|
ISRN Geometry 2013
On the Classification of Almost Kenmotsu Manifolds of Dimension 3DOI: 10.1155/2013/927159 Abstract: This paper deals with the classification of a 3-dimensional almost Kenmotsu manifold satisfying certain geometric conditions. Moreover, by applying our main classification theorem, we obtain some suffcient conditions for an almost Kenmotsu manifold of dimension 3 to be an Einstein-Weyl manifold. 1. Introduction Contact metric manifolds known as a special class of almost contact metric manifolds are objects of increasing interest both from geometers and physicists [1] recently. We refer the reader to the recent monograph [2] for a wide and detailed overview of the results in this field. From (14) (see Section 3) we know that a normal almost contact metric manifold (which includes Sasakian and Kenmotsu manifolds as its special cases) of dimension 3 satisfies . But the above property need not be true in an almost contact metric manifold. Blair et al. [3] obtained a classification of 3-dimensional contact metric manifold with . However, in higher dimensions the classification of contact metric manifold with is still open. It is worthy to point out that Ghosh [4] recently proved that a contact metric manifold admitting the Einstein-Weyl structures (see Section 4) and is either a K-contact or an Einstein manifold. On the other hand, in 1972, Kenmotsu [5] introduced a class of almost contact metric manifolds which are known as Kenmotsu manifolds nowadays. Recently, almost Kenmotsu manifolds satisfying -parallelism and locally symmetries are studied by Dileo and Pastore [6] and [7], respectively. We notice that Dileo and Pastore [8] complete the classification of 3-dimensional almost Kenmotsu manifold with the assumption that belongs to the -nullity distribution. However, to the best of our knowledge the study of 3-dimensional almost Kenmotsu manifolds is still lacking so far. The object of this paper is to classify the 3-dimensional almost Kenmotsu manifolds satisfying and other geometric conditions, providing some results which show the differences between almost Kenmotsu manifolds and the contact metric manifolds of dimension 3 [3, 9]. Moreover, by applying our main classification theorem, we obtain some suffcient conditions for an almost Kenmotsu manifold of dimension 3 to be an Einstein-Weyl manifold. This paper is organized as the following way. In Section 2, we provide some basic formulas and properties of almost Kenmotsu manifolds. Section 3 is devoted to present our main theorems and their proofs. Finally, in Section 4, we prove that if an almost Kenmotsu manifold of dimension 3 is -Einstein with certain condition then it admits both Einstein-Weyl
|