全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gastric Electrical Stimulation for the Treatment of Obesity: From Entrainment to Bezoars—A Functional Review

DOI: 10.1155/2013/434706

Full-Text   Cite this paper   Add to My Lib

Abstract:

Growing worldwide obesity epidemic has prompted the development of two main treatment streams: (a) conservative approaches and (b) invasive techniques. However, only invasive surgical methods have delivered significant and sustainable benefits. Therefore, contemporary research exploration has focused on the development of minimally invasive gastric manipulation methods featuring a safe but reliable and long-term sustainable weight loss effect similar to the one delivered by bariatric surgeries. This antiobesity approach is based on placing external devices in the stomach ranging from electrodes for gastric electrical stimulation to temporary intraluminal bezoars for gastric volume displacement for a predetermined amount of time. The present paper examines the evolution of these techniques from invasively implantable units to completely noninvasive patient-controllable implements, from a functional, rather than from the traditional, parametric point of view. Comparative discussion over the available pilot and clinical studies related to gastric electrical stimulation outlines the promises and the fallacies of this concept as a reliable alternative anti-obesity strategy. 1. Introduction 1.1. Obesity as a World Wide Health Problem The World Health Organization (WHO) announced recently that worldwide obesity has increased more than twice since 1980 [1]. WHO statistics outlined 1.5 billion overweight adults in 2008. A significant percentage of them were obese: nearly 300 million women and over 200 million men. An earlier report [2] revealed a diminishing initial age of obesity onset, with nearly 43 million overweight children under the age of five [1]. Even veterinary scientists have researched obesity in pets and its correlation with the obesity of their owners [3]. The WHO list of world’s top 25 fattest countries covers all continents except Antarctica and sub-Saharan Africa [1, 4]. 65% of the world’s population lives in countries where overweight and obesity kill more people than underweight and hunger. Moreover, obesity rates in the United States, Australia, and Canada increase faster than the overall worldwide rate [5]. Projections up to 2030 indicate that more than 36% of the population in the developed countries will be overweight and more than 22%—obese [6]. WHO prognosis for 2015 is that overweight adults will balloon to 2.3 billion, affecting both the developed and developing world [1, 2, 6]. Obesity is an important key factor for comorbidities and related mortality and is also increasingly considered as a type of cellular malnutrition and a

References

[1]  “Obesity and Overweight,” In: Fact Sheet No. 311, World Health Organization, 2011http://www.who.int/mediacentre/factsheets/fs311/en/.
[2]  K. M. McTigue, J. M. Garrett, and B. M. Popkin, “The natural history of the development of obesity in a cohort of young U.S. adults between 1981 and 1998,” Annals of Internal Medicine, vol. 136, no. 12, pp. 857–864, 2002.
[3]  M. L. Nijland, F. Stam, and J. C. Seidell, “Overweight in dogs, but not in cats, is related to overweight in their owners,” Public Health Nutrition, vol. 13, no. 1, pp. 102–106, 2010.
[4]  D. W. Haslam and W. P. James, “Obesity,” The Lancet, vol. 366, pp. 1197–1209, 2005.
[5]  C. Tsigos, V. Hainer, A. Basdevant et al., “Management of obesity in adults: European clinical practice guidelines,” Obesity Facts, vol. 1, no. 2, pp. 106–116, 2008.
[6]  T. Kelly, W. Yang, C. S. Chen, K. Reynolds, and J. He, “Global burden of obesity in 2005 and projections to 2030,” International Journal of Obesity, vol. 32, no. 9, pp. 1431–1437, 2008.
[7]  D. P. Guh, W. Zhang, N. Bansback, Z. Amarsi, C. L. Birmingham, and A. H. Anis, “The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis,” BMC Public Health, vol. 9, article 88, 2009.
[8]  M. Hession, C. Rolland, U. Kulkarni, A. Wise, and J. Broom, “Systematic review of randomized controlled trials of low-carbohydrate vs. low-fat/low-calorie diets in the management of obesity and its comorbidities,” Obesity Reviews, vol. 10, no. 1, pp. 36–50, 2009.
[9]  A. H. Hite, V. G. Berkowitz, and K. Berkowitz, “Low-carbohydrate diet review: shifting the paradigm,” Nutrition in Clinical Practice, vol. 26, no. 3, pp. 300–308, 2011.
[10]  J. Sabaté and M. Wien, “Vegetarian diets and childhood obesity prevention,” The American Journal of Clinical Nutrition, vol. 91, pp. 1525S–1529S, 2010.
[11]  O. P. Faria, C. Buffington, M. de Almeida Cardeal, and M. K. Ito, “Dietary protein intake and bariatric surgery patients: a review,” Obesity Surgery, vol. 21, no. 11, pp. 1798–1805, 2011.
[12]  W. T. Cefalu, J. Ye, and Z. Q. Wang, “Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans,” Endocrine, Metabolic and Immune Disorders: Drug Targets, vol. 8, no. 2, pp. 78–81, 2008.
[13]  M. L. De Castro, M. J. Morales, V. Del Campo et al., “Efficacy, safety, and tolerance of two types of intragastric balloons placed in obese subjects: a double-blind comparative study,” Obesity Surgery, vol. 20, no. 12, pp. 1642–1646, 2010.
[14]  C. Grace, “A review of one-to-one dietetic obesity management in adults,” Journal of Human Nutrition and Dietetics, vol. 24, no. 1, pp. 13–22, 2011.
[15]  F. Guaraldi, U. Pagotto, and R. Pasquali, “Predictors of weight loss and maintenance in patients treated with antiobesity drugs,” Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, vol. 4, pp. 229–243, 2011.
[16]  L. Stern, N. Iqbal, P. Seshadri et al., “The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial,” Annals of Internal Medicine, vol. 140, no. 10, pp. 778–785, 2004.
[17]  E. Lecumberri, W. Krekshi, P. Matia et al., “Effectiveness and safety of air-filled balloon Heliosphere BAG in 82 consecutive obese patients,” Obesity Surgery, vol. 21, pp. 1508–1512, 2011.
[18]  A. G. Powell, C. M. Apovian, and L. J. Aronne, “New drug targets for the treatment of obesity,” Clinical Pharmacology and Therapeutics, vol. 90, no. 1, pp. 40–51, 2011.
[19]  K. Fujioka and M. W. Lee, “Pharmacologic treatment options for obesity: current and potential medications,” Nutrition in Clinical Practice, vol. 22, no. 1, pp. 50–54, 2007.
[20]  W. P. T. James, I. D. Caterson, W. Coutinho et al., “Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects,” The New England Journal of Medicine, vol. 363, no. 10, pp. 905–917, 2010.
[21]  S. Gallas and S. O. Fetissov, “Ghrelin, appetite and gastric electrical stimulation,” Peptides, vol. 32, no. 11, pp. 2283–2289, 2011.
[22]  A. Kanekar and M. Sharma, “Pharmacological approaches for management of child and adolescent obesity,” Journal of Clinical Medicine Research, vol. 2, pp. 105–111, 2010.
[23]  D. L. Hauser, R. L. Titchner, M. A. Wilson, and G. M. Eid, “Long-term outcomes of laparoscopic Roux-en-Y gastric bypass in US veterans,” Obesity Surgery, vol. 20, no. 3, pp. 283–289, 2010.
[24]  Y. Wang and J. Liu, “Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy,” Obesity Surgery, vol. 19, no. 3, pp. 357–362, 2009.
[25]  M. Jacobs, E. Gomez, R. Romero, I. Jorge, R. Fogel, and C. Celaya, “Failed restrictive surgery: is sleeve gastrectomy a good revisional procedure?” Obesity Surgery, vol. 21, no. 2, pp. 157–160, 2011.
[26]  W. E. Encinosa, D. M. Bernard, D. Du, and C. A. Steiner, “Recent improvements in bariatric surgery outcomes,” Medical Care, vol. 47, no. 5, pp. 531–535, 2009.
[27]  S. A. Brethauer, B. Chand, P. R. Schauer, and C. C. Thompson, “Transoral gastric volume reduction for weight management: technique and feasibility in 18 patients,” Surgery for Obesity and Related Diseases, vol. 6, no. 6, pp. 689–694, 2010.
[28]  N. Kumar and C. C. Thompson, “Endoscopic solutions for weight loss,” Current Opinion in Gastroenterology, vol. 27, pp. 407–411, 2011.
[29]  B. Ernst, M. Thurnheer, B. Wilms, and B. Schultes, “Differential changes in dietary habits after gastric bypass versus gastric banding operations,” Obesity Surgery, vol. 19, no. 3, pp. 274–280, 2009.
[30]  G. A. Coté and S. A. Edmundowicz, “Emerging technology: endoluminal treatment of obesity,” Gastrointestinal Endoscopy, vol. 70, no. 5, pp. 991–999, 2009.
[31]  F. Greenway and J. Zheng, “Electrical stimulation as treatment for obesity and diabetes,” Journal of Diabetes Science and Technology, vol. 1, no. 2, pp. 251–259, 2007.
[32]  P. Aelen, E. Neshev, M. Cholette et al., “Manipulation of food intake and weight dynamics using retrograde neural gastric electrical stimulation in a chronic canine model,” Neurogastroenterology & Motility, vol. 20, no. 4, pp. 358–368, 2008.
[33]  A. J. Arriagada, A. S. Jurkov, E. Neshev, G. Muench, C. N. Andrews, and M. P. Mintchev, “Design, implementation and testing of an implantable impedance-based feedback-controlled neural gastric stimulator,” Physiological Measurement, vol. 32, pp. 1103–1115, 2011.
[34]  H. S. Sallam, J. D. Z. Chen, and P. J. Pasricha, “Feasibility of gastric electrical stimulation by percutaneous endoscopic transgastric electrodes,” Gastrointestinal Endoscopy, vol. 68, no. 4, pp. 754–759, 2008.
[35]  J. Yin and J. D. Z. Chen, “Mechanisms and potential applications of intestinal electrical stimulation,” Digestive Diseases and Sciences, vol. 55, no. 5, pp. 1208–1220, 2010.
[36]  S. Liu, X. Hou, and J. D. Z. Chen, “Therapeutic potential of duodenal electrical stimulation for obesity: acute effects on gastric emptying and water intake,” The American Journal of Gastroenterology, vol. 100, no. 4, pp. 792–796, 2005.
[37]  H. S. Sallam and J. D. Chen, “Colon electrical stimulation: potential use for treatment of obesity,” Obesity, vol. 19, pp. 1761–1767, 2011.
[38]  W. L. Hasler, “Methods of gastric electrical stimulation and pacing: a review of their benefits and mechanisms of action in gastroparesis and obesity,” Neurogastroenterology & Motility, vol. 21, no. 3, pp. 229–243, 2009.
[39]  P. Familiari, I. Bokoski, M. Marchese, V. Perri, and G. Costamagna, “Endoscopic treatment of obesity,” Expert Review of Gastroenterology and Hepatology, vol. 5, pp. 689–701, 2011.
[40]  C. C. Thompson, “Endoscopic therapy of obesity: a new paradigm in bariatric care,” Gastrointestinal Endoscopy, vol. 72, no. 3, pp. 505–507, 2010.
[41]  R. B. Engert, R. Weiner, S. Weiner et al., “The gastric balloon ? A retrospective cohort analysis with 634 patients,” Obesity Facts, vol. 2, no. 1, pp. 24–26, 2009.
[42]  R. Fogel, J. de Fogel, Y. Bonilla, and R. de la Fuente, “Clinical experience of transoral suturing for an endoluminal vertical gastroplasty: 1-year follow-up in 64 patients,” Gastrointestinal Endoscopy, vol. 68, no. 1, pp. 51–58, 2008.
[43]  K. de Jong, E. M. H. Mathus-Vliegen, E. A. M. L. Veldhuyzen, J. H. Eshuis, and P. Fockens, “Short-term safety and efficacy of the trans-oral endoscopic restrictive implant system for the treatment of obesity,” Gastrointestinal Endoscopy, vol. 72, no. 3, pp. 497–504, 2010.
[44]  A. Swidnicka-Siergiejko, E. Wróblewski, and D. Andrzej, “Endoscopic treatment of obesity,” Canadian Journal of Gastroenterology, vol. 25, no. 11, pp. 627–633, 2011.
[45]  L. Rodriguez, E. Reyes, P. Fagalde et al., “Pilot clinical study of an endoscopic, removable duodenal-jejunal bypass liner for the treatment of type 2 diabetes,” Diabetes Technology and Therapeutics, vol. 11, no. 11, pp. 725–732, 2009.
[46]  R. Schouten, C. S. Rijs, N. D. Bouvy et al., “A multicenter, randomized efficacy study of the endobarrier gastrointestinal liner for presurgical weight loss prior to bariatric surgery,” Annals of Surgery, vol. 251, no. 2, pp. 236–243, 2010.
[47]  G. L. Carvalho, C. B. Barros, M. Okazaki et al., “An improved intragastric balloon procedure using a new balloon: preliminary analysis of safety and efficiency,” Obesity Surgery, vol. 19, no. 2, pp. 237–242, 2009.
[48]  M. Nikolic, G. Mirosevic, N. Ljubicic, et al., “Obesity treatment using a Bioenterics intragastric balloon (BIB)—preliminary Croatian results,” Obesity Surgery, vol. 21, no. 8, pp. 1305–1310, 2011.
[49]  N. Tsesmeli and D. Coumaros, “Review of endoscopic devices for weight reduction: old and new balloons and implantable prostheses,” Endoscopy, vol. 41, no. 12, pp. 1082–1089, 2009.
[50]  L. Cubattoli, C. Barneschi, E. Mastrocinque, P. Bonucci, and P. P. Giomarelli, “Cardiac arrest after intragastric balloon insertion in a super-obese patient,” Obesity Surgery, vol. 19, no. 2, pp. 253–256, 2009.
[51]  I. Koutelidakis, D. Dragoumis, B. Papaziogas et al., “Gastric perforation and death after the insertion of an intragastric balloon,” Obesity Surgery, vol. 19, no. 3, pp. 393–396, 2009.
[52]  M. P. Mintchev and O. Yadid-Pecht, “Controlled degradation of expandable polymers in gastric volume reduction treatment,” PCT International Application No. CA2005/001693, November 2005.
[53]  M. P. Mintchev, O. Yadid-Pecht, and M. Fattouche, “Ingestable implement for weight control,” PCT International Application No. CA2007/000512, March 2007.
[54]  M. P. Mintchev, O. Yadid-Pecht, and M. Fattouche, “Device for delivery of a substance,” PCT International Application No. CA2007/002336, December 2007.
[55]  M. P. Mintchev, O. Yadid-Pecht, and M. Fattouche, “Bezoar forming units for weight control,” PCT International Application No. CA2009/000598, April 2009.
[56]  K. Hashiba and V. C. Surit, “Intragastric device for treating obesity,” U.S. Patent 7,066,945 B2, Junuary 2006.
[57]  B. Asmussen, K. Cremer, H. -R. Hoffman, K. Ludwig, and M. Roreger, “Expandable gastro-retentive therapeutic system with controlled active substance release in the gastro-intestinal tract,” U.S. Patent 6,290,989 B1, September 2001.
[58]  M. P. Mintchev, M. G. Deneva, B. I. Aminkov, M. Fattouche, O. Yadid-Pecht, and R. C. Bray, “Pilot study of temporary controllable gastric pseudobezoars for dynamic non-invasive gastric volume reduction,” Physiological Measurement, vol. 31, no. 2, pp. 131–144, 2010.
[59]  K. H. Katsanos, V. Koulouras, G. Nakos, and E. V. Tsianos, “Successful management of full-length obstructing esophageal bezoars in an intensive care unit,” Intensive Care Medicine, vol. 36, no. 7, pp. 1280–1281, 2010.
[60]  S. S. Yoon, M. S. Kim, D. Y. Kang et al., “A case of successful colonoscopic treatment of colonic obstruction caused by phytobezoar,” Journal of the Korean Society of Coloproctology, vol. 27, pp. 211–214, 2011.
[61]  M. H. Lowry and A. N. Shah, “Sunflower seed rectal bezoar in an adult,” Gastrointestinal Endoscopy, vol. 53, no. 3, pp. 388–389, 2001.
[62]  R. L. Zhang, Z. L. Yang, and B. G. Fan, “Huge gastric disopyrobezoar: a case report and review of literatures,” World Journal of Gastroenterology, vol. 14, no. 1, pp. 152–154, 2008.
[63]  A. Malhotra, L. Jones, and G. Drugas, “Simultaneous gastric and small intestinal trichobezoars,” Pediatric Emergency Care, vol. 24, no. 11, pp. 774–776, 2008.
[64]  D. Thornley-Brown, J. H. Galla, P. D. Williams, K. S. Kant, and M. Rashkin, “Lithium toxicity associated with a trichobezoar,” Annals of Internal Medicine, vol. 116, no. 9, pp. 739–740, 1992.
[65]  S. Naik, V. Gupta, S. Naik et al., “Rapunzel syndrome reviewed and redefined,” Digestive Surgery, vol. 24, no. 3, pp. 157–161, 2007.
[66]  S. E. Simpson, “Pharmacobezoars described and demystified,” Clinical Toxicology, vol. 49, no. 2, pp. 72–89, 2011.
[67]  M. Corzine, “Radiology case study. Gastric lactobezoar,” Neonatal Network, vol. 30, no. 3, pp. 180–187, 2011.
[68]  A. Jain, S. V. Godambe, S. Clarke, and P. C. M. Chow, “Unusually late presentation of lactobezoar leading to necrotising enterocolitis in an extremely low birthweight infant,” BMJ Case Reports, 2009.
[69]  R. J. Graham and P. Stein, “Gastric outlet obstruction in an infant: lactobezoar,” American Journal of Emergency Medicine, vol. 25, no. 1, pp. 98–99, 2007.
[70]  Y. E. Ersoy, F. Ayan, F. Ayan, and Y. Ersan, “Gastro-intestinal bezoars: thirty-five years experience,” Acta Chirurgica Belgica, vol. 109, no. 2, pp. 198–203, 2009.
[71]  P. Mehta and R. Bhutiani, “The Rapunzel syndrome: is it an Asian problem? (Case report and review of literature),” European Journal of Gastroenterology and Hepatology, vol. 21, no. 8, pp. 937–940, 2009.
[72]  E. Marcus -L, R. Arnon, A. Sheynkman, Y. G. Caine, and J. Lysy, “Esophageal obstruction due to enteral feed bezoar: a case report and literature review,” World Journal of Gastrointestinal Endoscopy, vol. 2, no. 10, pp. 352–356, 2010.
[73]  Y. Okamoto, M. Yamauchi, K. Sugihara, H. Kato, and M. Nagao, “Is Coca-Cola effective for dissolving phytobezoars?” European Journal of Gastroenterology and Hepatology, vol. 19, no. 7, pp. 611–612, 2007.
[74]  Z. Simsek, A. Altinbas, I. Yuksel, and O. Yuksel, “Effective treatment with pineapple juice in small bowel obstruction due to phytobezoar in a gastrectomized patient,” Digestive Endoscopy, vol. 23, no. 2, p. 197, 2011.
[75]  A. B. Megale, M. Z. Megale, T. A. R. Miranda, D. de Oliveira Neto Barbosa, and D. L. N. Louren?o, “Gastric trichobezoar—case report,” Revista do Colegio Brasileiro de Cirurgioes, vol. 37, no. 5, pp. 382–383, 2010.
[76]  H. F. Dorn, J. L. Gillick, and G. Stringel, “Laparoscopic intragastric removal of giant trichobezoar,” Journal of the Society of Laparoendoscopic Surgeons, vol. 14, no. 2, pp. 259–262, 2010.
[77]  C. Palanivelu, M. Rangarajan, R. Senthilkumar, and M. V. Madankumar, “Trichobezoars in the stomach and ileum and their laparoscopy-assisted removal: a bizarre case,” Singapore Medical Journal, vol. 48, no. 2, pp. e37–e39, 2007.
[78]  K. Hashiba, “Endoscopic bariatric procedures and devices,” Gastrointestinal Endoscopy Clinics of North America, vol. 17, no. 3, pp. 545–557, 2007.
[79]  K. Hashiba, R. T. Hassegawa, S. Wada, et al., “Plastic device (Butterfly) for endoscopic treatment of obesity: new design and operation,” Gastrointestinal Endoscopy, vol. 57, p. AB181, 2003.
[80]  M. P. Mintchev, M. G. Deneva, B. I. Aminkov, M. Fattouche, O. Yadid-Pecht, and R. C. Bray, “Pilot studies of temporary controllable gastric pseudobezoars (pseudofood) as an alternative to bariatric surgery for the treatment of obesity,” Gastroenterology, vol. 138, no. 5, supplement 1, pp. S–755, 2010.
[81]  M. G. Deneva, O. Yadid-Pecht, M. Fattouche, and M. P. Mintchev, “Utilization of temporary controllable intragastric pseudobezoars for the treatment of obesity,” Current Obesity Reports, vol. 1, pp. 1–7, 2012.
[82]  C. Y. Fu, C. H. Chu, T. P. Liu et al., “The relationship between acid-suppressing drugs and phytobezoar formation: a retrospective analysis and discussion of phytobezoar formation,” Acta Chirurgica Belgica, vol. 110, no. 6, pp. 595–597, 2010.
[83]  N. K. Kwong, B. H. Brown, G. E. Whittaker, and H. L. Duthie, “Electrical activity of the gastric antrum in man,” British Journal of Surgery, vol. 57, no. 12, pp. 913–916, 1970.
[84]  C. H. Kim and J. R. Malagelada, “Electrical activity of the stomach: cinical implications,” Mayo Clinic Proceedings, vol. 61, no. 3, pp. 205–210, 1986.
[85]  H. L. Duthie, “Electrical activity of gastrointestinal smooth muscle,” Gut, vol. 15, no. 8, pp. 669–681, 1974.
[86]  E. E. Daniel and K. M. Chapman, “Electrical activity of the gastrointestinal tract as an indication of mechanical activity,” The American Journal of Digestive Diseases, vol. 8, no. 1, pp. 54–102, 1963.
[87]  J. H. Szurszewski, “Electrical basis for gastrointestinal motility,” in Physiology of the Gastrointestinal Tract, vol. 2, pp. 383–422, Raven Press, New York, NY, USA, 1987.
[88]  E. Atanassova and M. Papasova, “Gastrointestinal motility,” International Review of Physiology, vol. 12, pp. 35–69, 1977.
[89]  M. Mintchev and K. Bowes, “Computer model of gastric electrical stimulation,” Annals of Biomedical Engineering, vol. 25, no. 4, pp. 726–730, 1997.
[90]  A. Pullan, L. Cheng, R. Yassi, and M. Buist, “Modelling gastrointestinal bioelectric activity,” Progress in Biophysics and Molecular Biology, vol. 85, no. 2-3, pp. 523–550, 2004.
[91]  G. D. S. Hirst and F. R. Edwards, “Role of interstitial cells of cajal in the control of gastric motility,” Journal of Pharmacological Sciences, vol. 96, no. 1, pp. 1–10, 2004.
[92]  E. E. Daniel and S. Sarna, “The generation and conduction of activity in smooth muscle,” Annual Review of Pharmacology and Toxicology, vol. 18, pp. 145–166, 1978.
[93]  E. E. Daniel, B. L. Bardakjian, J. D. Huizinga, and N. E. Diamant, “Relaxation oscillator and core conductor models are needed for understanding of GI electrical activities,” American Journal of Physiology, vol. 266, no. 3, pp. G339–G349, 1994.
[94]  M. P. Mintchev, Y. J. Kingma, and K. L. Bowes, “Accuracy of cutaneous recordings of gastric electrical activity,” Gastroenterology, vol. 104, no. 5, pp. 1273–1280, 1993.
[95]  J. E. Kellow, T. J. Borody, and S. F. Phillips, “Human interdigestive motility: variations in patterns from esophagus to colon,” Gastroenterology, vol. 91, no. 2, pp. 386–395, 1986.
[96]  T. Takahashi, “Mechanism of interdigestive migrating motor complex,” Journal of Neurogastroenterology and Motility, vol. 18, no. 3, pp. 246–257, 2012.
[97]  D. L. Wingate, “Backwards and forwards with the migrating complex,” Digestive Diseases and Sciences, vol. 26, no. 7, pp. 641–666, 1981.
[98]  C. P. Dooley, C. Di Lorenzo, and J. E. Valenzuela, “Variability of migrating motor complex in humans,” Digestive Diseases and Sciences, vol. 37, no. 5, pp. 723–728, 1992.
[99]  J. Zhang and J. D. Z. Chen, “Pacing the gut in motility disorders,” Current Treatment Options in Gastroenterology, vol. 9, no. 4, pp. 351–360, 2006.
[100]  T. K. Gallagher, J. G. Geoghegan, A. W. Baird, and D. C. Winter, “Implications of altered gastrointestinal motility in obesity,” Obesity Surgery, vol. 17, no. 10, pp. 1399–1407, 2007.
[101]  J. D. Z. Chen, Z. Lin, and R. W. McCallum, “Gastric electrical stimulation in patients with gastroparesis,” Journal of Gastroenterology and Hepatology, vol. 13, no. 11-s4, pp. S232–S236, 1998.
[102]  Z. Y. Lin, R. W. McCallum, B. D. Schirmer, and J. D. Z. Chen, “Effects of pacing parameters on entrainment of gastric slow waves in patients with gastroparesis,” American Journal of Physiology, vol. 274, no. 1, pp. G186–G191, 1998.
[103]  R. W. McCallum, J. D. Z. Chen, Z. Lin et al., “Gastric pacing improves emptying and symptoms in patients with gastroparesis,” Gastroenterology, vol. 114, no. 3, pp. 456–600, 1998.
[104]  J. Forster, I. Sarosiek, R. Delcore, Z. Lin, G. S. Raju, and R. W. McCallum, “Gastric pacing is a new surgical treatment for gastroparesis,” American Journal of Surgery, vol. 182, no. 6, pp. 676–681, 2001.
[105]  M. Bortolotti, “Gastric electrical stimulation for gastroparesis: a goal greatly pursued, but not yet attained,” World Journal of Gastroenterology, vol. 17, no. 3, pp. 273–282, 2011.
[106]  G. Q. Song, X. Hou, Y. Sun, B. Yang, W. Qian, and J. D. Z. Chen, “Effects of retrograde gastric electrical stimulation with pulse trains on gastric emptying of solids and plasma hormones in dogs,” American Journal of Surgery, vol. 194, no. 1, pp. 122–127, 2007.
[107]  S. Yao, M. Ke, Z. Wang, D. Xu, Y. Zhang, and J. D. Z. Chen, “Retrograde gastric pacing reduces food intake and delays gastric emptying in humans: a potential therapy for obesity?” Digestive Diseases and Sciences, vol. 50, no. 9, pp. 1569–1575, 2005.
[108]  J. Z. Chen, T. Ueno, X. Xu, and J. Zhang, “Reverse gastric pacing reduces food intake without inducing symptoms in dogs,” Scandinavian Journal of Gastroenterology, vol. 41, no. 1, pp. 30–36, 2006.
[109]  A. Dubois, “Gastric dysrhythmias: pathophysiologic and etiologic factors,” Mayo Clinic Proceedings, vol. 64, no. 2, pp. 246–250, 1989.
[110]  C. H. You and W. Y. Chey, “Study of electromechanical activity of the stomach in humans and in dogs with particular attention to tachygastria,” Gastroenterology, vol. 86, no. 6, pp. 1460–1468, 1984.
[111]  C. H. Kim, F. Azpiroz, and J. R. Malagelada, “Characteristics of spontaneous and drug-induced gastric dysrhythmias in a chronic canine model,” Gastroenterology, vol. 90, no. 2, pp. 421–427, 1986.
[112]  J. U. Egbuji, G. O'Grady, P. Du et al., “Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping,” Neurogastroenterology & Motility, vol. 22, no. 10, pp. e292–e300, 2010.
[113]  T. Ueno, X. Lin, H. Ouyang, Z. Wang, and J. Chen, “Is gastric dysrhythmia a cause or manifestation of vomiting induced by retrograde pacing or duodenal distention?” Gastroenterology, vol. 118, no. 4, p. A669, 2000.
[114]  M. P. Mintchev and K. L. Bowes, “Production of propagated antral contractions by electrical stimulation,” Digestive Diseases and Sciences, vol. 41, p. 1890, 1996.
[115]  E. L. Goldstein, L.-Y. Lin, and L. M. Lunardi, “Connection-verification in optical MEMS crossconnects via mirror-dither,” US Patent No. 6,243,507, 1997.
[116]  H. Franzen and J. Krll, “Mobile harbor crane for normal and heavy load operation,” US Patent No. 6,499,611, 2002.
[117]  M. Mintchev, “Gastrointestinal motility control,” US Patent No. 7,343,201, 2008.
[118]  S. Ben-Haim, N. Darvish, Y. Mika, M. Fenster, B. Felzen, and I. Shemer, “Method of increasing the motility of a GI tract,” US Patent No. 6,571,127, 2003.
[119]  M. P. Mintchev, C. P. Sanmiguel, M. Amaris, and K. L. Bowes, “Microprocessor-controlled movement of solid gastric content using sequential neural electrical stimulation,” Gastroenterology, vol. 118, no. 2, pp. 258–263, 2000.
[120]  W. L. Hasler, “The brute force approach to electrical stimulation of gastric emptying: a future treatment for refractory gastroparesis?” Gastroenterology, vol. 118, no. 2, pp. 433–436, 2000.
[121]  J. Sobocki, P. J. Thor, and G. Krolczyk, “High frequency electrical stimulation of the stomach is more effective than low frequency pacing for the treatment of postoperative functional gastric stasis in humans,” Neuromodulation, vol. 6, no. 4, pp. 254–257, 2003.
[122]  E. Jalilian, D. Onen, E. Neshev, and M. P. Mintchev, “Implantable neural electrical stimulator for external control of gastrointestinal motility,” Medical Engineering & Physics, vol. 29, no. 2, pp. 238–252, 2007.
[123]  D. Onen, E. Jalilian, E. Neshev, and M. P. Mintchev, “Parametric study of neural gastric electrical stimulation in acute canine models,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 3, pp. 429–435, 2007.
[124]  S. Peles, J. Petersen, R. Aviv et al., “Enhancement of antral contractions and vagal afferent signaling with synchronized electrical stimulation,” American Journal of Physiology, vol. 285, no. 3, pp. G577–G585, 2003.
[125]  C. P. Sanmiguel, R. Aviv, S. Policker, W. Haddad, F. Brody, and E. E. Soffer, “Association between gastric electromechanical activity and satiation in dogs,” Obesity, vol. 15, no. 12, pp. 2958–2963, 2007.
[126]  A. Bohdjalian, L. Bresler, D. Nocca et al., “P-05: the TANTALUS: meal-activated gastric electrical stimulation improves glycemic control in obese subjects with type 2 diabetes,” Surgery for Obesity and Related Diseases, vol. 5, no. 3, pp. S25–S25, 2009.
[127]  C. P. Sanmiguel, J. L. Conklin, M. Kipnes et al., “M1254 safety and functionality of gastric electrical stimulation with TANTALUS on glycemic control in overweight subjects with type 2 diabetes-results of a clinical feasibility study on an investigational device,” Gastroenterology, vol. 134, no. 4, p. A-370, 2008.
[128]  C. P. Sanmiguel, W. Haddad, R. Aviv et al., “The TANTALUS system for obesity: effect on gastric emptying of solids and ghrelin plasma levels,” Obesity Surgery, vol. 17, no. 11, pp. 1503–1509, 2007.
[129]  C. P. Sanmiguel, J. L. Conklin, S. A. Cunneen et al., “Gastric electrical stimulation with the TANTALUS system in obese type 2 diabetes patients: effect on weight and glycemic control,” Journal of Diabetes Science and Technology, vol. 3, no. 4, pp. 964–970, 2009.
[130]  B. O. Familoni, T. L. Abell, D. Nemoto, G. Voeller, and B. Johnson, “Efficacy of electrical stimulation at frequencies higher than basal rate in canine stomach,” Digestive Diseases and Sciences, vol. 42, no. 5, pp. 892–897, 1997.
[131]  B. O. Familoni, T. L. Abell, G. Voeller, A. Salem, and O. Gaber, “Electrical stimulation at a frequency higher than basal rate in human stomach,” Digestive Diseases and Sciences, vol. 42, no. 5, pp. 885–891, 1997.
[132]  B. O. Familoni, T. L. Abell, S. K. Bhaskar, G. R. Voeller, and S. R. Blair, “Gastric electrical stimulation has an immediate antiemetic effect in patients with gastroparesis,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 6, pp. 1038–1046, 2006.
[133]  M. P. Jones, C. C. Ebert, and K. Murayama, “Enterra for gastroparesis,” The American Journal of Gastroenterology, vol. 98, no. 11, p. 2578, 2003.
[134]  R. W. McCallum, W. Snape, F. Brody, J. Wo, H. P. Parkman, and T. Nowak, “Gastric electrical stimulation with enterra therapy improves symptoms from diabetic gastroparesis in a prospective study,” Clinical Gastroenterology and Hepatology, vol. 8, no. 11, pp. 947–e1, 2010.
[135]  V. Stanghellini, “Unfulfilled wishes by gastric electrical stimulation,” Clinical Gastroenterology and Hepatology, vol. 9, no. 5, pp. 447–448, 2011.
[136]  A. Arriagada, A. S. Jurkov, E. Neshev, G. Muench, M. P. Mintchev, and C. N. Andrews, “Comparative gastric motility study of EnterraTM Therapy and neural gastric electrical stimulation in an acute canine model,” Neurogastroenterology & Motility, vol. 23, no. 3, pp. 271–e122, 2011.
[137]  J. D'Argent, “Gastric electrical stimulation as therapy of morbid obesity: preliminary results from the French study,” Obesity Surgery, vol. 12, supplement 1, pp. 21S–25S, 2002.
[138]  M. De Luca, G. Segato, L. Busetto et al., “Progress in implantable gastric stimulation: summary of results of the European multi-center study,” Obesity Surgery, vol. 14, no. 1, pp. S33–S39, 2004.
[139]  S. A. Shikora, R. Bergenstal, M. Bessler et al., “Implantable gastric stimulation for the treatment of clinically severe obesity: results of the SHAPE trial,” Surgery for Obesity and Related Diseases, vol. 5, no. 1, pp. 31–37, 2009.
[140]  J. Yin, H. Ouyang, and J. D. Z. Chen, “Potential of intestinal electrical stimulation for obesity: a preliminary canine study,” Obesity, vol. 15, no. 5, pp. 1133–1138, 2007.
[141]  S. Liu, J. Liu, and J. D. Z. Chen, “Neural mechanisms involved in the inhibition of intestinal motility induced by intestinal electrical stimulation in conscious dogs,” Neurogastroenterology & Motility, vol. 18, no. 1, pp. 62–68, 2006.
[142]  J. Yin, J. Zhang, and J. D. Z. Chen, “Inhibitory effects of intestinal electrical stimulation on food intake, weight loss and gastric emptying in rats,” American Journal of Physiology, vol. 293, no. 1, pp. R78–R82, 2007.
[143]  J. Liu, X. Qiao, X. Hou, and J. D. Z. Chen, “Effect of intestinal pacing on small bowel transit and nutrient absorption in healthy volunteers,” Obesity Surgery, vol. 19, no. 2, pp. 196–201, 2009.
[144]  M. B. Knudson, R. R. Wilson, K. S. Tweden, and T. R. Conrad, “Obesity and eating disorder stimulation treatment with neural block,” U.S. Patent Application 10/756,176, January 2004.
[145]  M. Roslin and M. Kurian, “The use of electrical stimulation of the vagus nerve to treat morbid obesity,” Epilepsy and Behavior, vol. 2, no. 3, pp. S11–S16, 2001.
[146]  M. S. George, Z. Nahas, D. E. Bohning et al., “Vagus nerve stimulation therapy: a research update,” Neurology, vol. 59, no. 6, supplement 4, pp. S56–S61, 2002.
[147]  J. Sobocki, G. Fourtanier, J. Estany, and P. Otal, “Does vagal nerve stimulation affect body composition and metabolism? Experimental study of a new potential technique in bariatric surgery,” Surgery, vol. 139, no. 2, pp. 209–216, 2006.
[148]  B. Barrett, R. K. Reddy, and M. S. Roslin, “Treatment of obesity by bilateral vagus nerve stimulation,” U.S. Patent No. 6,587,719. Washington, DC: U.S. Patent and Trademark Office, 2003.
[149]  H. R. Berthoud, “The vagus nerve, food intake and obesity,” Regulatory Peptides, vol. 149, no. 1–3, pp. 15–25, 2008.
[150]  M. Camilleri, “Peripheral mechanisms in the control of appetite and related experimental therapies in obesity,” Regulatory Peptides, vol. 156, no. 1–3, pp. 24–27, 2009.
[151]  M. Camilleri, J. Toouli, M. F. Herrera et al., “Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device,” Surgery, vol. 143, no. 6, pp. 723–731, 2008.
[152]  M. Camilleri, J. Toouli, M. F. Herrera et al., “Selection of electrical algorithms to treat obesity with intermittent vagal block using an implantable medical device,” Surgery for Obesity and Related Diseases, vol. 5, no. 2, pp. 224–229, 2009.
[153]  M. G. Sarr, C. J. Billington, R. Brancatisano et al., “The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity,” Obesity Surgery, vol. 22, no. 11, pp. 1771–1782, 2012.
[154]  P. L. R. Andrews and K. L. Wood, “Vagally mediated gastric motor and emetic reflexes evoked by stimulation of the antral mucosa in anaesthetized ferrets,” Journal of Physiology, vol. 395, pp. 1–16, 1988.
[155]  T. P. Herbert and W. L. Starkebaum, “Intra-luminal device for gastrointestinal electrical stimulation,” U.S. Patent Application 10/801,230, March 2004.
[156]  J. M. Swoyer and W. Starkebaum, “Implantable medical device affixed internally within the gastrointestinal tract,” U.S. Patent 6,754,536, June 2004.
[157]  A. M. Drewes, L. Arendt-Nielsen, J. H. Jensen, J. B. Hansen, H. B. Krarup, and U. Tage-Jensen, “Experimental pain in the stomach: a model based on electrical stimulation guided by gastroscopy,” Gut, vol. 41, no. 6, pp. 753–757, 1997.
[158]  S. Ayinala, O. Batista, A. Goyal et al., “Temporary gastric electrical stimulation with orally or PEG-placed electrodes in patients with drug refractory gastroparesis,” Gastrointestinal Endoscopy, vol. 61, no. 3, pp. 455–461, 2005.
[159]  X. Xu, P. J. Pasricha, and J. D. Z. Chen, “Feasibility of gastric electrical stimulation by use of endoscopically placed electrodes,” Gastrointestinal Endoscopy, vol. 66, no. 5, pp. 981–986, 2007.
[160]  J. Liu, X. Hou, G. Song, H. Cha, B. Yang, and J. D. Z. Chen, “Gastric electrical stimulation using endoscopically placed mucosal electrodes reduces food intake in humans,” The American Journal of Gastroenterology, vol. 101, no. 4, pp. 798–803, 2006.
[161]  P. Mintchev, A. Arriagada, M. P. Mintchev, and C. N. Andrews, “Technical note: evaluation of tined endoscopically placed mucosal leads for temporary gastric neurostimulation,” Neuromodulation, vol. 15, no. 3, pp. 219–222, 2012.
[162]  S. F. Glushchuk and J. S. Pekker, “Design and optimization of electrical parameters autonomous electrostimulator gastrointestinal,” Bulletin of the Tomsk Polytechnic University, vol. 308, no. 3, 2005.
[163]  S. F. Glushchuk and J. S. Pekker, “Adaptive pacemakers gastrointestinal,” Bulletin of the Tomsk Polytechnic University, vol. 308, no. 4, pp. 164–166, 2005.
[164]  M. P. Mintchev, O. Yadid-Pecht, and M. T. Fattouche, “Non-implantable, replaceable, pseudobezoar-based, in-situ microcomputer with sensing, stimulating, and feedback-control capabilities,” Provisional Patent Application, US Patent and Trademark Office, December 2012.
[165]  M. G. . Deneva, A. Marintchev, O. Yadid-Pecht, M. Fattouche, R. C. Bray, and M. P. Mintchev, “49 temporary controllable pseudobezoars: non-invasive alternative to surgical gastric volume reduction for the treatment of obesity,” Gastroenterology, vol. 142, no. 5, pp. S–13, 2012.
[166]  M. G. Deneva, O. Yadid-Pecht, M. Fattouche, and M. P. Mintchev, “Utilization of temporary controllable intragastric pseudobezoars for the treatment of obesity,” Current Obesity Reports, vol. 1, no. 2, pp. 68–74, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133