全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structural Interpretation of the Mamfe Sedimentary Basin of Southwestern Cameroon along the Manyu River Using Audiomagnetotellurics Survey

DOI: 10.5402/2012/413042

Full-Text   Cite this paper   Add to My Lib

Abstract:

Five audiofrequency magnetotelluric AMT soundings were collected northwest-southeast along the Manyu river in the Mamfe sedimentary basin of southwestern Cameroon. The soundings were performed with frequencies in the range 3 to 2500?Hz and covered a distance of approximately 28?km. Sounding curves and geoelectric and geological sections were processed, and the results were compared with rocks' resistivity to characterize the lithostratigraphy of the eastern part of the basin. The results show above 1000?m depth, sedimentary layers with resistivities in the range of 1 to 100?Ohm-m, which decrease with depth. We identified three types of sedimentary rocks: laterite-clay mixture, shale, and sandstones. Various faults were also identified, illustrating the structural complexity of the Mamfe basin, along the Manyu River. 1. Introduction The geological studies of the Mamfe basin (southwestern Cameroon) were carried out for the first time by Le Fur [1], Dumort [2], and Paterson et al. [3]. These initial studies provided the framework for the first geological map of the area. The geophysical studies in the area integrate gravity works by Collignon [4], Fairhead and Okereke [5], Fairhead and Okereke [6], Fairhead et al. [7], Ndougsa-Mbarga [8], and Ndougsa-Mbarga et al. [9]. The geophysical studies also include audio-magnetotelluric (AMT) works by Manguelle-Dicoum et al. [10], Nguimbous-Kouoh [11], Nouayou [12], and Tabod et al., [13] to map subsurface resistivities. The aim of this paper is to use AMT field data to characterize the shallow structure of the Mamfe sedimentary basin along the Manyu River. To achieve this, various interpretation techniques were employed. The sounding curves were interpreted to derive the stratigraphy under each AMT station. A pseudosection and geoelectric and geological resistivity sections were then derived along the AMT profile, to deduce the continuity of the subsurface layers and the distribution of associated electrical resistivities. The combination of geoelectrical sections and pseudosections enables a more thorough interpretation [11, 14–18]. The AMT profile has five stations: Ndwap (M1), Abonando (M2), Esagem1 (M3), Esagem2 (M4), and Baku (M5). 2. Geology of the Study Area The Mamfe sedimentary basin is a rifting basin formed in response to the Gondwana break-up and subsequent separation of the South American and African plates. It lies on an NW-SE trending trough with a length of 130?km and a width of 60?km and constitutes a small prolongation of the Benue trough where important oil fields have been discovered (Figure

References

[1]  Lagas, 1993, Laboratoire de Géophysique Applique et structurale du CNRS.
[2]  J. C. Dumort, “Carte géologique de reconnaissance à l'échelle 1/500000. Note explicative sur la feuille Douala-Ouest. République fédérale du Cameroun,” Direction des Mines et de la Géologie du Cameroun, p. 69, 1968.
[3]  Paterson, Grant and Watson, “Etudes aéromagnétiques sur certaines régions de la République Unie du Cameroun,” Rapport d'interprétation, Agence Canadienne de Développement International, Toronto, Canada, 1976.
[4]  F. Collignon, Gravimétrie de reconnaissance de la République Fédérale du Cameroun, Ostrom, Paris, France, 1968.
[5]  J. D. Fairhead and C. S. Okereke, “A regional gravity study of the West African rift system in Nigeria and Cameroon and its tectonic interpretation,” Tectonophysics, vol. 143, no. 1–3, pp. 141–159, 1987.
[6]  J. D. Fairhead and C. S. Okereke, “Depths to major density contrats beneath the West African rift system in Nigeria and Cameroon based on the spectral analysis of gravity data,” Journal of African Earth Sciences, vol. 7, no. 5-6, pp. 769–777, 1988.
[7]  J. D. Fairhead, C. S. Okereke, and J. M. Nnange, “Crustal structure of the Mamfe basin, West Africa, based on gravity data,” Tectonophysics, vol. 186, no. 3-4, pp. 351–358, 1991.
[8]  T. Ndougsa-Mbarga, Etude géophysique, par méthode gravimétrique des structures profondes et superficielles de la région de Mamfé, Thèse de Doctorat, Faculté des Sciences, Université de Yaoundé I, Yaoundé, Cameroun, 2004.
[9]  T. Ndougsa-Mbarga, E. Manguelle-Dicoum, J. O. Campos-Enriquez, and Q. Y. Atangana, “Gravity anomalies, sub-surface structure and oil and gas migration in the Mamfe, Cameroon-Nigeria, sedimentary basin,” Geofisica Internacional, vol. 46, no. 2, pp. 129–139, 2007.
[10]  E. Manguelle-Dicoum, R. Nouayou, C. Tabod, and T. E. Kwende-Mbanwi, “Audio and helio magnetotelluric study of the Mamfe sedimentary basin,” Tech. Rep., 1999.
[11]  J. J. Nguimbous-Kouoh, Apport de l'audio-magnétotellurique (AMT) pour l'Etude des couches superficielles le Long du Fleuve Manyu, Mémoire de DEA, Faculté des Sciences, Université de Yaoundé I, Yaoundé, Cameroun, 2003.
[12]  R. Nouayou, Contribution à l'étude géophysique du bassin sédimentaire de Mamfe par prospections audio et hélio magnétotelluriques, M.S. thesis, spécialité Géophysique Interne, Université de Yaoundé I, Yaoundé, Cameroun, 2005.
[13]  C. T. Tabod, A. P. Tokam Kamga, E. Manguelle-Dicoum, R. Nouayou, and S. Nguiya, An Audio-Magnetotelluric Investigation of the Eastern Margin of the Mamfe Basin, Cameroon, The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, 2008.
[14]  A. Dupis, Première Application de la Magnétotellurique à la Prospection Pétrolière, Doctorat d'état ès-sciences, Géologique ou Minière de diverses régions Métropolitaines, 1970.
[15]  Y. Benderritter, Interprétation des mesures magnétotelluriques à l'aide d'un résistivimètre ECA, Centre de recherches géophysiques, Nièvre, France, 1982.
[16]  P. Andrieux, 1987, Application des Sondages Magnétotellurique à l'exploration à moyennes et à grandes profondeurs. Dossier présenté en appui à une demande d'habilitation à diriger des recherches (U.P.M.C., Paris VI).
[17]  A. Bobachev, IPI2WIN in (MT) V.2.0 Is Designed for Automated and Interactive Semi-Automated Interpreting of Magnetotelluric Sounding Data Using Amplitude and/or Phase Curves, Geoscan-M, Moscow, Russia, 2001.
[18]  Pitisharvi, 2004, AMTINV for automated and interactive 1-D interpretation of audio-magnetotelluric EM soundings Version 1.3 (c).
[19]  M. M. Eben, “Report of the geological expedition in the gulf of Mamfe: archives of the department of mines & geology,” Tech. Rep., Ministry of Mines & Power, Douala, Cameroon, 1984.
[20]  J. V. Hell, V. Ngako, V. Bea, J. B. Olinga, and J. T. Eyong, “Rapport des travaux sur l'étude de reconnaissance géologique du bassin sédimentaire de Mamfé: IRGM-SNH,” Tech. Rep., 2000.
[21]  J. T. Eyong, Litho-Biostratigraphy of the Mamfe Cretaceous Basin, Communication of the Department of Earth Sciences, Faculty of Science University of Yaoundé I, Yaoundé, Cameroon, 2001.
[22]  R. Kangkolo, “Aeromagnetic study of the Mamfe basalts of southwestern Cameroon,” Journal of the Cameroon Academy of Sciences, vol. 2, no. 3, pp. 173–180, 2002.
[23]  E. Eseme, C. M. Agyingi, and J. Foba-Tendo, “Geochemistry and genesis of brine emanations from Cretaceous strata of the Mamfe Basin, Cameroon,” Journal of African Earth Sciences, vol. 35, no. 4, pp. 467–476, 2002.
[24]  R. Kangkolo and S. B. Ojo, “Integration of aeromagnetic data over the Mamfe basin of Nigeria and Cameroon,” Nigeria Journal of Physics, vol. 7, pp. 53–56, 1995.
[25]  Y. le Fur, “Mission socle-Crétacé. Rapport 1964–1965 sur les indices de plomb et zinc du golfe de Mamfe,” Tech. Rep., Rapport B.R.G.M., Cameroun, 1965.
[26]  A. N. Tikhonov, “On determining electrical characteristics of the deep layers of the earth's crust,” Doklady Akademii Nauk, USSR, vol. 73, no. 2, pp. 295–297, 1950.
[27]  L. Cagniard, “Basic theory of the magnetotelluric method in geophysical prospecting,” Geophysics, vol. 18, no. 3, pp. 605–635, 1953.
[28]  K. Vozoff, “The magnetotelluric method,” in Electromagnetic Methods in Applied Geophysics, M. N. Nabighian, Ed., vol. 2, part B, pp. 641–711, Society of Exploration Geophysicists, Tulsa, Okla, USA, 1991.
[29]  M. Bastani, EnviroMT New Controlled Source/Radio Magnetotelluric, Ph.D. thesis, Uppsala University, Uppsala, Sweden, 2001.
[30]  M. Bastani and L. B. Pedersen, “Estimation of magnetotelluric transfer functions from radio transmitters,” Geophysics, vol. 66, no. 4, pp. 1038–1051, 2001.
[31]  J. M. Travassos and P. T. L. Menezes, “Geoelectric structure beneath limestones of the Sao Francisco Basin, Brazil,” Earth, Planets and Space, vol. 51, no. 10, pp. 1047–1058, 1999.
[32]  L. B. Pedersen and M. Engels, “Routine 2D inversion of magnetotelluric data using the determinant of the impedance tensor,” Geophysics, vol. 70, no. 2, pp. G33–G41, 2005.
[33]  A. G. Jones, “Static shift of magnetotelluric data and its removal in a sedimentary basin environment,” Geophysics, vol. 53, no. 7, pp. 967–978, 1988.
[34]  L. Pellerin and G. W. Hohmann, “Transient electromagnetic inversion: a remedy for magnetotelluric static shifts,” Geophysics, vol. 55, no. 9, pp. 1242–1250, 1990.
[35]  E. Manguelle-Dicoum, R. Nouayou, A. S. Bokosah, and T. E. Kwende-Mbanwi, “Audiomagnetotelluric soundings on the basement-sedimentary transition zone around the eastern margin of the Douala Basin in Cameroon,” Journal of African Earth Sciences, vol. 17, no. 4, pp. 487–496, 1993.
[36]  M. Chouteau, P. Zhang, D. J. Dion, B. Giroux, R. Morin, and S. Krivochieva, “Delineating mineralization and imaging the regional structure with magnetotellurics in the region of Chibougamau (Canada),” Geophysics, vol. 62, no. 3, pp. 730–748, 1997.
[37]  X. Garcia and A. G. Jones, “A new methodology for the acquisition and processing of audio-magnetotelluric (AMT) data in the dead band,” Geophysics, vol. 70, no. 5, pp. 119–126, 2005.
[38]  P. Zhang, R. G. Roberts, and L. B. Pedersen, “Magnetotelluric strike rules,” Geophysics, vol. 52, no. 3, pp. 267–278, 1987.
[39]  M. Hj?rten, Master thesis in interpretation of controlled-source radiomagnetotelluric data from Hallands?sen, M.S. thesis, Uppsala universitet Institutionen f?r Geovetenskaper—Geofysik, Uppsala, Sweden, 2007.
[40]  T. Dahlin, “2D resistivity surveying for environmental and engineering applications,” First Break, vol. 14, no. 7, pp. 275–283, 1996.
[41]  J. Pratt and J. Craven, 2010, magnetotelluric imaging of the Nachako basin, Bristish Colombia. Geological survey of Canada, Current research 2010-3, 9p.
[42]  Bemex Consulting International, Interpretation of Apparent Resistivity Maps and Resistivity cross Sections from the Kotcho Region, N.E. British Columbia, British Columbia Ministry of Energy and Mines, British Columbia, Canada, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133