2000.
[79]
G. J. S. Flora and P. K. Seth, “Alterations in some membrane properties in rat brain following exposure to lead,” Cytobios, vol. 2000, no. 403, pp. 103–109, 2000.
[80]
S. R. Ribarov and L. C. Benov, “Relationship between the hemolytic action of heavy metals and lipid peroxidation,” Biochimica et Biophysica Acta, vol. 640, no. 3, pp. 721–726, 1981.
[81]
N. D. Vaziri, F. Oveisi, and Y. Ding, “Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension,” Kidney International, vol. 53, no. 6, pp. 1748–1754, 1998.
[82]
B. Halliwell, “What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo,” FEBS Letters, vol. 411, no. 2-3, pp. 157–160, 1997.
[83]
N. D. Vaziri, Y. Ding, Z. Ni, and H. C. Gonick, “Altered nitric oxide metabolism and increased oxygen free radical activity in lead-induced hypertension: effect of lazaroid therapy,” Kidney International, vol. 52, no. 4, pp. 1042–1046, 1997.
[84]
P. Apostoli, A. Corulli, M. Metra, and L. Dei Cas, “Lead and heart disease,” Medicina del Lavoro, vol. 95, no. 2, pp. 124–132, 2004.
[85]
D. A. Tsao, H. S. Yu, J. T. Cheng, C. K. Ho, and H. R. Chang, “The change of beta-adrenergic system in lead-induced hypertension,” Toxicology and Applied Pharmacology, vol. 164, no. 2, pp. 127–133, 2000.
[86]
T. W. Clarkson and L. Magos, “The toxicology of mercury and its chemical compounds,” Critical Reviews in Toxicology, vol. 36, no. 8, pp. 609–662, 2006.
[87]
P. Boffetta, G. S?llsten, M. Garcia-Gómez et al., “Mortality from cardiovascular diseases and exposure to inorganic mercury,” Occupational and Environmental Medicine, vol. 58, no. 7, pp. 461–466, 2001.
[88]
D. S. Kim, E. H. Lee, S. D. Yu, et al., “Heavy metal as risk factor of cardiovascular disease–an analysis of blood lead and urinary mercury,” Journal of Preventive Medicine and Public Health, vol. 38, no. 4, pp. 401–407, 2005.
[89]
International Programme on Chemical Safety (IPCS), Environmental Health Criteria 101. Methylmercury, World Health Organization, Geneva, Switzerland, 1990.
[90]
W. Wossmann, M. Kohl, G. Grüning, and P. Bucsky, “Mercury intoxication presenting with hypertension and tachycardia,” Archives of Disease in Childhood, vol. 80, no. 6, pp. 556–557, 1999.
[91]
X. Z. Chang, H. M. Lu, and Y. H. Zhang, “Hypertension and erythromelalgia as prominent manifestations of mercury intoxication,” Beijing Da Xue Xue Bao, vol. 39, no. 4, pp. 377–380, 2007.
[92]
A. D. Torres, A. N. Rai, and M. L. Hardiek, “Mercury intoxication and arterial hypertension: report of two patients and review of the literature,” Pediatrics, vol. 105, no. 3, p. E34, 2000.
[93]
J. Gattineni, S. Weiser, A. M. Becker, and M. Baum, “Mercury intoxication: lack of correlation between symptoms and levels,” Clinical Pediatrics, vol. 46, no. 9, pp. 844–846, 2007.
[94]
C. Henningsson, S. Hoffmann, L. McGonigle, and J. S. D. Winter, “Acute mercury poisoning (acrodynia) mimicking pheochromocytoma in an adolescent,” Journal of Pediatrics, vol. 122, no. 2, pp. 252–253, 1993.
[95]
R. B. McFee and T. R. Caraccio, “Intravenous mercury injection and ingestion: clinical manifestations and management,” Journal of Toxicology, vol. 39, no. 7, pp. 733–738, 2001.
[96]
B. Valera, E. Dewailly, and P. Poirier, “Cardiac autonomic activity and blood pressure among Nunavik Inuit adults exposed to environmental mercury: a cross-sectional study,” Environmental Health, vol. 7, article 29, 2008.
[97]
B. Valera, E. Dewailly, and P. Poirier, “Environmental mercury exposure and blood pressure among Nunavik inuit adults,” Hypertension, vol. 54, no. 5, pp. 981–986, 2009.
[98]
M. Fillion, D. Mergler, C. J. Sousa Passos, F. Larribe, M. Lemire, and J. R. D. Guimar?es, “A preliminary study of mercury exposure and blood pressure in the Brazilian Amazon,” Environmental Health, vol. 5, article 29, 2006.
[99]
L. E. Bautista, J. H. Stein, B. J. Morgan, N. Stanton, T. Young, and F. J. Nieto, “Association of blood and hair mercury with blood pressure and vascular reactivity,” Wisconsin Medical Journal, vol. 108, no. 5, pp. 250–252, 2009.
[100]
E. B. Pedersen, M. E. J?rgensen, M. B. Pedersen et al., “Relationship between mercury in blood and 24-h ambulatory blood pressure in greenlanders and Danes,” American Journal of Hypertension, vol. 18, no. 5, part 1, pp. 612–618, 2005.
[101]
R. L. Siblerud, “The relationship between mercury from dental amalgam and the cardiovascular system,” Science of the Total Environment, vol. 99, no. 1-2, pp. 23–35, 1990.
[102]
J. Joaquim de Oliveira and S. R. Silva, “Arterial hypertension due to mercury intoxication with clinico-laboratorial syndrome simulating pheochromocytoma,” Arquivos Brasileiros de Cardiologia, vol. 66, no. 1, pp. 29–31, 1996.
[103]
N. S?rensen, K. Murata, E. Budtz-J?rgensen, P. Weihe, and P. Grandjean, “Prenatal methylmercury exposure as a cardiovascular risk factor at seven years of age,” Epidemiology, vol. 10, no. 4, pp. 370–375, 1999.
[104]
J. T. Salonen, K. Seppanen, K. Nyyssonen et al., “Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in Eastern Finnish men,” Circulation, vol. 91, no. 3, pp. 645–655, 1995.
[105]
J. T. Salonen, K. Sepp?nen, T. A. Lakka, R. Salonen, and G. A. Kaplan, “Mercury accumulation and accelerated progression of carotid atherosclerosis: a population-based prospective 4-year follow-up study in men in eastern Finland,” Atherosclerosis, vol. 148, no. 2, pp. 265–273, 2000.
[106]
A. Skoczyńska, R. Por?ba, A. Steinmentz-Beck et al., “The dependence between urinary mercury concentration and carotid arterial intima-media thickness in workers occupationally exposed to mercury vapour,” International Journal of Occupational Medicine and Environmental Health, vol. 22, no. 2, pp. 135–142, 2009.
[107]
E. Guallar, M. I. Sanz-Gallardo, P. van't Veer et al., “Mercury, fish oils, and the risk of myocardial infarction,” The New England Journal of Medicine, vol. 347, no. 22, pp. 1747–1754, 2002.
[108]
J. K. Virtanen, S. Voutilainen, T. H. Rissanen et al., “Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in Eastern Finland,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 1, pp. 228–233, 2005.
[109]
A. Skoczynska, M. Jedrejko, H. Martynowicz et al., “The cardiovascular risk in chemical factory workers exposed to mercury vapor,” Medycyna Pracy, vol. 61, no. 4, pp. 381–391, 2010.
[110]
D. E. Macfarlane, “The effects of methyl mercury on platelets. Induction of aggregation and release via activation of the prostaglandin synthesis pathway,” Molecular Pharmacology, vol. 19, no. 3, pp. 470–476, 1981.
[111]
K. M. Lim, S. Kim, J. Y. Noh et al., “Low-level mercury can enhance procoagulant activity of erythrocytes: a new contributing factor for mercury-related thrombotic disease,” Environmental Health Perspectives, vol. 118, no. 7, pp. 928–935, 2010.
[112]
M. Valko, H. Morris, and M. T. D. Cronin, “Metals, toxicity and oxidative stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161–1208, 2005.
[113]
S. Yee and B. H. Choi, “Oxidative stress in neurotoxic effects of methylmercury poisoning,” NeuroToxicology, vol. 17, no. 1, pp. 17–26, 1996.
[114]
H. Fukino, M. Hirai, Y. M. Hsueh, and Y. Yamane, “Effect of zinc pretreatment on mercuric chloride-induced lipid peroxidation in the rat kidney,” Toxicology and Applied Pharmacology, vol. 73, no. 3, pp. 395–401, 1984.
[115]
H. E. Ganther, C. Goudie, M. L. Sunde et al., “Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna,” Science, vol. 175, no. 4026, pp. 1122–1124, 1972.
[116]
L. C. Benov, I. C. Benchev, and O. H. Monovich, “Thiol antidotes effect on lipid peroxidation in mercury-poisoned rats,” Chemico-Biological Interactions, vol. 76, no. 3, pp. 321–332, 1990.
[117]
P. Bulat, I. Duji?, B. Potkonjak, and A. Vidakovi?, “Activity of glutathione peroxidase and superoxide dismutase in workers occupationally exposed to mercury,” International Archives of Occupational and Environmental Health, vol. 71, supplement, pp. S37–S39, 1998.
[118]
H. A. Abdel-Hamid, F. C. Fahmy, and I. A. Sharaf, “Influence of free radicals on cardiovascular risk due to occupational exposure to mercury,” The Journal of the Egyptian Public Health Association, vol. 76, no. 1-2, pp. 53–69, 2001.
[119]
A. Di Pietro, G. Visalli, S. La Maestra et al., “Biomonitoring of DNA damage in peripheral blood lymphocytes of subjects with dental restorative fillings,” Mutation Research, vol. 650, no. 2, pp. 115–122, 2008.
[120]
E. Y. Ben-Ozer, A. J. Rosenspire, M. J. McCabe et al., “Mercuric chloride damages cellular DNA by a non-apoptotic mechanism,” Mutation Research, vol. 470, no. 1, pp. 19–27, 2000.
[121]
A. B. Kobal, M. Horvat, M. Prezelj et al., “The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners,” Journal of Trace Elements in Medicine and Biology, vol. 17, no. 4, pp. 261–274, 2004.
[122]
G. A. Wiggers, F. M. Pe?anha, A. M. Briones et al., “Low mercury concentrations cause oxidative stress and endothelial dysfunction in conductance and resistance arteries,” American Journal of Physiology, vol. 295, no. 3, pp. H1033–H1043, 2008.
[123]
B. Hultberg, A. Andersson, and A. Isaksson, “Interaction of metals and thiols in cell damage and glutathione distribution: potentiation of mercury toxicity by dithiothreitol,” Toxicology, vol. 156, no. 2-3, pp. 93–100, 2001.
[124]
N. Ballatori and T. W. Clarkson, “Biliary secretion of glutathione and of glutathione-metal complexes,” Fundamental and Applied Toxicology, vol. 5, no. 5, pp. 816–831, 1985.
[125]
S. J. Stohs and D. Bagchi, “Oxidative mechanisms in the toxicity of metal ions,” Free Radical Biology and Medicine, vol. 18, no. 2, pp. 321–336, 1995.
[126]
G. Gstraunthaler, W. Pfaller, and P. Kotanko, “Glutathione depletion and in vitro lipid peroxidation in mercury or maleate induced acute renal failure,” Biochemical Pharmacology, vol. 32, no. 19, pp. 2969–2972, 1983.
[127]
B. Windham, “Mercury Exposure Levels from Amalgam Dental fillings; Documentation of Mechanisms by which Mercury causes over 40 Chronic Health Conditions, Results of Replacement of Amalgam fillings, and Occupational Effects on Dental Staff,” 2002, http://www.fda.gov/ohrms/dockets/dailys/02/%20Sep02/091602/80027dde.pdf.
[128]
“International Programme on Chemical Safety,” Mercury, inorganic, WHO, Geneva, Switzerland, Environmental Health Criteria no. 118, 1991.
[129]
H. A. Tyroler, “Coronary heart disease epidemiology in the 21st century,” Epidemiologic Reviews, vol. 22, no. 1, pp. 7–13, 2000.
[130]
C. H. Wang, C. K. Hsiao, C. L. Chen, et al., “A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular diseases,” Toxicology and Applied Pharmacology, vol. 222, no. 3, pp. 315–326, 2007.
[131]
E. F. Madden, “The role of combined metal interactions in metal carcinogenesis: a review,” Reviews on Environmental Health, vol. 18, no. 2, pp. 91–109, 2003.
[132]
L. Institoris, D. Kovacs, I. Kecskemeti-Kovacs, et al., “Immunotoxicological investigation of subacute combined exposure with low doses of Pb, Hg and Cd in rats,” Acta Biologica Hungarica, vol. 57, no. 4, pp. 433–439, 2006.