全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Geology  2013 

Approaching Cave Level Identification with GIS: A Case Study of Carter Caves

DOI: 10.1155/2013/160397

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cave passages that are found at similar elevations are grouped together and called levels. The current understanding is that passages within a level are speleogenetically linked to a common static baselevel or stratigraphic control. Cave levels have provided an interpretive framework for deciphering cave development, landscape evolution, and climatic changes. Cosmogenic dating has been successfully used to interpret levels in Mammoth Cave and the Cumberland Plateau; however, this technique is expensive and there are limited funding resources available. Geographic information systems may be used as preliminary procedures to identify cave levels and constrain the timing of level development. A GIS method is applied to the Carter Cave system in northeastern Kentucky. Cave entrance elevations along stream valleys were found by extracting elevation values from a ?m digital elevation model. Using a histogram generated from the frequency of cave elevations and a natural breaks classifier, four cave levels were identified in the Carter Cave system. This work improves the understanding of the Carter Cave system evolution and contributes toa methodology that can be used to ascertain an erosion history of karst systems. 1. Introduction In fluviokarst, dissolution creates a system vertically and horizontally connecting surface and subsurface flow paths. Passage development is dependent on the elevation of base flow, stratigraphy, the diversion of water in the unsaturated zone to lower levels, discharge variations, and variations in chemistry [1]. Long periods of static base level with active dissolution allow for large passages to develop in discrete levels, graded to the regional hydrologic network. When river incision occurs as a result of regional base level lowering, groundwater flow is diverted to lower elevations [1–3]. Subsequently, dissolution and passage enlargement is limited or stopped in the abandoned upper levels as karst development becomes focused at the new base level. Alternating sequences of base level incision and aggradation results in a complex overprinting of level development with transitional passage morphologies and deposition or removal of broadly distributed sediment packages [4]. Deciphering the history of speleogenesis in such systems, including the delineation of cave levels, provides insight into the history of past base level changes and the associated glacio-eustatic or tectonic processes. Passages that are created by static base level and correlate with other passages at similar elevations are grouped together and considered a

References

[1]  A. N. Palmer, “Cave levels and their interpretation,” NSS Bulletin, vol. 49, no. 2, pp. 50–66, 1987.
[2]  A. N. Palmer, “Origin and morphology of limestone caves,” Geological Society of America Bulletin, vol. 103, no. 1, pp. 1–21, 1991.
[3]  W. B. White and E. L. White, “Channel hydraulics of free-surface streams in caves,” Cave and Karst Science, vol. 12, no. 6, pp. 41–48, 1970.
[4]  D. E. Granger, D. Fabel, and A. N. Palmer, “Pliocene—pleistocene incision of the Green River, Kentucky, determined from radioactive decay of cosmogenic 26Al and10Be in Mammoth Cave sediments,” Bulletin of the Geological Society of America, vol. 113, no. 7, pp. 825–836, 2001.
[5]  D. M. Anthony and D. E. Granger, “A late Tertiary origin for multilevel caves along the western escarpment of the Cumberland Plateau, Tennessee and Kentucky, established by cosmogenic 26Al and 10Be,” Journal of Cave and Karst Studies, vol. 66, no. 2, pp. 46–55, 2004.
[6]  L. J. Florea, R. L. Paylor, L. Simpson, and J. Gulley, “Karst GIS advances in Kentucky,” Journal of Cave and Karst Studies, vol. 64, no. 1, pp. 58–62, 2002.
[7]  A. S. Engel and S. A. Engel, “A field guide for the karst of Carter Caves State Resort Park and the surrounding area, Northeastern Kentucky,” in Field Guide to Cave and Karst Lands of the United States, A. S. Engel and S. A. Engel, Eds., Karst Waters Institute Special Publication 15, pp. 154–171, Karst Waters Institute, Leesburg, Va, USA, 2009.
[8]  P. McGrain, Geology of Carter and Cascade Caves Area, Special Publication 12, Series X, Kentucky Geological Survey, Lexington, Ky, USA, 1966.
[9]  E. Peterson, T. Dogwiler, and L. Harlan, “Using GIS to identify cave levels and discern the speleogenesis of the Carter Caves karst area, Kentucky,” in U.S. Geological Survey Karst Interest Group Proceedings, E. L. Kuniansky, Ed., Fayetteville, Ark, USA, April 2011, Volume Scientific Investigations Report 2011-5031: Reston, Va, USA, United States Geological Survey, pp. 94–103.
[10]  R. E. Janssen, “The Teays River, ancient precursor of the East,” The Scientific Monthly, vol. 77, no. 6, pp. 306–314, 1953.
[11]  K. ver Steeg, “The Teays River,” The Ohio Journal of Science, vol. 46, no. 6, pp. 297–307, 1946.
[12]  E. C. Rhodehamel and C. W. Carlston, “Geologic history of the Teays Valley in West Virginia,” Geological Society of America Bulletin, vol. 74, no. 3, pp. 251–274, 1963.
[13]  W. M. Andrews Jr., Geologic Controls on Plio-Pleistocene Drainage Evolution of the Kentucky River in Central Kentucky, Series XII, Thesis 4, 11125, Kentucky Geological Survey, University of Kentucky, Lexington, Ky, USA, 2006.
[14]  J. T. Teller, “Preglacial (Teays) and early glacial drainage in the Cincinnati Area, Ohio, Kentucky, and Indiana,” Geological Society of America Bulletin, vol. 84, no. 11, pp. 3677–3688, 1973.
[15]  T. Dogwiler and C. M. Wicks, “Sediment entrainment and transport in fluviokarst systems,” Journal of Hydrology, vol. 295, no. 1–4, pp. 163–172, 2004.
[16]  J. Woodside, A geomorphic investigation of a longitudinal profile, sediment mobility, and abrasion within a fluviokarst system [M.S. thesis], Illinois State University, Normal, Ill, USA, 2008.
[17]  B. S. Jacoby, E. W. Peterson, and T. Dogwiler, “Identifying the stream erosion potential of cave levels in Carter Cave State Resort Park, Kentucky, USA,” Journal of Geographic Information Systems, vol. 3, no. 4, pp. 323–333, 2011.
[18]  R. D. Hammer, F. J. Young, N. C. Wollenhaupt, T. L. Barney, and T. W. Haithcoate, “Slope class maps from soil survey and digital elevation models,” Soil Science Society of America Journal, vol. 59, no. 2, pp. 509–519, 1995.
[19]  X. Zhang, N. A. Drake, J. Wainwright, and M. Mulligan, “Comparison of slope estimates from low resolution DEMS: scaling Issues and a fractal method for their solution,” Earth Surface Processes and Landforms, vol. 24, pp. 763–779, 1999.
[20]  Y. Deng, J. P. Wilson, and J. C. Gallant, “Terrain analysis,” in The Handbook of Geographic Information Science, J. P. Wilson and A. S. Fotheringham, Eds., pp. 417–435, Blackwell, Oxford, UK, 2008.
[21]  G. D. Ochsenbein, Origin of caves in Carter Caves State Park, Carter County, Kentucky [M.S. thesis], Bowling Green State University, Bowling Green, Ohio, USA, 1974.
[22]  H. H. Hobbs III and M. M. Pender, “The Horn Hollow Cave system, Carter County, Kentucky,” Pholeos, vol. 5, no. 2, pp. 17–22, 1985.
[23]  N. Pfeffer, T. J. Madigan, and H. H. Hobbs III, “Laurel Cave,” Pholeos, vol. 2, no. 1, pp. 10–11, 1981.
[24]  T. Blak, “DEM quality assessment,” in Digital Elevation Model Technologies and Applications: The DEM Users Manual, D. F. Maune, Ed., pp. 425–448, American Society for Photogrammetry and Remote Sensing, Bethesda, Md, USA, 2007.
[25]  J. T. Teller and R. P. Goldthwait, “The old Kentucky River: a major tributary to the Teays River,” in Geology and Hydrogeology of the Teays-Mahomet Bedrock Valley Systems, W. N. Melhorn and J. P. Kempton, Eds., Volume Special Paper 258, pp. 29–42, The Geological Society of America, Boulder, Colo, USA, 1991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133