The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4 , the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor . This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells. 1. Introduction of Vitamin A (VA) 1.1. The Discovery of VA Dietary energy and nutrients are required for the survival of an individual. Diets have been considered as nutriments, medicines, and poisons for thousands of years. With the development of modern nutrition, the roles of each dietary component in health and diseases have been gradually revealed after the understanding of its chemical structures and metabolism. This has contributed enormously to the prevention and treatment of diseases related to nutrition abnormalities. However, the roles of micronutrients in the
References
[1]
F. G. Hopkins, “Feeding experiments illustrating the importance of accessory factors in normal dietaries,” The Journal of Physiology, vol. 44, no. 5-6, pp. 425–460, 1912.
[2]
K. J. Carpenter, “A short history of nutritional science: part 3 (1912–1944),” Journal of Nutrition, vol. 133, no. 10, pp. 3023–3032, 2003.
[3]
E. V. McCollum and M. Davis, “The necessity of certain lipins in the diet during growth,” Journal of Biological Chemistry, vol. 15, no. 1, pp. 167–175, 1913.
[4]
T. B. Osborne and L. B. Mendel, “Feeding experiments with fat-free food mixtures,” Journal of Biological Chemistry, vol. 12, no. 1, pp. 81–89, 1912.
[5]
R. D. Semba, “On the ‘Discovery’ of Vitamin A,” Annals of Nutrition and Metabolism, vol. 61, no. 3, pp. 192–198, 2012.
[6]
R. Blomhoff and H. K. Blomhoff, “Overview of retinoid metabolism and function,” Journal of Neurobiology, vol. 66, no. 7, pp. 606–630, 2006.
[7]
A. Sommer, “Vitamin A deficiency and clinical disease: an historical overview,” Journal of Nutrition, vol. 138, no. 10, pp. 1835–1839, 2008.
[8]
K. J. Rothman, L. L. Moore, M. R. Singer, U.-S. Nguyen, S. Mannino, and A. Milunsky, “Teratogenicity of high vitamin A intake,” The New England Journal of Medicine, vol. 333, no. 21, pp. 1369–1373, 1995.
[9]
S. Bershad, A. Rubinstein, and J. R. Paterniti Jr., “Changes in plasma lipids and lipoproteins during isotretinoin therapy for acne,” The New England Journal of Medicine, vol. 313, no. 16, pp. 981–985, 1985.
[10]
N. Rodondi, R. Darioli, A.-A. Ramelet et al., “High risk for hyperlipidemia and the metabolic syndrome after an episode of hypertriglyceridemia during 13-cis retinoic acid therapy for acne: a pharmacogenetic study,” Annals of Internal Medicine, vol. 136, no. 8, pp. 582–589, 2002.
[11]
H.-U. Kl?r, A. Weizel, M. Augustin et al., “The impact of oral vitamin A derivatives on lipid metabolism: what recommendations can be derived for dealing with this issue in the daily dermatological practice?” Journal of the German Society of Dermatology, vol. 9, no. 8, pp. 600–607, 2011.
[12]
R. M. Russell, “The vitamin A spectrum: from deficiency to toxicity,” The American Journal of Clinical Nutrition, vol. 71, no. 4, pp. 878–884, 2000.
[13]
A. C. Ross, B. Caballero, R. J. Cousins, K. L. Tucker, and T. R. Ziegler, Modern Nutrition in Health and Diseases, 11th edition, 2012.
[14]
E. H. Harrison, “Mechanisms of digestion and absorption of dietary vitamin A,” Annual Review of Nutrition, vol. 25, no. 1, pp. 87–103, 2005.
[15]
M. R. Lakshman, “Alpha and omega of carotenoid cleavage,” Journal of Nutrition, vol. 134, no. 1, pp. 241–245, 2004.
[16]
I. Potrykus, “Nutritionally enhanced rice to combat malnutrition disorders of the poor,” Nutrition Reviews, vol. 61, no. 6, pp. S101–S104, 2003.
[17]
A. Wyss, “Carotene oxygenases: a new family of double bond cleavage enzymes,” Journal of Nutrition, vol. 134, no. 1, pp. 246–250, 2004.
[18]
R. Kawaguchi, J. Yu, J. Honda et al., “A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A,” Science, vol. 315, no. 5813, pp. 820–825, 2007.
[19]
P. Alapatt, F. Guo, S. M. Komanetsky et al., “Liver retinol transporter and receptor for serum retinol-binding protein (RBP4),” Journal of Biological Chemistry, vol. 288, no. 2, pp. 1250–1265, 2013.
[20]
A. R. Moise, N. Noy, K. Palczewski, and W. S. Blaner, “Delivery of retinoid-based therapies to target tissues,” Biochemistry, vol. 46, no. 15, pp. 4449–4458, 2007.
[21]
G. Duester, “Families of retinoid dehydrogenases regulating vitamin A function. Production of visual pigment and retinoic acid,” European Journal of Biochemistry, vol. 267, no. 14, pp. 4315–4324, 2000.
[22]
M. Theodosiou, V. Laudet, and M. Schubert, “From carrot to clinic: an overview of the retinoic acid signaling pathway,” Cellular and Molecular Life Sciences, vol. 67, no. 9, pp. 1423–1445, 2010.
[23]
J. L. Napoli, “Interactions of retinoid binding proteins and enzymes in retinoid metabolism,” Biochimica et Biophysica Acta, vol. 1440, no. 2-3, pp. 139–162, 1999.
[24]
X. Chai, M. H. E. M. Boerman, Y. Zhai, and J. L. Napoli, “Cloning of a cDNA for liver microsomal retinol dehydrogenase. A tissue-specific, short-chain alcohol dehydrogenase,” Journal of Biological Chemistry, vol. 270, no. 8, pp. 3900–3904, 1995.
[25]
B. X. Wu, G. Moiseyev, Y. Chen, B. Rohrer, R. K. Crouch, and J.-X. Ma, “Identification of RDH10, an all-trans retinol dehydrogenase, in retinal Müller cells,” Investigative Ophthalmology and Visual Science, vol. 45, no. 11, pp. 3857–3862, 2004.
[26]
O. Ziouzenkova, G. Orasanu, M. Sharlach et al., “Retinaldehyde represses adipogenesis and diet-induced obesity,” Nature Medicine, vol. 13, no. 6, pp. 695–702, 2007.
[27]
J. L. Napoli, “Physiological insights into all-trans-retinoic acid biosynthesis,” Biochimica et Biophysica Acta, vol. 1821, no. 1, pp. 152–167, 2012.
[28]
G. Wolf, “Tissue-specific increases in endogenous all-trans retinoic acid: possible contributing factor in ethanol toxicity,” Nutrition Reviews, vol. 68, no. 11, pp. 689–692, 2010.
[29]
P. V. Bhat, J. Labrecque, J. M. Boutin, A. Lacroix, and A. Yoshida, “Cloning of a cDNA encoding rat aldehyde dehydrogenase with high activity for retinal oxidation,” Gene, vol. 166, no. 2, pp. 303–306, 1995.
[30]
M. Lin, M. Zhang, M. Abraham, S. M. Smith, and J. L. Napoli, “Mouse retinal dehydrogenase 4 (RALDH4), molecular cloning, cellular expression, and activity in 9-cis-retinoic acid biosynthesis in intact cells,” Journal of Biological Chemistry, vol. 278, no. 11, pp. 9856–9861, 2003.
[31]
F. A. Mic, A. Molotkov, X. Fan, A. E. Cuenca, and G. Duester, “RALDH3, a retinaldehyde dehydrogenase that generates retinoic acid, is expressed in the ventral retina, otic vesicle and olfactory pit during mouse development,” Mechanisms of Development, vol. 97, no. 1-2, pp. 227–230, 2000.
[32]
X. Wang, P. Penzes, and J. L. Napoli, “Cloning of a cDNA encoding an aldehyde dehydrogenase and its expression in Escherichia coli: recognition of retinal as substrate,” Journal of Biological Chemistry, vol. 271, no. 27, pp. 16288–16293, 1996.
[33]
A. Molotkov and G. Duester, “Genetic evidence that retinaldehyde dehydrogenase Raldh1 (Aldh1a1) functions downstream of alcohol dehydrogenase Adh1 in metabolism of retinol to retinoic acid,” Journal of Biological Chemistry, vol. 278, no. 38, pp. 36085–36090, 2003.
[34]
G. Elizondo, J. Corchero, E. Sterneck, and F. J. Gonzalez, “Feedback inhibition of the retinaldehyde dehydrogenase gene ALDH1 by retinoic acid through retinoic acid receptor α and CCAAT/enhancer-binding protein β,” Journal of Biological Chemistry, vol. 275, no. 50, pp. 39747–39753, 2000.
[35]
G. Elizondo, I. M. Medina-Díaz, R. Cruz, F. J. Gonzalez, and L. Vega, “Retinoic acid modulates retinaldehyde dehydrogenase 1 gene expression through the induction of GADD153-C/EBPβ interaction,” Biochemical Pharmacology, vol. 77, no. 2, pp. 248–257, 2009.
[36]
K. Fujiwara, M. Kikuchi, K. Horiguchi et al., “Estrogen receptor alpha regulates retinaldehyde dehydrogenase 1 expression in rat anterior pituitary cells,” Endocrine Journal, vol. 56, no. 8, pp. 963–973, 2009.
[37]
K. Fujiwara, F. Maekawa, M. Kikuchi, S. Takigami, T. Yada, and T. Yashiro, “Expression of retinaldehyde dehydrogenase (RALDH)2 and RALDH3 but not RALDH1 in the developing anterior pituitary glands of rats,” Cell and Tissue Research, vol. 328, no. 1, pp. 129–135, 2007.
[38]
G. Wolf, “The enzymatic cleavage of β-carotene: still controversial,” Nutrition Reviews, vol. 53, no. 5, pp. 134–137, 1995.
[39]
S. Abu-Abed, P. Dollé, D. Metzger, B. Beckett, P. Chambon, and M. Petkovich, “The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures,” Genes and Development, vol. 15, no. 2, pp. 226–240, 2001.
[40]
M. A. Leo, S. Iida, and C. S. Lieber, “Retinoic acid metabolism by a system reconstituted with cytochrome P-450,” Archives of Biochemistry and Biophysics, vol. 234, no. 1, pp. 305–312, 1984.
[41]
M. A. Leo, J. M. Lasker, J. L. Raucy, C.-I. Kim, M. Black, and C. S. Lieber, “Metabolism of retinol and retinoic acid by human liver cytochrome P450IIC8,” Archives of Biochemistry and Biophysics, vol. 269, no. 1, pp. 305–312, 1989.
[42]
R. Quere, A. Baudet, B. Cassinat et al., “Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity,” Blood, vol. 109, no. 10, pp. 4450–4460, 2007.
[43]
J. A. White, B. Beckett-Jones, Y.-D. Guo et al., “cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes p450 (CYP26),” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18538–18541, 1997.
[44]
Y. Zhang, R. Zolfaghari Reza, and A. C. Ross, “Multiple retinoic acid response elements cooperate to enhance the inducibility of CYP26A1 gene expression in liver,” Gene, vol. 464, no. 1-2, pp. 32–43, 2010.
[45]
Y. Li, Y. Zhang, R. Li et al., “The hepatic raldh1 expression is elevated in Zucker fatty rats and its over-expression introduced the retinal-induced Srebp-1c expression in INS-1 cells,” PLoS ONE, vol. 7, no. 9, Article ID e45210, 2012.
[46]
R. M. Evans, “The nuclear receptor superfamily: a Rosetta stone for physiology,” Molecular Endocrinology, vol. 19, no. 6, pp. 1429–1438, 2005.
[47]
P. Chambon, “A decade of molecular biology of retinoic acid receptors,” FASEB Journal, vol. 10, no. 9, pp. 940–954, 1996.
[48]
D. J. Mangelsdorf and R. M. Evans, “The RXR heterodimers and orphan receptors,” Cell, vol. 83, no. 6, pp. 841–850, 1995.
[49]
J. E. Balmer and R. Blomhoff, “A robust characterization of retinoic acid response elements based on a comparison of sites in three species,” Journal of Steroid Biochemistry and Molecular Biology, vol. 96, no. 5, pp. 347–354, 2005.
[50]
R. Kurokawa, J. DiRenzo, M. Boehm et al., “Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding,” Nature, vol. 371, no. 6497, pp. 528–531, 1994.
[51]
A. Cvekl and W.-L. Wang, “Retinoic acid signaling in mammalian eye development,” Experimental Eye Research, vol. 89, no. 3, pp. 280–291, 2009.
[52]
V. Dupé, M. Davenne, J. Brocard et al., “In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′RARE),” Development, vol. 124, no. 2, pp. 399–410, 1997.
[53]
A. C. Ross, “Retinoid production and catabolism: role of diet in regulating retinol esterification and retinoic acid oxidation,” Journal of Nutrition, vol. 133, no. 1, pp. 291–296, 2003.
[54]
T. Moore and P. D. Holmes, “The production of experimental vitamin A deficiency in rats and mice,” Laboratory Animals, vol. 5, no. 2, pp. 239–250, 1971.
[55]
A. C. Ross and E. H. Harrison, “Vitamin A and carotenoids,” in Handbook of Vitamins, D. E. McCormick, R. R. Rucker, J. W. Suttie, et al., Eds., CRC Press, Boca Raton, Fla, USA, 4th edition, 2006.
[56]
A. Chawta, J. J. Repa, R. M. Evans, and D. J. Mangelsdorf, “Nuclear receptors and lipid physiology: opening the x-files,” Science, vol. 294, no. 5548, pp. 1866–1870, 2001.
[57]
C. K. Glass and M. G. Rosenfeld, “The coregulator exchange in transcriptional functions of nuclear receptors,” Genes and Development, vol. 14, no. 2, pp. 121–141, 2000.
[58]
A. L. Bookout, Y. Jeong, M. Downes, R. T. Yu, R. M. Evans, and D. J. Mangelsdorf, “Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network,” Cell, vol. 126, no. 4, pp. 789–799, 2006.
[59]
B. Mascrez, M. Mark, W. Krezel et al., “Differential contributions of AF-1 and AF-2 activities to the developmental functions of RXRα,” Development, vol. 128, no. 11, pp. 2049–2062, 2001.
[60]
D. Li, T. Li, F. Wang, H. Tian, and H. H. Samuels, “Functional evidence for retinoid X receptor (RXR) as a nonsilent partner in the thyroid hormone receptor/RXR heterodimer,” Molecular and Cellular Biology, vol. 22, no. 16, pp. 5782–5792, 2002.
[61]
F. M. Sladek, W. Zhong, E. Lai, and J. E. Darnell Jr., “Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily,” Genes and Development, vol. 4, no. 12, pp. 2353–2365, 1990.
[62]
K. Yamagata, H. Furuta, N. Oda et al., “Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1),” Nature, vol. 384, no. 6608, pp. 458–460, 1996.
[63]
M. Stoffel and S. A. Duncan, “The maturity-onset diabetes of the young (MODY1) transcription factor HNF4α regulates expression of genes required for glucose transport and metabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 24, pp. 13209–13214, 1997.
[64]
M. Lehto, P.-O. Bitzén, B. Isomaa et al., “Mutation in the HNF-4α gene affects insulin secretion and triglyceride metabolism,” Diabetes, vol. 48, no. 2, pp. 423–425, 1999.
[65]
G. P. Hayhurst, Y.-H. Lee, G. Lambert, J. M. Ward, and F. J. Gonzalez, “Hepatocyte nuclear factor 4α (Nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis,” Molecular and Cellular Biology, vol. 21, no. 4, pp. 1393–1403, 2001.
[66]
U. Roth, K. Jungermann, and T. Kietzmann, “Activation of glucokinase gene expression by hepatic nuclear factor 4α in primary hepatocytes,” Biochemical Journal, vol. 365, no. 1, pp. 223–228, 2002.
[67]
S. Mandard, R. Stienstra, P. Escher et al., “Glycogen synthase 2 is a novel target gene of peroxisome proliferator-activated receptors,” Cellular and Molecular Life Sciences, vol. 64, no. 9, pp. 1145–1157, 2007.
[68]
F. Rajas, A. Gautier, I. Bady, S. Montano, and G. Mithieux, “Polyunsaturated fatty acyl coenzyme a suppress the glucose-6-phosphatase promoter activity by modulating the DNA binding of hepatocyte nuclear factor 4α,” Journal of Biological Chemistry, vol. 277, no. 18, pp. 15736–15744, 2002.
[69]
B. Viollet, A. Kahn, and M. Raymondjean, “Protein kinase A-dependent phosphorylation modulates DNA-binding activity of hepatocyte nuclear factor 4,” Molecular and Cellular Biology, vol. 17, no. 8, pp. 4208–4219, 1997.
[70]
L. Palanker, J. M. Tennessen, G. Lam, and C. S. Thummel, “Drosophila HNF4 regulates lipid mobilization and β-oxidation,” Cell Metabolism, vol. 9, no. 3, pp. 228–239, 2009.
[71]
A. Miura, K. Yamagata, M. Kakei et al., “Hepatocyte nuclear factor-4α is essential for glucose-stimulated insulin secretion by pancreatic β-cells,” Journal of Biological Chemistry, vol. 281, no. 8, pp. 5246–5257, 2006.
[72]
R. Bartoov-Shifman, R. Hertz, H. Wang, C. B. Wollheim, J. Bar-Tana, and M. D. Walker, “Activation of the insulin gene promoter through a direct effect of hepatocyte nuclear factor 4α,” Journal of Biological Chemistry, vol. 277, no. 29, pp. 25914–25919, 2002.
[73]
H. Wang, P. Maechler, P. A. Antinozzi, K. A. Hagenfeldt, and C. B. Wollheim, “Hepatocyte nuclear factor 4α regulates the expression of pancreatic β-cell genes implicated in glucose metabolism and nutrient-induced insulin secretion,” Journal of Biological Chemistry, vol. 275, no. 46, pp. 35953–35959, 2000.
[74]
K. Reue, T. Leff, and J. L. Breslow, “Human apolipoprotein CIII gene expression is regulated by positive and negative cis-acting elements and tissue-specific protein factors,” Journal of Biological Chemistry, vol. 263, no. 14, pp. 6857–6864, 1988.
[75]
T. Leff, K. Reue, A. Melian, H. Culver, and J. L. Breslow, “A regulatory element in the apoCIII promoter that directs hepatic specific transcription binds to proteins in expressing and nonexpressing cell types,” Journal of Biological Chemistry, vol. 264, no. 27, pp. 16132–16137, 1989.
[76]
S. N. Lavrentiadou, M. Hadzopoulou-Cladaras, D. Kardassis, and V. I. Zannis, “Binding specificity and modulation of the human apocIII promoter activity by heterodimers of ligand-dependent nuclear receptors,” Biochemistry, vol. 38, no. 3, pp. 964–975, 1999.
[77]
T. R. Magee, Y. Cai, M. E. El-Houseini, J. Locker, and Y.-J. Y. Wan, “Retinoic acid mediates down-regulation of the α-fetoprotein gene through decreased expression of hepatocyte nuclear factors,” Journal of Biological Chemistry, vol. 273, no. 45, pp. 30024–30032, 1998.
[78]
A. Qian, Y. Cai, T. R. Magee, and Y. J. Y. Wan, “Identification of retinoic acid-responsive elements on the HNF1alpha and HNF4alpha genes,” Biochemical and Biophysical Research Communications, vol. 276, no. 3, pp. 837–842, 2000.
[79]
H. Nakshatri and P. Chambon, “The directly repeated RG(G/T)TCA motifs of the rat and mouse cellular retinol-binding protein II genes are promiscuous binding sites for RAR, RXR, HNF-4, and ARP-1 homo- and heterodimers,” Journal of Biological Chemistry, vol. 269, no. 2, pp. 890–902, 1994.
[80]
T. Makita, G. Hernandez-Hoyos, T. H.-P. Chen, H. Wu, E. V. Rothenberg, and H. M. Sucov, “A developmental transition in definitive erythropoiesis: erythropoietin expression is sequentially regulated by retinoic acid receptors and HNF4,” Genes and Development, vol. 15, no. 7, pp. 889–901, 2001.
[81]
T. I. Kambe, J. Tada-Kambe, Y. Kuge, Y. Yamaguchi-Iwai, M. Nagao, and R. Sasaki, “Retinoic acid stimulates erythropoietin gene transcription in embryonal carcinoma cells through the direct repeat of a steroid/thyroid hormone receptor response element half-site in the hypoxia-response enhancer,” Blood, vol. 96, no. 9, pp. 3265–3271, 2000.
[82]
F.-J. Lin, J. Qin, K. Tang, S. Y. Tsai, and M.-J. Tsai, “Coup d'Etat: an orphan takes control,” Endocrine Reviews, vol. 32, no. 3, pp. 404–421, 2011.
[83]
L.-H. Wang, S. Y. Tsai, R. G. Cook, W. G. Beattie, M.-J. Tsai, and B. W. O'Malley, “COUP transcription factor is a member of the steroid receptor superfamily,” Nature, vol. 340, no. 6229, pp. 163–166, 1989.
[84]
X. Leng, A. J. Cooney, S. Y. Tsai, and M.-J. Tsai, “Molecular mechanisms of COUP-TF-mediated transcriptional repression: evidence for transrepression and active repression,” Molecular and Cellular Biology, vol. 16, no. 5, pp. 2332–2340, 1996.
[85]
L. Li, X. Xie, J. Qin et al., “The nuclear orphan receptor COUP-TFII plays an essential role in adipogenesis, glucose homeostasis, and energy metabolism,” Cell Metabolism, vol. 9, no. 1, pp. 77–87, 2009.
[86]
F. A. Pereira, Q. Yuhong, G. Zhou, M.-J. Tsai, and S. Y. Tsai, “The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development,” Genes and Development, vol. 13, no. 8, pp. 1037–1049, 1999.
[87]
N. Takamoto, I. Kurihara, K. Lee, F. J. DeMayo, M.-J. Tsai, and S. Y. Tsai, “Haploinsufficiency of chicken ovalbumin upstream promoter transcription factor II in female reproduction,” Molecular Endocrinology, vol. 19, no. 9, pp. 2299–2308, 2005.
[88]
P. Zhang, M. Bennoun, C. Gogard et al., “Expression of COUP-TFII in metabolic tissues during development,” Mechanisms of Development, vol. 119, no. 1, pp. 109–114, 2002.
[89]
Z. Xu, S. Yu, C.-H. Hsu, J. Eguchi, and E. D. Rosen, “The orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II is a critical regulator of adipogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2421–2426, 2008.
[90]
P. Bardoux, P. Zhang, D. Flamez et al., “Essential role of chicken ovalbumin upstream promoter-transcription factor II in insulin secretion and insulin sensitivity revealed by conditional gene knockout,” Diabetes, vol. 54, no. 5, pp. 1357–1363, 2005.
[91]
G. Achatz, B. H?lzl, R. Speckmayer, C. Hauser, F. Sandhofer, and B. Paulweber, “Functional domains of the human orphan receptor ARP-1/COUP-TFII involved in active repression and transrepression,” Molecular and Cellular Biology, vol. 17, no. 9, pp. 4914–4932, 1997.
[92]
S. A. Kliewer, K. Umesono, R. A. Heyman, D. J. Mangelsdorf, J. A. Dyck, and R. M. Evans, “Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 4, pp. 1448–1452, 1992.
[93]
A. J. Cooney, S. Y. Tsai, B. W. O'Malley, and M.-J. Tsai, “Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors,” Molecular and Cellular Biology, vol. 12, no. 9, pp. 4153–4163, 1992.
[94]
S. W. Kruse, K. Suino-Powell, X. E. Zhou et al., “Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor,” PLoS Biology, vol. 6, no. 9, Article ID e227, 2008.
[95]
J. P. Berger, T. E. Akiyama, and P. T. Meinke, “PPARs: therapeutic targets for metabolic disease,” Trends in Pharmacological Sciences, vol. 26, no. 5, pp. 244–251, 2005.
[96]
J. M. Peters and F. J. Gonzalez, “Sorting out the functional role(s) of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in cell proliferation and cancer,” Biochimica et Biophysica Acta, vol. 1796, no. 2, pp. 230–241, 2009.
[97]
A. Tenenbaum and E. Fisman, “Balanced pan-PPAR activator bezafibrate in combination with statin: comprehensive lipids control and diabetes prevention?” Cardiovascular Diabetology, vol. 11, no. 1, article 140, 2012.
[98]
O. Braissant, F. Foufelle, C. Scotto, M. Dau?a, and W. Wahli, “Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat,” Endocrinology, vol. 137, no. 1, pp. 354–366, 1996.
[99]
H. Higashiyama, A. N. Billin, Y. Okamoto, M. Kinoshita, and S. Asano, “Expression profiling of Peroxisome proliferator-activated receptor-delta (PPAR-delta) in mouse tissues using tissue microarray,” Histochemistry and Cell Biology, vol. 127, no. 5, pp. 485–494, 2007.
[100]
P. S. Jones, R. Savory, P. Barratt et al., “Chromosomal localisation, inducibility, tissue-specific expression and strain differences in three murine peroxisome-proliferator-activated-receptor genes,” European Journal of Biochemistry, vol. 233, no. 1, pp. 219–226, 1995.
[101]
S. A. Kliewer, B. M. Forman, B. Blumberg et al., “Differential expression and activation of a family of murine peroxisome proliferator-activated receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 7355–7359, 1994.
[102]
E. E. Girroir, H. E. Hollingshead, P. He, B. Zhu, G. H. Perdew, and J. M. Peters, “Quantitative expression patterns of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) protein in mice,” Biochemical and Biophysical Research Communications, vol. 371, no. 3, pp. 456–461, 2008.
[103]
P. Escher, O. Braissant, S. Basu-Modak, L. Michalik, W. Wahli, and B. Desvergne, “Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding,” Endocrinology, vol. 142, no. 10, pp. 4195–4202, 2001.
[104]
D. Auboeuf, J. Rieusset, L. Fajas et al., “Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-α in humans: no alteration in adipose tissue of obese and NIDDM patients,” Diabetes, vol. 46, no. 8, pp. 1319–1327, 1997.
[105]
N. Shaw, M. Elholm, and N. Noy, “Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor β/δ,” Journal of Biological Chemistry, vol. 278, no. 43, pp. 41589–41592, 2003.
[106]
G. Wolf, “Retinoic acid as cause of cell proliferation or cell growth inhibition depending on activation of one of two different nuclear receptors,” Nutrition Reviews, vol. 66, no. 1, pp. 55–59, 2008.
[107]
T. T. Schug, D. C. Berry, N. S. Shaw, S. N. Travis, and N. Noy, “Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors,” Cell, vol. 129, no. 4, pp. 723–733, 2007.
[108]
D. C. Berry and N. Noy, “All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor β/δ and retinoic acid receptor,” Molecular and Cellular Biology, vol. 29, no. 12, pp. 3286–3296, 2009.
[109]
D. C. Berry, D. DeSantis, H. Soltanian, C. M. Croniger, and N. Noy, “Retinoic acid upregulates preadipocyte genes to block adipogenesis and suppress diet-induced obesity,” Diabetes, vol. 61, no. 5, pp. 1112–1121, 2012.
[110]
M. G. Borland, C. Khozoie, P. P. Albrecht et al., “Stable over-expression of PPARβ/δ and PPARγ to examine receptor signaling in human HaCaT keratinocytes,” Cellular Signalling, vol. 23, no. 12, pp. 2039–2050, 2011.
[111]
S. E. O'Sullivan and D. A. Kendall, “Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease,” Immunobiology, vol. 215, no. 8, pp. 611–616, 2010.
[112]
Z. C. Yan, D. Y. Liu, L. L. Zhang et al., “Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-δ,” Biochemical and Biophysical Research Communications, vol. 354, no. 2, pp. 427–433, 2007.
[113]
J. D. McGarry, “What if Minkowski had been ageusic? An alternative angle on diabetes,” Science, vol. 258, no. 5083, pp. 766–770, 1992.
[114]
T. Moore, “Vitamin A and carotene: the vitamin A reserve of the adult human being in health and disease,” Biochemical Journal, vol. 31, no. 1, pp. 155–164, 1937.
[115]
G. Wolf, M. D. Lane, and B. C. Johnson, “Studies on the function of vitamin A in metabolism,” Journal of Biological Chemistry, vol. 225, no. 2, pp. 995–1008, 1957.
[116]
Y. Zhang, R. Li, Y. Li, W. Chen, S. Zhao, and G. Chen, “Vitamin A status affects obesity development and hepatic expression of key genes for fuel metabolism in Zucker fatty rats,” Biochemistry and Cell Biology, vol. 90, no. 4, pp. 548–557, 2012.
[117]
M. Singh, V. N. Singh, and T. A. Venkitasubramanian, “Early effects of feeding excess vitamin A: hepatic glycogen, blood lactic acid, plasma nefa and glucose tolerance in rats,” Life Sciences, vol. 7, no. 5, pp. 239–247, 1968.
[118]
M. L. Cárdenas, A. Cornish-Bowden, and T. Ureta, “Evolution and regulatory role of the hexokinases,” Biochimica et Biophysica Acta, vol. 1401, no. 3, pp. 242–264, 1998.
[119]
P. B. Iynedjian, “Mammalian glucokinase and its gene,” Biochemical Journal, vol. 293, no. 1, pp. 1–13, 1993.
[120]
M. A. Magnuson, T. L. Andreone, R. L. Printz, S. Koch, and D. K. Granner, “Rat glucokinase gene: structure and regulation by insulin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 13, pp. 4838–4842, 1989.
[121]
F. M. Matschinsky, M. A. Magnuson, D. Zelent et al., “The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy,” Diabetes, vol. 55, no. 1, pp. 1–12, 2006.
[122]
P. Froguel, H. Zouali, N. Vionnet et al., “Familial hyperglycemia due to mutations in glucokinase: definition of a subtype of diabetes mellitus,” The New England Journal of Medicine, vol. 328, no. 10, pp. 697–702, 1993.
[123]
M. Gidh-Jain, J. Takeda, L. Z. Xu et al., “Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 1932–1936, 1993.
[124]
E. Vinuela, M. Salas, and A. Sols, “Glucokinase and hexokinase in liver in relation to glycogen synthesis,” The Journal of Biological Chemistry, vol. 238, pp. 1175–1177, 1963.
[125]
P. B. Iynedjian, G. Mobius, and H. J. Seitz, “Tissue-specific expression of glucokinase: identification of the gene product in liver and pancreatic islets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 7, pp. 1998–2001, 1986.
[126]
Y. Liang, T. L. Jetton, E. C. Zimmerman, H. Najafi, F. M. Matschinsky, and M. A. Magnuson, “Effects of alternate RNA splicing on glucokinase isoform activities in the pancreatic islet, liver, and pituitary,” Journal of Biological Chemistry, vol. 266, no. 11, pp. 6999–7007, 1991.
[127]
E. van Schaftingen, M. Detheux, and M. V. da Cunha, “Short-term control of glucokinase activity: role of a regulatory protein,” FASEB Journal, vol. 8, no. 6, pp. 414–419, 1994.
[128]
P. Ekman and E. Nilsson, “Phosphorylation of glucokinase from rat liver in vitro by protein kinase A with a concomitant decrease of its activity,” Archives of Biochemistry and Biophysics, vol. 261, no. 2, pp. 275–282, 1988.
[129]
M. J. Munoz-Alonso, G. Guillemain, N. Kassis, J. Girard, A.-F. Burnol, and A. Leturque, “A novel cytosolic dual specificity phosphatase, interacting with glucokinase, increases glucose phosphorylation rate,” Journal of Biological Chemistry, vol. 275, no. 42, pp. 32406–32412, 2000.
[130]
P. B. Iynedjian, P.-R. Pilot, T. Nouspikel et al., “Differential expression and regulation of the glucokinase gene in liver and islets of Langerhans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 20, pp. 7838–7842, 1989.
[131]
M. A. Magnuson and K. D. Shelton, “An alternate promoter in the glucokinase gene is active in the pancreatic β cell,” Journal of Biological Chemistry, vol. 264, no. 27, pp. 15936–15942, 1989.
[132]
T. L. Jetton, Y. Liang, C. C. Pettepher et al., “Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut,” Journal of Biological Chemistry, vol. 269, no. 5, pp. 3641–3654, 1994.
[133]
P. B. Iynedjian, A. Gjinovci, and A. E. Renold, “Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats,” Journal of Biological Chemistry, vol. 263, no. 2, pp. 740–744, 1988.
[134]
P. B. Iynedjian, D. Jotterand, T. Nouspikel, M. Asfari, and P.-R. Pilot, “Transcriptional induction of glucokinase gene by insulin in cultured liver cells and its repression by the glucagon-cAMP system,” Journal of Biological Chemistry, vol. 264, no. 36, pp. 21824–21829, 1989.
[135]
W. Sibrowski and H. J. Seitz, “Rapid action of insulin and cyclic AMP in the regulation of functional messenger RNA coding for glucokinase in rat liver,” Journal of Biological Chemistry, vol. 259, no. 1, pp. 343–346, 1984.
[136]
T. Noguchi, M. Takenaka, K. Yamada, T. Matsuda, M. Hashimoto, and T. Tanaka, “Characterization of the 5′ flanking region of rat glucokinase gene,” Biochemical and Biophysical Research Communications, vol. 164, no. 3, pp. 1247–1252, 1989.
[137]
G. Chen, Y. Zhang, D. Lu, N.-Q. Li, and A. C. Ross, “Retinoids synergize with insulin to induce hepatic Gck expression,” Biochemical Journal, vol. 419, no. 3, pp. 645–653, 2009.
[138]
P. B. Iynedjian, S. Marie, H. Wang, A. Gjinovci, and K. Nazaryan, “Liver-specific enhancer of the glucokinase gene,” Journal of Biological Chemistry, vol. 271, no. 46, pp. 29113–29120, 1996.
[139]
G. Cabrera-Valladares, F. M. Matschinsky, J. Wang, and C. Fernandez-Mejia, “Effect of retinoic acid on glucokinase activity and gene expression in neonatal and adult cultured hepatocytes,” Life Sciences, vol. 68, no. 25, pp. 2813–2824, 2001.
[140]
J.-F. Decaux, M. Juanes, P. Bossard, and J. Girard, “Effects of triiodothyronine and retinoic acid on glucokinase gene expression in neonatal rat hepatocytes,” Molecular and Cellular Endocrinology, vol. 130, no. 1-2, pp. 61–67, 1997.
[141]
R. W. Hanson and A. J. Garber, “Phosphoenolpyruvate carboxykinase. I. Its role in gluconeogenesis,” The American Journal of Clinical Nutrition, vol. 25, no. 10, pp. 1010–1021, 1972.
[142]
R. W. Hanson and L. Reshef, “Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression,” Annual Review of Biochemistry, vol. 66, pp. 581–611, 1997.
[143]
R. M. O'Brien, R. L. Printz, N. Halmi, J. J. Tiesinga, and D. K. Granner, “Structural and functional analysis of the human phosphoenolpyruvate carboxykinase gene promoter,” Biochimica et Biophysica Acta, vol. 1264, no. 3, pp. 284–288, 1995.
[144]
R. W. Hanson and L. Reshef, “Glyceroneogenesis revisited,” Biochimie, vol. 85, no. 12, pp. 1199–1205, 2003.
[145]
R. M. O'Brien and D. K. Granner, “Regulation of gene expression by insulin,” Physiological Reviews, vol. 76, no. 4, pp. 1109–1161, 1996.
[146]
M. Benvenisty and L. Reshef, “Developmental acquisition of DNase I sensitivity of the phosphoenolpyruvate carboxykinase (GTP) gene in rat liver,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 5, pp. 1132–1136, 1987.
[147]
W. J. Roesler, G. R. Vandenbark, and R. W. Hanson, “Identification of multiple protein binding domains in the promoter-regulatory region of the phosphoenolpyruvate carboxykinase (GTP) gene,” Journal of Biological Chemistry, vol. 264, no. 16, pp. 9657–9664, 1989.
[148]
E. Imai, J. N. Miner, J. A. Mitchell, K. R. Yamamoto, and D. K. Granner, “Glucocorticoid receptor-cAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids,” Journal of Biological Chemistry, vol. 268, no. 8, pp. 5353–5356, 1993.
[149]
R. K. Hall, F. M. Sladek, and D. K. Granner, “The orphan receptors COUP-TF and HNF-4 serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 2, pp. 412–416, 1995.
[150]
T. Kucera, M. Waltner-Law, D. K. Scott, R. Prasad, and D. K. Granner, “A point mutation of the AF2 transactivation domain of the glucocorticoid receptor disrupts its interaction with steroid receptor coactivator 1,” Journal of Biological Chemistry, vol. 277, no. 29, pp. 26098–26102, 2002.
[151]
M. J. Nyirenda, R. S. Lindsay, C. J. Kenyon, A. Burchell, and J. R. Seckl, “Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring,” Journal of Clinical Investigation, vol. 101, no. 10, pp. 2174–2181, 1998.
[152]
D. K. Scott, P.-E. Str?mstedt, J.-C. Wang, and D. K. Granner, “Further characterization of the glucocorticoid response unit in the phosphoenolpyruvate carboxykinase gene. The role of the glucocorticoid receptor-binding sites,” Molecular Endocrinology, vol. 12, no. 4, pp. 482–491, 1998.
[153]
T. Sugiyama, D. K. Scott, J.-C. Wang, and D. K. Granner, “Structural requirements of the glucocorticoid and retinoic acid response units in the phosphoenolpyruvate carboxykinase gene promoter,” Molecular Endocrinology, vol. 12, no. 10, pp. 1487–1498, 1998.
[154]
P. C. Lucas, B. M. Forman, H. H. Samuels, and D. K. Granner, “Specificity of a retinoic acid response element in the phosphoenolpyruvate carboxykinase gene promoter: consequences of both retinoic acid and thyroid hormone receptor binding,” Molecular and Cellular Biology, vol. 11, no. 10, pp. 5164–5170, 1991.
[155]
P. C. Lucas, R. M. O'Brien, J. A. Mitchell et al., “A retinoic acid response element is part of a pleiotropic domain in the phosphoenolpyruvate carboxykinase gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 6, pp. 2184–2188, 1991.
[156]
D. K. Scott, J. A. Mitchell, and D. K. Granner, “Identification and characterization of a second retinoic acid response element in the phosphoenolpyruvate carboxykinase gene promoter,” Journal of Biological Chemistry, vol. 271, no. 11, pp. 6260–6264, 1996.
[157]
D.-J. Shin, D. P. Odom, K. B. Scribner, S. Ghoshal, and M. M. McGrane, “Retinoid regulation of the phosphoenolpyruvate carboxykinase gene in liver,” Molecular and Cellular Endocrinology, vol. 195, no. 1-2, pp. 39–54, 2002.
[158]
M. Giralt, E. A. Park, A. L. Gurney, J. Liu, P. Hakimi, and R. W. Hanson, “Identification of a thyroid hormone response element in the phosphoenolpyruvate carboxykinase (GTP) gene. Evidence for synergistic interaction between thyroid hormone and cAMP cis-regulatory elements,” Journal of Biological Chemistry, vol. 266, no. 32, pp. 21991–21996, 1991.
[159]
B. A. Laffitte, L. C. Chao, J. Li et al., “Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5419–5424, 2003.
[160]
R. K. Hall, T. Yamasaki, T. Kucera, M. Waltner-Law, R. O'Brien, and D. K. Granner, “Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins,” Journal of Biological Chemistry, vol. 275, no. 39, pp. 30169–30175, 2000.
[161]
E. A. Park, A. L. Gurney, S. E. Nizielski et al., “Relative roles of CCAAT/enhancer-binding protein β and cAMP regulatory element-binding protein in controlling transcription of the gene for phosphoenolpyruvate carboxykinase (GTP),” Journal of Biological Chemistry, vol. 268, no. 1, pp. 613–619, 1993.
[162]
K. Chakravarty, P. Leahy, D. Becard et al., “Sterol regulatory element-binding protein-1c mimics the negative effect of insulin on phosphoenolpyruvate carboxykinase (GTP) gene transcription,” Journal of Biological Chemistry, vol. 276, no. 37, pp. 34816–34823, 2001.
[163]
K. Chakravarty, S.-Y. Wu, C.-M. Chiang, D. Samols, and R. W. Hanson, “SREBP-1c and Sp1 interact to regulate transcription of the gene for phosphoenolpyruvate carboxykinase (GTP) in the liver,” Journal of Biological Chemistry, vol. 279, no. 15, pp. 15385–15395, 2004.
[164]
P. Leahy, D. R. Crawford, G. Grossman, R. M. Gronostajski, and R. W. Hanson, “CREB binding protein coordinates the function of multiple transcription factors including nuclear factor I to regulate phosphoenolpyruvate carboxykinase (GTP) gene transcription,” Journal of Biological Chemistry, vol. 274, no. 13, pp. 8813–8822, 1999.
[165]
J. M. Stafford, M. Waltner-Law, and D. K. Granner, “Role of accessory factors and steroid receptor coactivator 1 in the regulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids,” Journal of Biological Chemistry, vol. 276, no. 6, pp. 3811–3819, 2001.
[166]
J. C. Yoon, P. Puigserver, G. Chen et al., “Control of hepatic gluconeogenesis through the transcriptional coaotivator PGC-1,” Nature, vol. 413, no. 6852, pp. 131–138, 2001.
[167]
D.-J. Shin, A. Tao, and M. M. McGrane, “Effects of vitamin A deficiency and retinoic acid treatment on expression of a phosphoenolpyruvate carboxykinase: bovine growth hormone gene in transgenic mice,” Biochemical and Biophysical Research Communications, vol. 213, no. 2, pp. 706–714, 1995.
[168]
K. B. Scribner and M. M. McGrane, “RNA polymerase II association with the phosphoenolpyruvate carboxykinase (PEPCK) promoter is reduced in vitamin A-deficient mice,” Journal of Nutrition, vol. 133, no. 12, pp. 4112–4117, 2003.
[169]
K. B. Scribner, D. P. Odom, and M. M. McGrane, “Vitamin A status in mice affects the histone code of the phosphoenolpyruvate carboxykinase gene in liver,” Journal of Nutrition, vol. 135, no. 12, pp. 2774–2779, 2005.
[170]
K. B. Scribner, D. P. Odom, and M. M. McGrane, “Nuclear receptor binding to the retinoic acid response elements of the phosphoenolpyruvate carboxykinase gene in vivo: effects of vitamin A deficiency,” Journal of Nutritional Biochemistry, vol. 18, no. 3, pp. 206–214, 2007.
[171]
G. Chen, “Liver lipid molecules induce PEPCK-C gene transcription and attenuate insulin action,” Biochemical and Biophysical Research Communications, vol. 361, no. 3, pp. 805–810, 2007.
[172]
Y. Zhang, R. Li, W. Chen, Y. Li, and G. Chen, “Retinoids induced Pck1 expression and attenuated insulin-mediated suppression of its expression via activation of retinoic acid receptor in primary rat hepatocytes,” Molecular and Cellular Biochemistry, vol. 355, no. 1-2, pp. 1–8, 2011.
[173]
S. M. O'Byrne and W. S. Blaner, “Retinol and retinyl esters: biochemistry and physiology: thematic review series: fat-soluble vitamins: vitamin A,” Journal of Lipid Research, vol. 54, no. 7, pp. 1731–1743, 2013.
[174]
T. E. Graham, Q. Yang, M. Blüher et al., “Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects,” The New England Journal of Medicine, vol. 354, no. 24, pp. 2552–2563, 2006.
[175]
Q. Yang, T. E. Graham, N. Mody et al., “Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes,” Nature, vol. 436, no. 7049, pp. 356–362, 2005.
[176]
T. K. Basu, W. J. Tze, and J. Leichter, “Serum vitamin A and retinol-binding protein in patients with insulin-dependent diabetes mellitus,” The American Journal of Clinical Nutrition, vol. 50, no. 2, pp. 329–331, 1989.
[177]
P. J. Tuitoek, S. Ziari, A. T. C. Tsin, R. V. Rajotte, M. Suh, and T. K. Basu, “Streptozotocin-induced diabetes in rats is associated with impaired metabolic availability of vitamin A (retinol),” British Journal of Nutrition, vol. 75, no. 4, pp. 615–622, 1996.
[178]
A. Motani, Z. Wang, M. Conn et al., “Identification and characterization of a non-retinoid ligand for retinol-binding protein 4 which lowers serum retinol-binding protein 4 levels in vivo,” Journal of Biological Chemistry, vol. 284, no. 12, pp. 7673–7680, 2009.
[179]
F. C. George, “Fuel metabolism in starvation,” Annual review of nutrition, vol. 26, pp. 1–22, 2006.
[180]
M. C. Carey, D. M. Small, and C. M. Bliss, “Lipid digestion and absorption,” Annual Review of Physiology, vol. 45, pp. 651–677, 1983.
[181]
K. Jaworski, E. Sarkadi-Nagy, R. E. Duncan, M. Ahmadian, and H. S. Sul, “Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue,” The American Journal of Physiology, vol. 293, no. 1, pp. G1–G4, 2007.
[182]
R. J. Havel, “Postprandial lipid metabolism: an overview,” Proceedings of the Nutrition Society, vol. 56, no. 2, pp. 659–666, 1997.
[183]
E. F. Brown and A. F. Morgan, “The effect of vitamin a deficiency upon the nitrogen metabolism of the rat: two figures,” Journal of Nutrition, vol. 35, no. 4, pp. 425–438, 1948.
[184]
R. Zolfaghari and A. C. Ross, “Effect of vitamin A deficiency and retinoic acid repletion on intestinal and hepatic apolipoprotein A-I mRNA levels of adult rats,” Journal of Lipid Research, vol. 35, no. 11, pp. 1985–1992, 1994.
[185]
A. Nagasaki, T. Kikuchi, K. Kurata, S. Masushige, T. Hasegawa, and S. Kato, “Vitamin A regulates the expression of apolipoprotein AI and CIII genes in the rat,” Biochemical and Biophysical Research Communications, vol. 205, no. 3, pp. 1510–1517, 1994.
[186]
J. Ribalta, J. Girona, J. C. Vallvé, A. E. la Ville, M. Heras, and L. Masana, “Vitamin A is linked to the expression of the AI-CIII-AIV gene cluster in familial combined hyperlipidemia,” Journal of Lipid Research, vol. 40, no. 3, pp. 426–431, 1999.
[187]
L. B. Oliveros, M. A. Domeniconi, V. A. Vega, L. V. Gatica, A. M. Brigada, and M. S. Gimenez, “Vitamin A deficiency modifies lipid metabolism in rat liver,” British Journal of Nutrition, vol. 97, no. 2, pp. 263–272, 2007.
[188]
L. M. Zucker and T. F. Zucker, “Fatty, a new mutation in the rat,” Journal of Heredity, vol. 52, no. 6, pp. 275–278, 1961.
[189]
M. Iida, T. Murakami, K. Ishida, A. Mizuno, M. Kuwajima, and K. Shima, “Substitution at codon 269 (glutamine → proline) of the leptin receptor (OB-R) cDNA is the only mutation found in the Zucker fatty (fa/fa) rat,” Biochemical and Biophysical Research Communications, vol. 224, no. 2, pp. 597–604, 1996.
[190]
M. S. Phillips, Q. Liu, H. A. Hammond et al., “Leptin receptor missense mutation in the fatty Zucker rat,” Nature Genetics, vol. 13, no. 1, pp. 18–19, 1996.
[191]
K. Takaya, Y. Ogawa, N. Isse et al., “Molecular cloning of rat leptin receptor isoform complementary DNAs-identification of a missense mutation in Zucker fatty (fa/fa) rats,” Biochemical and Biophysical Research Communications, vol. 225, no. 1, pp. 75–83, 1996.
[192]
A. Aleixandre de Arti?ano and M. Miguel Castro, “Experimental rat models to study the metabolic syndrome,” British Journal of Nutrition, vol. 102, no. 9, pp. 1246–1253, 2009.
[193]
R. H. Unger, “How obesity causes diabetes in Zucker diabetic fatty rats,” Trends in Endocrinology and Metabolism, vol. 8, no. 7, pp. 276–282, 1997.
[194]
B. S. Chertow, W. S. Blaner, and N. G. Baranetsky, “Effects of vitamin A deficiency and repletion on rat insulin secretion in vivo and in vitro from isolated islets,” Journal of Clinical Investigation, vol. 79, no. 1, pp. 163–169, 1987.
[195]
H. A. Koistinen, A. Remitz, H. Gylling, T. A. Miettinen, V. A. Koivisto, and P. Ebeling, “Dyslipidemia and a reversible decrease in insulin sensitivity induced by therapy with 13-cis-retinoic acid,” Diabetes/Metabolism Research and Reviews, vol. 17, no. 5, pp. 391–395, 2001.
[196]
F. Lyons, M. F. Laker, and J. R. Marsden, “Effect of oral 13-cis-retinoic acid on serum lipids,” British Journal of Dermatology, vol. 107, no. 5, pp. 591–595, 1982.
[197]
J. R. Marsden, T. R. Trinick, M. F. Laker, and S. Shuster, “Effects of isotretinoin on serum lipids and lipoproteins, liver and thyroid function,” Clinica Chimica Acta, vol. 143, no. 3, pp. 243–251, 1984.
[198]
A. S. Vieira, V. Beijamini, and A. C. Melchiors, “The effect of isotretinoin on triglycerides and liver aminotransferases,” Anais Brasileiros de Dermatologia, vol. 87, pp. 382–387, 2012.
[199]
V. A. Miller, J. R. Rigas, J. R. F. Muindi et al., “Modulation of all-trans retinoic acid pharmacokinetics by liarozole,” Cancer Chemotherapy and Pharmacology, vol. 34, no. 6, pp. 522–526, 1994.
[200]
M. S. Tallman and H. C. Kwaan, “Reassessing the hemostatic disorder associated with acute promyelocytic leukemia,” Blood, vol. 79, no. 3, pp. 543–553, 1992.
[201]
L. E. Gerber and J. W. Erdman Jr., “Retinoic acid and hypertriglyceridemia,” Annals of the New York Academy of Sciences, vol. 359, pp. 391–392, 1981.
[202]
L. E. Gerber and J. W. Erdman Jr., “Effect of retinoic acid and retinyl acetate feeding upon lipid metabolism in adrenalectomized rats,” Journal of Nutrition, vol. 109, no. 4, pp. 580–589, 1979.
[203]
L. E. Gerber and J. W. Erdman Jr., “Comparative effects of all-trans and 13-cis retinoic acid administration on serum and liver lipids in rats,” Journal of Nutrition, vol. 110, no. 2, pp. 343–351, 1980.
[204]
N. S. Shachter, “Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism,” Current Opinion in Lipidology, vol. 12, no. 3, pp. 297–304, 2001.
[205]
N. Maeda, H. Li, D. Lee, P. Oliver, S. H. Quarfordt, and J. Osada, “Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia,” Journal of Biological Chemistry, vol. 269, no. 38, pp. 23610–23616, 1994.
[206]
Y. Ito, N. Azrolan, A. O'Connell, A. Walsh, and J. L. Breslow, “Hypertriglyceridemia as a result of human Apo CIII gene expression in transgenic mice,” Science, vol. 249, no. 4970, pp. 790–793, 1990.
[207]
N. Vu-Dac, P. Gervois, I. P. Torra et al., “Retinoids increase human apo C-III expression at the transcriptional level via the retinoid X receptor: contribution to the hypertriglyceridemic action of retinoids,” Journal of Clinical Investigation, vol. 102, no. 3, pp. 625–632, 1998.
[208]
P. J. A. Davies, S. A. Berry, G. L. Shipley et al., “Metabolic effects of rexinoids: tissue-specific regulation of lipoprotein lipase activity,” Molecular Pharmacology, vol. 59, no. 2, pp. 170–176, 2001.
[209]
J. A. A. Ladias, M. Hadzopoulou-Cladaras, D. Kardassis et al., “Transcriptional regulation of human apolipoprotein genes apoB, apoCIII, and apoAII by members of the steroid hormone receptor superfamily HNF-4, ARP- 1, EAR-2, and EAR-3,” Journal of Biological Chemistry, vol. 267, no. 22, pp. 15849–15860, 1992.
[210]
M. Chen, J. L. Breslow, W. Li, and T. Leff, “Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels,” Journal of Lipid Research, vol. 35, no. 11, pp. 1918–1924, 1994.
[211]
R. Mukherjee, P. J. A. Davies, D. L. Crombie et al., “Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists,” Nature, vol. 386, no. 6623, pp. 407–410, 1997.
[212]
M. L. Bonet, J. Ribot, and A. Palou, “Lipid metabolism in mammalian tissues and its control by retinoic acid,” Biochimica et Biophysica Acta, vol. 1821, no. 1, pp. 177–189, 2012.
[213]
D.-C. Manolescu, A. Sima, and P. V. Bhat, “All-trans retinoic acid lowers serum retinol-binding protein 4 concentrations and increases insulin sensitivity in diabetic mice,” Journal of Nutrition, vol. 140, no. 2, pp. 311–316, 2010.
[214]
R. Yasmeen, S. M. Jeyakumar, B. Reichert, F. Yang, and O. Ziouzenkova, “The contribution of vitamin A to autocrine regulation of fat depots,” Biochimica et Biophysica Acta, vol. 1821, no. 1, pp. 190–197, 2012.
[215]
I. Shimomura, M. Matsuda, R. E. Hammer, Y. Bashmakov, M. S. Brown, and J. L. Goldstein, “Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice,” Molecular Cell, vol. 6, no. 1, pp. 77–86, 2000.
[216]
S. S. Chernick and I. L. Chaikoff, “Insulin and hepatic utilization of glucose for lipogenesis,” The Journal of Biological Chemistry, vol. 186, no. 2, pp. 535–542, 1950.
[217]
D. W. Allmann, D. D. Hubbard, and D. M. Gibson, “Fatty acid synthesis during fat-free refeeding of starved rats,” Journal of Lipid Research, vol. 6, pp. 63–74, 1965.
[218]
D. N. Burton, J. M. Collins, A. L. Kennan, and J. W. Porter, “The effects of nutritional and hormonal factors on the fatty acid synthetase level of rat liver,” Journal of Biological Chemistry, vol. 244, no. 16, pp. 4510–4516, 1969.
[219]
M. R. Lakshmanan, C. M. Nepokroeff, and J. W. Porter, “Control of the synthesis of fatty-acid synthetase in rat liver by insulin, glucagon, and adenosine 3′:5′ cyclic monophosphate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 69, no. 12, pp. 3516–3519, 1972.
[220]
J. D. Paulauskis and H. S. Sul, “Hormonal regulation of mouse fatty acid synthase gene transcription in liver,” Journal of Biological Chemistry, vol. 264, no. 1, pp. 574–577, 1989.
[221]
J. W. Porter and T. L. Swenson, “Induction of fatty acid synthetase and acetyl-CoA carboxylase by isolated rat liver cells,” Molecular and Cellular Biochemistry, vol. 53-54, no. 1-2, pp. 307–325, 1983.
[222]
J. D. Horton, “Physiology: unfolding lipid metabolism,” Science, vol. 320, no. 5882, pp. 1433–1434, 2008.
[223]
G. Liang, J. Yang, J. D. Horton, R. E. Hammer, J. L. Goldstein, and M. S. Brown, “Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c,” Journal of Biological Chemistry, vol. 277, no. 11, pp. 9520–9528, 2002.
[224]
I. Shimomura, Y. Bashmakov, S. Ikemoto, J. D. Horton, M. S. Brown, and J. L. Goldstein, “Insulin selectively increases SREBP-1C mRNA in the livers of rats with streptozotocin-induced diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 13656–13661, 1999.
[225]
G. Chen, G. Liang, J. Ou, J. L. Goldstein, and M. S. Brown, “Central role for liver X receptor in insulin-mediated activation of SREBP-1c transcription and stimulation of fatty acid synthesis in liver,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 31, pp. 11245–11250, 2004.
[226]
J. Haas, J. Miao, D. Chanda et al., et al., “Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression,” Cell Metabolism, vol. 15, no. 6, pp. 873–884, 2012.
[227]
R. Li, W. Chen, Y. Li, Y. Zhang, and G. Chen, “Retinoids synergized with insulin to induce Srebp-1c expression and activated its promoter via the two liver X receptor binding sites that mediate insulin action,” Biochemical and Biophysical Research Communications, vol. 406, no. 2, pp. 268–272, 2011.
[228]
Y. Shirakami, S.-A. Lee, R. D. Clugston, and W. S. Blaner, “Hepatic metabolism of retinoids and disease associations,” Biochimica et Biophysica Acta, vol. 1821, no. 1, pp. 124–136, 2012.
[229]
S. Zhao, R. Li, Y. Li, W. Chen, Y. Zhang, and G. Chen, “Roles of vitamin A status and retinoids in glucose and fatty acid metabolism,” Biochemistry and Cell Biology, vol. 90, pp. 1–11, 2012.
[230]
X. Fan, A. Molotkov, S.-I. Manabe et al., “Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina,” Molecular and Cellular Biology, vol. 23, no. 13, pp. 4637–4648, 2003.
[231]
F. W. Kiefer, G. Orasanu, S. Nallamshetty et al., “Retinaldehyde dehydrogenase 1 coordinates hepatic gluconeogenesis and lipid metabolism,” Endocrinology, vol. 153, no. 7, pp. 3089–3099, 2012.
[232]
M. D. M. Huq, N.-P. Tsai, P. Gupta, and L.-N. Wei, “Regulation of retinal dehydrogenases and retinoic acid synthesis by cholesterol metabolites,” EMBO Journal, vol. 25, no. 13, pp. 3203–3213, 2006.
[233]
J. M. Starkey, Y. Zhao, R. G. Sadygov et al., “Altered retinoic acid metabolism in diabetic mouse kidney identified by 18O isotopic labeling and 2D mass spectrometry,” PLoS ONE, vol. 5, no. 6, Article ID e11095, 2010.
[234]
J. M. Friedman, “Leptin at 14 y of age: an ongoing story,” The American Journal of Clinical Nutrition, vol. 89, no. 3, pp. 973–979, 2009.
[235]
M. J. Adams, T. L. Blundell, E. J. Dodson et al., “Structure of rhombohedral 2 zinc insulin crystals,” Nature, vol. 224, no. 5218, pp. 491–495, 1969.
[236]
P. De Meyts, “Insulin and its receptor: structure, function and evolution,” BioEssays, vol. 26, no. 12, pp. 1351–1362, 2004.
[237]
M. Kasuga, F. A. Karlsson, and C. R. Kahn, “Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor,” Science, vol. 215, no. 4529, pp. 185–187, 1982.
[238]
L. M. Petruzzelli, S. Ganguly, and C. J. Smith, “Insulin activates a tyrosine-specific protein kinase in extracts of 3T3-L1 adipocytes and human placenta,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 22 I, pp. 6792–6796, 1982.
[239]
N. M. McKern, M. C. Lawrence, V. A. Streltsov et al., “Structure of the insulin receptor ectodomain reveals a folded-over conformation,” Nature, vol. 443, no. 7108, pp. 218–221, 2006.
[240]
P. Cohen, “The twentieth century struggle to decipher insulin signalling,” Nature Reviews Molecular Cell Biology, vol. 7, no. 11, pp. 867–873, 2006.
[241]
C. M. Taniguchi, B. Emanuelli, and C. R. Kahn, “Critical nodes in signalling pathways: insights into insulin action,” Nature Reviews Molecular Cell Biology, vol. 7, no. 2, pp. 85–96, 2006.
[242]
M. F. White, “IRS proteins and the common path to diabetes,” The American Journal of Physiology, vol. 283, no. 3, pp. E413–E422, 2002.
[243]
J. Avruch, “MAP kinase pathways: the first twenty years,” Biochimica et Biophysica Acta, vol. 1773, no. 8, pp. 1150–1160, 2007.
[244]
B. D. Manning and L. C. Cantley, “AKT/PKB Signaling: navigating Downstream,” Cell, vol. 129, no. 7, pp. 1261–1274, 2007.
[245]
J. K. Osborne, E. Zaganjor, and M. H. Cobb, “Signal control through Raf: in sickness and in health,” Cell Research, vol. 22, no. 1, pp. 14–22, 2012.
[246]
K. D. Copps and M. F. White, “Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2,” Diabetologia, vol. 55, no. 10, pp. 2565–2582, 2012.
[247]
K. Norris, F. Norris, D. H. Kono et al., “Expression of protein-tyrosine phosphatases in the major insulin target tissues,” FEBS Letters, vol. 415, no. 3, pp. 243–248, 1997.
[248]
L. Agius and M. Peak, “Interactions of okadaic acid with insulin action in hepatocytes: role of protein phosphatases in insulin action,” Biochimica et Biophysica Acta, vol. 1095, no. 3, pp. 243–248, 1991.
[249]
K. Siddle, “Signalling by insulin and IGF receptors: supporting acts and new players,” Journal of Molecular Endocrinology, vol. 47, no. 1, pp. R1–R10, 2011.
[250]
D. W. Haslam and W. P. T. James, “Obesity,” The Lancet, vol. 366, no. 9492, pp. 1197–1209, 2005.
[251]
B. M. Popkin and P. Gordon-Larsen, “The nutrition transition: worldwide obesity dynamics and their determinants,” International Journal of Obesity, vol. 28, no. 3, pp. S2–S9, 2004.
[252]
J. C. K. Wells, “Thrift: a guide to thrifty genes, thrifty phenotypes and thrifty norms,” International Journal of Obesity, vol. 33, no. 12, pp. 1331–1338, 2009.
[253]
J. S. Sweeney, “Dietary factors that influence the dextrose tolerance test: a preliminary study,” Archives of Internal Medicine, vol. 40, no. 6, pp. 818–830, 1927.
[254]
P. A. Hansen, D. H. Han, B. A. Marshall et al., “A high fat diet impairs stimulation of glucose transport in muscle: functional evaluation of potential mechanisms,” Journal of Biological Chemistry, vol. 273, no. 40, pp. 26157–26163, 1998.
[255]
J. D. McGarry, “Glucose-fatty acid interactions in health and disease,” The American Journal of Clinical Nutrition, vol. 67, no. 3, pp. 500S–504S, 1998.
[256]
M. G. Myers, R. L. Leibel, R. J. Seeley, and M. W. Schwartz, “Obesity and leptin resistance: distinguishing cause from effect,” Trends in Endocrinology and Metabolism, vol. 21, no. 11, pp. 643–651, 2010.
[257]
Y. H. Yu and H. N. Ginsberg, “Adipocyte signaling and lipid homeostasis,” Circulation Research, vol. 96, no. 10, pp. 1042–1052, 2005.
[258]
J. Denis McGarry, “Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes,” Diabetes, vol. 51, no. 1, pp. 7–18, 2002.
[259]
B. M. Spiegelman and J. S. Flier, “Obesity and the regulation of energy balance,” Cell, vol. 104, no. 4, pp. 531–543, 2001.
[260]
J. D. Horton, J. L. Goldstein, and M. S. Brown, “SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver,” Journal of Clinical Investigation, vol. 109, no. 9, pp. 1125–1131, 2002.
[261]
M. S. Brown and J. L. Goldstein, “Selective versus total insulin resistance: a pathogenic paradox,” Cell Metabolism, vol. 7, no. 2, pp. 95–96, 2008.
[262]
Y.-A. Moon, G. Liang, X. Xie et al., “The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals,” Cell Metabolism, vol. 15, no. 2, pp. 240–246, 2012.
[263]
J. L. Owen, Y. Zhang, S. H. Bae et al., “Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase,” Proceedings of the National Academy of Sciences, vol. 109, no. 40, pp. 16184–16189, 2012.