Blood pressure variability (BPV) is considered nowadays a novel risk factor for cardiovascular disease. Early findings in sinoaortic denervated rats have clearly shown that enhanced fluctuation of blood pressure induced left ventricular hypertrophy, vascular stiffness, and renal lesion. A large number of clinical trials confirm that short-term and long-term blood pressure variability independently contributes to target organ damage, cardiovascular events, and mortality not only in hypertensive patients but also in subjects with diabetes mellitus and chronic kidney disease. Therefore, amelioration of BPV has been suggested as an additional target of the treatment of cardiovascular diseases. Preliminary evidence obtained from meta-analysis and controlled clinical trials has shown that antihypertensive classes differ in their ability to control excessive BP fluctuations with an impact in the prevention of cardiovascular events. Calcium channel blockers seem to be more effective than other blood pressure lowering drugs for the reduction of short-term and long-term BPV. In order to increase actual knowledge regarding the prognostic value and therapeutic significance of BPV in cardiovascular disease, there is a need for additional clinical studies specifically designed for the study of the relevance of short-term and long-term BPV control by antihypertensive drugs. 1. Introduction The role of high blood pressure levels on target organ damage and the protective effects of antihypertensive therapy have been extensively established in clinical practice [1]. Mortality from ischemic heart disease and stroke doubles every increment in 20 and 10?mmHg of systolic and diastolic blood pressure [1]. Nowadays, it is clear that besides usual blood pressure other parameters contribute to TOD in hypertensive patients [2]. Blood pressure is not a constant variable; rather, it shows marked spontaneous oscillations over short-term (minutes to days) and long-term (month) periods [3]. Early reports from animal models of cardiovascular variability have clearly demonstrated the relationship between excessive fluctuation in blood pressure values and the development of target organ damage [4]. The initial hypothesis was further corroborated by clinical studies in hypertensive subjects showing that the assessment and quantification of blood pressure variability (BPV) is of physiopathological and prognostic importance [5]. In recent years, a large number of preclinical and clinical studies have clearly identified the contribution of BPV to the cardiovascular complications associated
References
[1]
A. V. Chobanian, G. L. Bakris, H. R. Black et al., “Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure,” Hypertension, vol. 42, no. 6, pp. 1206–1252, 2003.
[2]
G. Parati, “Blood pressure variability: its measurement and significance in hypertension,” Journal of Hypertension, Supplement, vol. 23, no. 1, pp. S19–S25, 2005.
[3]
G. Grassi, M. Bombelli, G. Brambilla, F. Q. Trevano, R. Dell'Oro, and G. Mancia, “Total cardiovascular risk, blood pressure variability and adrenergic overdrive in hypertension: evidence, mechanisms and clinical implications,” Current Hypertension Reports, vol. 14, pp. 333–338, 2012.
[4]
D. Su and C. Miao, “Reduction of blood pressure variability: a new strategy for the treatment of hypertension,” Trends in Pharmacological Sciences, vol. 26, no. 8, pp. 388–390, 2005.
[5]
G. Parati, G. Bilo, and M. Valentini, “Blood pressure variability: methodological aspects, pathophysiological and clinical implications,” in Manual of Hypertension of the European Society of Hypertension, G. Mancia, G. Grassi, and S. E. Kjeldsen, Eds., pp. 61–71, Informa Healthcare, London, UK, 2008.
[6]
G. Parati, J. E. Ochoa, and G. Bilo, “Blood pressure variability, cardiovascular risk, and risk for renal disease progression,” Current Hypertension Reports, vol. 14, pp. 421–431, 2012.
[7]
P. M. Rothwell, S. C. Howard, E. Dolan et al., “Effects of β blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke,” The Lancet Neurology, vol. 9, no. 5, pp. 469–480, 2010.
[8]
A. M. Langager, B. E. Hammerberg, D. L. Rotella, and H. M. Stauss, “Very low-frequency blood pressure variability depends on voltage-gated L-type Ca2+ channels in conscious rats,” American Journal of Physiology, vol. 292, no. 3, pp. H1321–H1327, 2007.
[9]
H. C. D. Souza, M. C. Martins-Pinge, V. J. Dias da Silva et al., “Heart rate and arterial pressure variability in the experimental renovascular hypertension model in rats,” Autonomic Neuroscience, vol. 139, no. 1-2, pp. 38–45, 2008.
[10]
R. Fazan Jr., D. A. Huber, C. A. A. Silva, V. J. Dias Da Silva, M. C. O. Salgado, and H. C. Salgado, “Sildenafil acts on the central nervous system increasing sympathetic activity,” Journal of Applied Physiology, vol. 104, no. 6, pp. 1683–1689, 2008.
[11]
H. M. Stauss, “Identification of blood pressure control mechanisms by power spectral analysis,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 4, pp. 362–368, 2007.
[12]
B. J. A. Janssen, J. Oosting, D. W. Slaaf, P. B. Persson, and H. A. J. Struijker-Boudier, “Hemodynamic basis of oscillations in systemic arterial pressure in conscious rats,” American Journal of Physiology, vol. 269, no. 1, pp. H62–H71, 1995.
[13]
G. Parati, J. E. Ochoa, C. Lombardi, and G. Bilo, “Assessment and management of blood-pressure variability,” Nature Reviews Cardiology, vol. 10, no. 3, pp. 143–155, 2013.
[14]
F. M. Bertera, J. S. Del Mauro, D. Chiappetta et al., “Enantioselective pharmacokinetic and pharmacodynamic properties of carvedilol in spontaneously hypertensive rats: focus on blood pressure variability,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 385, pp. 325–335, 2012.
[15]
F. M. Bertera, J. S. Del Mauro, V. Lovera et al., “Acute effects of third generation β-blockers on short-term and beat-to-beat blood pressure variability in sinoaortic-denervated rats,” Hypertension Research, vol. 36, pp. 349–355, 2013.
[16]
S. D. Pierdomenico, M. Di Nicola, A. L. Esposito et al., “Prognostic value of different indices of blood pressure variability in hypertensive patients,” American Journal of Hypertension, vol. 22, no. 8, pp. 842–847, 2009.
[17]
L. Mena, S. Pintos, N. V. Queipo, J. A. Aizpúrua, G. Maestre, and T. Sulbarán, “A reliable index for the prognostic significance of blood pressure variability,” Journal of Hypertension, vol. 23, no. 3, pp. 505–511, 2005.
[18]
D. Shimbo, S. Shea, R. L. McClelland, et al., “Associations of aortic distensibility and arterial elasticity with long-term visit-to-visit blood pressure variability: The Multi-Ethnic Study of Atherosclerosis (MESA),” American Journal of Hypertension, 2013.
[19]
G. Parati and P. Lantelme, “Blood pressure variability, target organ damage and cardiovascular events,” Journal of Hypertension, vol. 20, no. 9, pp. 1725–1729, 2002.
[20]
C. Y. Miao and D. F. Su, “The importance of blood pressure variability in rat aortic and left ventricular hypertrophy produced by sinoaortic denervation,” Journal of Hypertension, vol. 20, no. 9, pp. 1865–1872, 2002.
[21]
D. F. Su and C. Y. Miao, “Blood pressure variability and organ damage,” Clinical and Experimental Pharmacology and Physiology, vol. 28, pp. 709–715, 2001.
[22]
K. Flues, I. C. Moraes-Silva, C. Mostarda et al., “Cardiac and pulmonary arterial remodeling after sinoaortic denervation in normotensive rats,” Autonomic Neuroscience, vol. 166, no. 1-2, pp. 47–53, 2012.
[23]
C. Y. Miao, H. H. Xie, L. S. Zhan, and D. F. Su, “Blood pressure variability is more important than blood pressure level in determination of end-organ damage in rats,” Journal of Hypertension, vol. 24, no. 6, pp. 1125–1135, 2006.
[24]
G. Parati, G. Pomidossi, F. Albini, D. Malaspina, and G. Mancia, “Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension,” Journal of Hypertension, vol. 5, no. 1, pp. 93–98, 1987.
[25]
A. Frattola, G. Parati, C. Cuspidi, F. Albini, and G. Mancia, “Prognostic value of 24-hour blood pressure variability,” Journal of Hypertension, vol. 11, no. 10, pp. 1133–1137, 1993.
[26]
P. Palatini, M. Penzo, A. Racioppa et al., “Clinical relevance of nighttime blood pressure and of daytime blood pressure variability,” Archives of Internal Medicine, vol. 152, no. 9, pp. 1855–1860, 1992.
[27]
G. Mancia, G. Parati, M. Hennig et al., “Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA),” Journal of Hypertension, vol. 19, no. 11, pp. 1981–1989, 2001.
[28]
R. Sega, G. Corrao, M. Bombelli et al., “Blood pressure variability and organ damage in a general population: results from the PAMELA study,” Hypertension, vol. 39, no. 2, pp. 710–714, 2002.
[29]
D. Sander, C. Kukla, J. Klingelh?fer, K. Winbeck, and B. Conrad, “Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: a 3-year follow-up study,” Circulation, vol. 102, no. 13, pp. 1536–1541, 2000.
[30]
C. J. McMullan, G. L. Bakris, R. A. Phillips, and J. P. Forman, “Association of BP variability with mortality among African Americans with CKD,” Clinical Journal of the American Society of Nephrology, vol. 8, no. 5, pp. 731–738, 2013.
[31]
T. Kawai, M. Ohishi, K. Kamide, et al., “Differences between daytime and nighttime blood pressure variability regarding systemic atherosclerotic change and renal function,” Hypertension Research, vol. 36, pp. 232–239, 2013.
[32]
S. Iwata, Z. Jin, J. E. Schwartz et al., “Relationship between ambulatory blood pressure and aortic arch atherosclerosis,” Atherosclerosis, vol. 221, no. 2, pp. 427–431, 2012.
[33]
G. Schillaci, G. Bilo, G. Pucci, et al., “Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases,” Hypertension, vol. 60, pp. 369–377, 2012.
[34]
S. Cay, G. Cagirci, A. D. Demir et al., “Ambulatory blood pressure variability is associated with restenosis after percutaneous coronary intervention in normotensive patients,” Atherosclerosis, vol. 219, no. 2, pp. 951–957, 2011.
[35]
A. E. Schutte, R. Schutte, H. W. Huisman et al., “Blood pressure variability is significantly associated with ECG left ventricular mass in normotensive Africans: The SABPA Study,” Hypertension Research, vol. 34, no. 10, pp. 1127–1134, 2011.
[36]
M. Ozawa, K. Tamura, Y. Okano et al., “Identification of an increased short-term blood pressure variability on ambulatory blood pressure monitoring as a coronary risk factor in diabetic hypertensives,” Clinical and Experimental Hypertension, vol. 31, no. 3, pp. 259–270, 2009.
[37]
K. Sakakura, J. Ishikawa, M. Okuno, K. Shimada, and K. Kario, “Exaggerated ambulatory blood pressure variability is associated with cognitive dysfunction in the very elderly and quality of life in the younger elderly,” American Journal of Hypertension, vol. 20, no. 7, pp. 720–727, 2007.
[38]
M. Fukui, E. Ushigome, M. Tanaka, et al., “Home blood pressure variability on one occasion is a novel factor associated with arterial stiffness in patients with type 2 diabetes,” Hypertension Research, vol. 36, pp. 219–225, 2013.
[39]
A. García-García, L. García-Ortiz, J. I. Recio-Rodríguez, et al., “Relationship of 24-h blood pressure variability with vascular structure and function in hypertensive patients,” Blood Pressure Monitoring, vol. 18, pp. 101–106, 2013.
[40]
K. Eguchi, J. Ishikawa, S. Hoshide et al., “Night time blood pressure variability is a strong predictor for cardiovascular events in patients with type 2 diabetes,” American Journal of Hypertension, vol. 22, no. 1, pp. 46–51, 2009.
[41]
P. Verdecchia, F. Angeli, R. Gattobigio, C. Rapicetta, and G. Reboldi, “Impact of blood pressure variability on cardiac and cerebrovascular complications in hypertension,” American Journal of Hypertension, vol. 20, no. 2, pp. 154–161, 2007.
[42]
E. Pringle, C. Phillips, L. Thijs et al., “Systolic blood pressure variability as a risk factor for stroke and cardiovascular mortality in the elderly hypertensive population,” Journal of Hypertension, vol. 21, no. 12, pp. 2251–2257, 2003.
[43]
W. Liu, R. Liu, W. Sun, et al., “Different impacts of blood pressure variability on the progression of cerebral microbleeds and white matter lesions,” Stroke, vol. 43, pp. 2916–2922, 2012.
[44]
E. Manios, K. Stamatelopoulos, G. Tsivgoulis et al., “Time rate of blood pressure variation: a new factor associated with coronary atherosclerosis,” Journal of Hypertension, vol. 29, no. 6, pp. 1109–1114, 2011.
[45]
G. Mancia and G. Parati, “The role of blood pressure variability in end-organ damage,” Journal of Hypertension, Supplement, vol. 21, no. 6, pp. S17–S23, 2003.
[46]
G. Mancia, M. Bombelli, R. Facchetti et al., “Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Lassociazioni Study,” Hypertension, vol. 49, no. 6, pp. 1265–1270, 2007.
[47]
P. Cicconetti, M. Costarelia, A. Moise et al., “Blood pressure variability and cognitive function in older hypertensives,” Archives of Gerontology and Geriatrics. Supplement, no. 9, pp. 63–68, 2004.
[48]
K. Asayama, M. Kikuya, R. Schutte, et al., “Home blood pressure variability as cardiovascular risk factor in the population of Ohasama,” Hypertension, vol. 61, pp. 61–69, 2013.
[49]
S. D. Pierdomenico, D. Lapenna, A. Bucci et al., “Blood pressure variability and prognosis in uncomplicated mild hypertension,” American Heart Journal, vol. 149, no. 5, pp. 934–938, 2005.
[50]
M. Kikuya, T. Ohkubo, H. Metoki et al., “Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: The Ohasama Study,” Hypertension, vol. 52, no. 6, pp. 1045–1050, 2008.
[51]
P. Muntner, D. Shimbo, M. Tonelli, K. Reynolds, D. K. Arnett, and S. Oparil, “The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994,” Hypertension, vol. 57, no. 2, pp. 160–166, 2011.
[52]
J. K. Johansson, T. J. Niiranen, P. J. Puukka, and A. M. Jula, “Prognostic value of the variability in home-measured blood pressure and heart rate: The Finn-HOME Study,” Hypertension, vol. 59, no. 2, pp. 212–218, 2012.
[53]
Y. T. Hsieh, S. T. Tu, T. J. Cho, S. J. Chang, J. F. Chen, and M. C. Hsieh, “Visit-to-visit variability in blood pressure strongly predicts all-cause mortality in patients with type 2 diabetes: a 5·5-year prospective analysis,” European Journal of Clinical Investigation, vol. 42, no. 3, pp. 245–253, 2012.
[54]
E. Ushigome, M. Fukui, M. Hamaguchi et al., “The coefficient variation of home blood pressure is a novel factor associated with macroalbuminuria in type 2 diabetes mellitus,” Hypertension Research, vol. 34, no. 12, pp. 1271–1275, 2011.
[55]
E. S. Kilpatrick, A. S. Rigby, and S. L. Atkin, “The role of blood pressure variability in the development of nephropathy in type 1 diabetes,” Diabetes Care, vol. 33, no. 11, pp. 2442–2447, 2010.
[56]
B. Di Iorio, A. Pota, M. L. Sirico et al., “Blood pressure variability and outcomes in chronic kidney disease,” Nephrology Dialysis Transplantation, vol. 27, pp. 4404–4410, 2012.
[57]
K. Yokota, M. Fukuda, Y. Matsui, S. Hoshide, K. Shimada, and K. Kario, “Impact of visit-to-visit variability of blood pressure on deterioration of renal function in patients with non-diabetic chronic kidney disease,” Hypertension Research, vol. 36, pp. 151–157, 2013.
[58]
B. Di Iorio, L. Di Micco, S. Torraca, et al., “Variability of blood pressure in dialysis patients: a new marker of cardiovascular risk,” Journal of Nephrology, vol. 26, no. 1, pp. 173–182, 2013.
[59]
H. Okada, M. Fukui, M. Tanaka, et al., “Visit-to-visit blood pressure variability is a novel risk factor for the development and progression of diabetic nephropathy in patients with type 2 diabetes,” Diabetes Care, 2013.
[60]
P. Rossignol, J. Cridlig, P. Lehert, M. Kessler, and F. Zannad, “Visit-to-visit blood pressure variability is a strong predictor of cardiovascular events in hemodialysis: insights from FOSIDIAL,” Hypertension, vol. 60, pp. 339–346, 2012.
[61]
K. Eguchi, S. Hoshide, J. E. Schwartz, K. Shimada, and K. Kario, “Visit-to-visit and ambulatory blood pressure variability as predictors of incident cardiovascular events in patients with hypertension,” American Journal of Hypertension, vol. 25, pp. 962–968, 2012.
[62]
G. Mancia, R. Facchetti, G. Parati, and A. Zanchetti, “Visit-to-visit blood pressure variability, carotid atherosclerosis, and cardiovascular events in the European Lacidipine Study on Atherosclerosis,” Circulation, vol. 126, pp. 569–578, 2012.
[63]
H. J. Choi, “Blood pressure variability and its management in hypertensive patients,” Korean Journal of Family Medicine, vol. 33, pp. 330–335, 2012.
[64]
G. Schillaci, G. Pucci, and G. Parati, “Blood pressure variability: an additional target for antihypertensive treatment?” Hypertension, vol. 58, no. 2, pp. 133–135, 2011.
[65]
J. Wang, F. M. Shen, M. W. Wang, and D. F. Su, “Effects of nine antihypertensive drugs on blood pressure variability in sinoaortic-denervated rats,” Acta Pharmacologica Sinica, vol. 27, no. 8, pp. 1013–1017, 2006.
[66]
F. M. Shen, J. Wang, C. R. Ni, J. G. Yu, W. Z. Wang, and D. F. Su, “Ketanserin-induced baroreflex enhancement in spontaneously hypertensive rats depends on central 5-HT2A receptors,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 8, pp. 702–707, 2007.
[67]
P. Han, Z. X. Chu, F. M. Shen, H. H. Xie, and D. F. Su, “Synergism of hydrochlorothiazide and nitrendipine on reduction of blood pressure and blood pressure variability in spontaneously hypertensive rats,” Acta Pharmacologica Sinica, vol. 27, no. 12, pp. 1575–1579, 2006.
[68]
L. P. Xu, F. M. Shen, H. Shu, C. Y. Miao, Y. Y. Jiang, and D. F. Su, “Synergism of atenolol and amlodipine on lowering and stabilizing blood pressure in spontaneously hypertensive rats,” Fundamental and Clinical Pharmacology, vol. 18, no. 1, pp. 33–38, 2004.
[69]
F. M. Bertera, J. S. Del Mauro, A. H. Polizio, D. Chiappetta, C. A. Taira, and C. H?cht, “Effect of nebivolol on beat-to-beat and short-term blood pressure variability in spontaneously hypertensive rats,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 385, pp. 833–843, 2012.
[70]
H. Kai, H. Kudo, N. Takayama, S. Yasuoka, H. Kajimoto, and T. Imaizumi, “Large blood pressure variability and hypertensive cardiac remodeling—role of cardiac inflammation,” Circulation Journal, vol. 73, no. 12, pp. 2198–2203, 2009.
[71]
H. Kudo, H. Kai, H. Kajimoto et al., “Exaggerated blood pressure variability superimposed on hypertension aggravates cardiac remodeling in rats via angiotensin II system-mediated chronic inflammation,” Hypertension, vol. 54, no. 4, pp. 832–838, 2009.
[72]
X. Tao, Y. J. Zhang, F. M. Shen, Y. F. Guan, and D. F. Su, “Fosinopril prevents the pulmonary arterial remodeling in sinoaortic-denervated rats by regulating phosphodiesterase,” Journal of Cardiovascular Pharmacology, vol. 51, no. 1, pp. 24–31, 2008.
[73]
C. Y. Miao, H. H. Xie, J. J. Wang, and D. F. Su, “Candesartan inhibits sinoaortic denervation-induced cardiovascular hypertrophy in rats,” Acta Pharmacologica Sinica, vol. 23, no. 8, pp. 713–720, 2002.
[74]
W. Shang, P. Han, C. B. Yang et al., “Synergism of irbesartan and amlodipine on hemodynamic amelioration and organ protection in spontaneously hypertensive rats,” Acta Pharmacologica Sinica, vol. 32, no. 9, pp. 1109–1115, 2011.
[75]
H. H. Xie, F. M. Shen, X. F. Zhang, Y. Y. Jiang, and D. F. Su, “Blood pressure variability, baroreflex sensitivity and organ damage in spontaneously hypertensive rats treated with various antihypertensive drugs,” European Journal of Pharmacology, vol. 543, no. 1–3, pp. 77–82, 2006.
[76]
W. M. Du, C. Y. Miao, J. G. Liu, F. M. Shen, X. Q. Yang, and D. F. Su, “Effects of long-term treatment with ketanserin on blood pressure variability and end-organ damage in spontaneously hypertensive rats,” Journal of Cardiovascular Pharmacology, vol. 41, no. 2, pp. 233–239, 2003.
[77]
J. G. Liu, L. P. Xu, Z. X. Chu, C. Y. Miao, and D. F. Su, “Contribution of blood pressure variability to the effect of nitrendipine on end-organ damage in spontaneously hypertensive rats,” Journal of Hypertension, vol. 21, no. 10, pp. 1961–1967, 2003.
[78]
H. H. Xie, C. Y. Miao, J. G. Liu, and D. F. Su, “Importance of blood pressure variability in organ protection in spontaneously hypertensive rats treated with combination of nitrendipine and atenolol,” Acta Pharmacologica Sinica, vol. 23, no. 12, pp. 1199–1204, 2002.
[79]
H. H. Xie, X. F. Zhang, Y. Y. Chen, F. M. Shen, and D. F. Su, “Synergism of hydrochlorothiazide and nifedipine on blood pressure variability reduction and organ protection in spontaneously hypertensive rats,” Hypertension Research, vol. 31, no. 4, pp. 685–691, 2008.
[80]
C. H?cht, F. M. Bertera, and C. A. Taira, “Importance of blood pressure variability in the assessment of cardiovascular risk and benefits of antihypertensive therapy,” Expert Review of Clinical Pharmacology, vol. 3, no. 5, pp. 617–621, 2010.
[81]
A. J. Webb, U. Fischer, Z. Mehta, and P. M. Rothwell, “Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis,” The Lancet, vol. 375, no. 9718, pp. 906–915, 2010.
[82]
A. Cahan, I. Z. Ben-Dov, and M. Bursztyn, “Association of heart rate with blood pressure variability: implications for blood pressure measurement,” American Journal of Hypertension, vol. 25, no. 3, pp. 313–318, 2012.
[83]
A. J. Stewart, U. Fischer, and P. M. Rothwell, “Effects of β-blocker selectivity on blood pressure variability and stroke: a systematic review,” Neurology, vol. 77, no. 8, pp. 731–737, 2011.
[84]
C. S. Zuern, K. D. Rizas, C. Eick et al., “Effects of renal sympathetic denervation on 24-hour blood pressure variability,” Frontiers in Physiology, vol. 3, article 134, 2012.
[85]
H. Mitsuhashi, K. Tamura, J. Yamauchi et al., “Effect of losartan on ambulatory short-term blood pressure variability and cardiovascular remodeling in hypertensive patients on hemodialysis,” Atherosclerosis, vol. 207, no. 1, pp. 186–190, 2009.
[86]
S. Masuda, K. Tamura, H. Wakui et al., “Effects of angiotensin II type 1 receptor blocker on ambulatory blood pressure variability in hypertensive patients with overt diabetic nephropathy,” Hypertension Research, vol. 32, no. 11, pp. 950–955, 2009.
[87]
A. Shigenaga, K. Tamura, T. Dejima et al., “Effects of angiotensin ii type 1 receptor blocker on blood pressure variability and cardiovascular remodeling in hypertensive patients on chronic peritoneal dialysis,” Nephron, vol. 112, no. 1, pp. c31–c40, 2009.
[88]
Y. Zhang, D. Agnoletti, J. Blacher, and M. E. Safar, “Blood pressure variability in relation to autonomic nervous system dysregulation: The X-CELLENT Study,” Hypertension Research, vol. 35, no. 4, pp. 399–403, 2012.
[89]
E. Ushigome, M. Fukui, M. Hamaguchi et al., “Beneficial effect of calcium channel blockers on home blood pressure variability in the morning in patients with type 2 diabetes,” Journal of Diabetes Investigation, 2013.
[90]
Y. Zhang, D. Agnoletti, M. E. Safar, and J. Blacher, “Effect of antihypertensive agents on blood pressure variability: the natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study,” Hypertension, vol. 58, no. 2, pp. 155–160, 2011.
[91]
J. Scholze, P. Bramlage, P. Trenkwalder, and R. Kreutz, “Efficacy and safety of a fixed-dose combination of lercanidipine and enalapril in daily practice. A comparison of office, self-measured and ambulatory blood pressure,” Expert Opinion on Pharmacotherapy, vol. 12, no. 18, pp. 2771–2779, 2011.
[92]
A. Hoshino, T. Nakamura, and H. Matsubara, “The bedtime administration ameliorates blood pressure variability and reduces urinary albumin excretion in amlodipine-olmesartan combination therapy,” Clinical and Experimental Hypertension, vol. 32, no. 7, pp. 416–422, 2010.
[93]
O. D. Ostroumova, “Blood pressure variability and risk for complications in arterial hypertension,” Terapevticheski? Arkhiv, vol. 84, pp. 91–97, 2012.
[94]
O. D. Ostroumova, “Long-term arterial pressure variability novel target for antihypertensive therapy. Do differences between -adrenoblockers exist,” Kardiologiia, vol. 52, pp. 58–64, 2012.
[95]
P. M. Rothwell, “Does blood pressure variability modulate cardiovascular risk?” Current Hypertension Reports, vol. 13, no. 3, pp. 177–186, 2011.
[96]
H. Holzgreve, “Blood pressure variability—a neglected risk factor,” MMW-Fortschritte der Medizin, vol. 152, no. 31–33, pp. 47–48, 2010.
[97]
B. P. M. Imholz, G. J. Langewouters, G. A. van Montfrans et al., “Feasibility of ambulatory, continuous 24-hour finger arterial pressure recording,” Hypertension, vol. 21, no. 1, pp. 65–73, 1993.
[98]
S. Omboni, G. Parati, A. Frattola et al., “Spectral and sequence analysis of finger blood pressure variability: comparison with analysis of intra-arterial recordings,” Hypertension, vol. 22, no. 1, pp. 26–33, 1993.
[99]
S. Omboni, G. Parati, P. Castiglioni et al., “Estimation of blood pressure variability from 24-hour ambulatory finger blood pressure,” Hypertension, vol. 32, no. 1, pp. 52–58, 1998.
[100]
A. J. Voogel and G. A. van Montfrans, “Reproducibility of twenty-four-hour finger arterial blood pressure, variability and systemic hemodynamics,” Journal of Hypertension, vol. 15, no. 12, pp. 1761–1765, 1997.
[101]
G. Mancia, G. De Backer, A. Dominiczak, et al., “2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC),” Journal of Hypertension, vol. 25, no. 6, pp. 1105–1187, 2007.
[102]
National Clinical Guideline Centre (UK), Hypertension: The Clinical Management of Primary Hypertension in Adults: Update of Clinical Guidelines 18 and 34 [Internet], Royal College of Physicians, London, UK, 2011.
[103]
E. O’Brien, “Stabilizing blood pressure variability: a new therapeutic target in hypertension,” Medicographia, vol. 34, pp. 25–31, 2012.
[104]
J. Redon, “The importance of 24-hour ambulatory blood pressure monitoring in patients at risk of cardiovascular events,” High Blood Pressure & Cardiovascular Prevention. In press.