This study solves the mathematical model for the propagation of harmonic plane waves in a dissipative double porosity solid saturated by a viscous fluid. The existence of three dilatational waves is explained through three scalar potentials satisfying wave equations. Velocities of these waves are obtained from the roots of a cubic equation. Lone shear wave is identified through a vector potential satisfying a wave equation. The displacements of solid particles are expressed through these four potentials. The displacements of fluid particles in pores and fractures can also be expressed in terms of these potentials. A numerical example is solved to calculate the complex velocities of four waves in a dissipative double porosity solid. Each of the complex velocities is resolved to define the phase velocity and quality factor of attenuation for the corresponding wave. Effects of medium properties and wave frequency are analyzed numerically on the propagation characteristics of four attenuated waves. It seems that and S waves are not very sensitive to the pore/fluids characteristics, except the fracture porosity. Hence, the recovery and analysis of slower ( , ) waves become more desired to understand the fluid-rock dynamism in crustal rocks. 1. Introduction Pores are pervasive in most of the igneous, metamorphic, and sedimentary rocks in the earth’s crust. Traditional approaches to seismic exploration often make use of Biot’s theory of poroelasticity. This theory has always been limited by an explicit assumption that the porosity itself is homogeneous. For acoustic analysis of many rock samples in a laboratory setting, this assumption is known to be adequate. But, in the modeling of real heterogeneous reservoirs, it may not be a realistic assumption. In fact, porosity found in the earth may have many shapes and sizes, but two types of porosity are more important. One is matrix (or storage) porosity that occupies a finite and substantial fraction of the volume of a porous rock. Other is fracture or crack porosity that may occupy very little volume, but fluid flow occurs primarily through the fracture network. However, fluid storage occurs mostly in the porous matrix. This model identified as double porosity model [1, 2] considers a fracture network that divides the porous matrix into different blocks and the fluid in fractures surrounds the disaggregated matrix blocks supported entirely by fluid pressure. In fact, most of the near-surface rock masses are fractured to some degree. It demands to examine the coupled fluid-rock deformation through the double
References
[1]
G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks,” Journal of Applied Mathematics and Mechanics, vol. 24, no. 5, pp. 1286–1303, 1960.
[2]
J. E. Warren and P. J. Root, “The behavior of naturally fractured reservoirs,” Society of Petroleum Engineers Journal, vol. 3, pp. 245–255, 1963.
[3]
M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. II. Higher frequency range,” Journal of the Acoustical Society of America, vol. 28, pp. 168–191, 1956.
[4]
M. A. Biot, “Mechanics of deformation and acoustic propagation in porous media,” Journal of Applied Physics, vol. 33, no. 4, pp. 1482–1498, 1962.
[5]
M. A. Biot, “Generalized theory of acoustic propagation in porous dissipative media,” Journal of the Acoustical Society of America, vol. 34, pp. 1254–1264, 1962.
[6]
R. I. O'Connell and B. Budiansky, “Viscoelastic properties of fluid saturated cracked solids,” Journal of Geophysical Research, vol. 82, pp. 5719–5735, 1977.
[7]
G. M. Mavko and A. Nur, “Wave attenuation in partially saturated rocks,” Geophysics, vol. 44, no. 2, pp. 161–178, 1979.
[8]
G. Mavko and D. Jizba, “Estimating grain-scale fluid effects on velocity dispersion in rocks,” Geophysics, vol. 56, no. 12, pp. 1940–1949, 1991.
[9]
J. Dvorkin and A. Nur, “Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms,” Geophysics, vol. 58, no. 4, pp. 524–533, 1993.
[10]
L. Thomsen, “Elastic anisotropy due to aligned cracks in porous rock,” Geophysical Prospecting, vol. 43, no. 6, pp. 805–829, 1995.
[11]
M. D. Sharma, “Surface-wave propagation in a cracked poroelastic half-space lying under a uniform layer of fluid,” Geophysical Journal International, vol. 127, no. 1, pp. 31–39, 1996.
[12]
R. K. Wilson and E. C. Aifantis, “On the theory of consolidation with double porosity,” International Journal of Engineering Science, vol. 20, pp. 1009–1035, 1982.
[13]
R. K. Wilson and E. C. Aifantis, “A double porosity model for acoustic wave propagation in fractured-porous rock,” International Journal of Engineering Science, vol. 22, no. 8–10, pp. 1209–1217, 1984.
[14]
T. F. Cho, M. E. Plesha, and B. C. Haimson, “Continuum modelling of jointed porous rock,” International Journal for Numerical & Analytical Methods in Geomechanics, vol. 15, no. 5, pp. 333–353, 1991.
[15]
M. Bai, D. Elsworth, and J. C. Roegiers, “Modeling of naturally fractured reservoirs using deformation dependent flow mechanism,” International Journal of Rock Mechanics and Mining Sciences and, vol. 30, no. 7, pp. 1185–1191, 1993.
[16]
J. G. Berryman and H. F. Wang, “The elastic coefficients of double-porosity models for fluid transport in jointed rock,” Journal of Geophysical Research, vol. 100, no. 12, pp. 611–627, 1995.
[17]
J. G. Berryman and H. F. Wang, “Elastic wave propagation and attenuation in a double-porosity dual-permeability medium,” International Journal of Rock Mechanics and Mining Sciences, vol. 37, no. 1-2, pp. 63–78, 2000.
[18]
S. R. Pride and J. G. Berryman, “Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation,” Physical Review E, vol. 68, no. 3, Article ID 036603, 10 pages, 2003.
[19]
S. R. Pride and J. G. Berryman, “Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations,” Physical Review E, vol. 68, no. 3, Article ID 036604, 10 pages, 2003.
[20]
A. W. Skempton, “The pore-pressure coefficients A and B,” Geotechnique, vol. 4, pp. 143–147, 1954.
[21]
R. D. Stoll and G. M. Bryan, “Wave attenuation in saturated sediments,” Journal of the Acoustical Society of America, vol. 47, pp. 1440–1147, 1970.
[22]
R. D. Stoll, “Marine sediment acoustics,” Journal of the Acoustical Society of America, vol. 77, no. 5, pp. 1789–1799, 1985.
[23]
M. D. Sharma and M. L. Gogna, “Seismic wave propagation in a viscoelastic porous solid saturated by viscous liquid,” Pure and Applied Geophysics, vol. 135, no. 3, pp. 383–400, 1991.
[24]
P. M. Morse and H. Feshback, Methods of Theoretical Physics, McGraw-Hill, New York, NY, USA, 1953.