全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Examination of the Anti-Inflammatory, Antioxidant, and Xenobiotic-Inducing Potential of Broccoli Extract and Various Essential Oils during a Mild DSS-Induced Colitis in Rats

DOI: 10.1155/2013/710856

Full-Text   Cite this paper   Add to My Lib

Abstract:

Phytogenic compounds with antioxidant and anti-inflammatory properties are currently discussed as promising complementary agents in prevention and treatment of inflammatory bowel disease (IBD). Our study aimed to evaluate possible protective and curative effects of broccoli extract (BE) and of the essential oils of turmeric (Cuo), thyme (To), and rosemary (Ro) in a rat model with a mild dextran sulphate sodium- (DSS-) induced colitis. Therefore Wistar rats were fed a diet without an additive (Con) or diets with the addition of BE, Cuo, To, and Ro during the whole experiment. Pretreatment with Ro, Cuo, and To increased the expression of the tight junction protein Cldn3. All additives reduced mRNA of VCAM-1 which plays a crucial role in the first state of inflammatory response. Only Ro pretreatment affected the expression of the antioxidant enzymes HO1, GPx2, and of glutathione-S-transferases. All additives counteracted the DSS-induced rise in COX2 and VCAM-1 expression. Colonic IL-10 was increased by Cuo, To, and Ro. During the recovery phase DSS pretreatment increased NFκB, VCAM-1, and MCP-1: This response was counter-regulated by all additives. We conclude that the phytogenic additives tested have a promising anti-inflammatory potential in vivo and a particular role in the prevention of IBD. 1. Introduction Inflammatory bowel disease, including ulcerative colitis (UC) and Crohn’s disease (CD), is a multifactorial relapsing-remitting disorder, characterized by intermittent periods of acute inflammation in the small and in the large intestine. The main difference between CD and UC is the location and the nature of the inflammatory changes. CD can affect any part of the gastrointestinal tract, from mouth to anus, although the onset of the majority of cases is located in the terminal ileum. In contrast UC is restricted to the colon and the rectum. The exact pathogenic mechanisms provoking both disorders remain almost unclear. However, in a number of cases overreactions of the immune system due to inflammatory stimuli can be observed. In this context, proinflammatory immune modulators like interleukin 1 beta (IL-1β), monocyte chemoattractant protein 1 (MCP-1), and vascular cell adhesion molecule 1 (VCAM-1) play an important role in the development of the disease [1, 2]. Nuclear factor “kappa-light-chain-enhancer” of activated B cells (NFκB) represents a key transcription factor regulating the synthesis of genes involved in immune reactions and inflammatory response. In noninflamed tissues NFκB is inhibited through linkage to its cytosolic inhibitor protein

References

[1]  G. Rogler and T. Andus, “Cytokines in inflammatory bowel disease,” World Journal of Surgery, vol. 22, no. 4, pp. 382–389, 1998.
[2]  I. Arijs, G. de Hertogh, K. Machiels et al., “Mucosal gene expression of cell adhesion molecules, chemokines, and chemokine receptors in patients with inflammatory bowel disease before and after infliximab treatment,” The American Journal of Gastroenterology, vol. 106, no. 4, pp. 748–776, 2011.
[3]  A. S. Baldwin, “The NF- and I proteins: new discoveries and insights,” Annual Review of Immunology, vol. 14, pp. 649–681, 1996.
[4]  S. Ghosh, M. J. May, and E. B. Kopp, “NF-κB and rel proteins: evolutionarily conserved mediators of immune responses,” Annual Review of Immunology, vol. 16, pp. 225–260, 1998.
[5]  A. S. Baldwin Jr., “The transcription factor NF-κB and human disease,” The Journal of Clinical Investigation, vol. 107, no. 1, pp. 3–6, 2001.
[6]  M. Amasheh, I. Grotjohann, S. Amasheh et al., “Regulation of mucosal structure and barrier function in rat colon exposed to tumor necrosis factor alpha and interferon gamma in vitro: a novel model for studying the pathomechanisms of inflammatory bowel disease cytokines,” Scandinavian Journal of Gastroenterology, vol. 44, no. 10, pp. 1226–1235, 2009.
[7]  M. F. Neurath and G. Schürmann, “Immunopathogenesis of inflammatory bowel diseases,” Chirurg, vol. 71, no. 1, pp. 30–40, 2000.
[8]  Y. Xu, B. Gong, Y. Yang, Y. C. Awasthi, M. Woods, and P. J. Boor, “Glutathione-S-transferase protects against oxidative injury of endothelial cell tight junctions,” Endothelium, vol. 14, no. 6, pp. 333–343, 2007.
[9]  P. Sheth, N. Delos Santos, A. Seth, N. F. LaRusso, and R. K. Rao, “Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 293, no. 1, pp. G308–G318, 2007.
[10]  T. Kawauchiyaa, R. Takumia, Y. Kudoa et al., “Correlation between the destruction of tight junction by patulin treatment and increase of phosphorylation of ZO-1 in Caco-2 human colon cancer cells,” Toxicology Letters, vol. 205, no. 2, pp. 196–202, 2011.
[11]  L. Petecchia, F. Sabatini, C. Usai, E. Caci, L. Varesio, and G. A. Rossi, “Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway,” Laboratory Investigation, vol. 92, pp. 1140–1148, 2012.
[12]  A. Oca?a-Fuentes, E. Arranz-Gutiérrez, F. J. Se?orans, and G. Reglero, “Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages,” Food and Chemical Toxicology, vol. 48, no. 6, pp. 1568–1575, 2010.
[13]  A. Kroismayr, J. Sehm, M. W. Pfaffl, K. Schedle, C. Plitzner, and W. M. Windisch, “Effects of avilamycin and essential oils on mRNA expression of apoptotic and inflammatory markers and gut morphology of piglets,” Czech Journal of Animal Science, vol. 53, no. 9, pp. 377–387, 2008.
[14]  M. Viuda-Martos, Y. Ruiz-Navajas, J. Fernández-López, and J. A. Pérez-álvarez, “Effect of added citrus fibre and spice essential oils on quality characteristics and shelf-life of mortadella,” Meat Science, vol. 85, no. 3, pp. 568–576, 2010.
[15]  K. Mueller, N. M. Blum, H. Kluge et al., “Effects of broccoli extract and various essential oils on intestinal and faecal microflora and on xenobiotic enzymes and the antioxidant system of piglets,” Open Journal of Animal Sciences, vol. 2, no. 3, pp. 78–98, 2012.
[16]  A. Bukovská, S. Cikos, S. Juhás, G. Il'ková, P. Rehák, and J. Koppel, “Effects of a combination of thyme and oregano essential oils on TNBS-induced colitis in mice,” Mediators of Inflammation, vol. 2007, Article ID 23296, 9 pages, 2007.
[17]  K. C. Lian, J. J. Chuang, C. W. Hsieh et al., “Dual mechanisms of NF-κB inhibition in carnosol-treated endothelial cells,” Toxicology and Applied Pharmacology, vol. 245, no. 1, pp. 21–35, 2010.
[18]  X. F. Tian, J. H. Yao, X. S. Zhang et al., “Protective effect of carnosol on lung injury induced by intestinal ischemia/reperfusion,” Surgery Today, vol. 40, no. 9, pp. 858–865, 2010.
[19]  E. S. Mengoni, G. Vichera, L. A. Rigano et al., “Suppression of COX-2, IL-1β and TNF-α expression and leukocyte infiltration in inflamed skin by bioactive compounds from Rosmarinus officinalis L,” Fitoterapia, vol. 82, no. 3, pp. 414–421, 2011.
[20]  A. E. Wagner C, “Anti-inflammatory potential of allyl-isothiocyanate-role of Nrf2, NF and microRNA-155,” Journal of Cellular and Molecular Medicine, vol. 16, no. 4, pp. 836–843, 2011.
[21]  Anonymous, ““Evonik Industries Product Information” TEGO Turmerone: the distilled fraction of tumeric oil extracted from 12 the roots of Curcuma longa by supercritical carbon dioxide,” 2012, http://www.centerchem.com/PDFs/TEGO%20Turmerone%20Tech%20Lit%200208.pdf.
[22]  Society for Laboratory Animal Science, Ausschuss für Tiergerechte Labortierhaltung, Tiergerechte Haltung von Laborratte, 2004.
[23]  L. A. Dieleman, M. J. H. J. Palmen, H. Akol et al., “Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines,” Clinical and Experimental Immunology, vol. 114, no. 3, pp. 385–391, 1998.
[24]  I. Okayasu, M. Yamada, T. Mikami, T. Yoshida, J. Kanno, and T. Ohkusa, “Dysplasia and carcinoma development in a repeated dextran sulfate sodium-induced colitis model,” Journal of Gastroenterology and Hepatology, vol. 17, no. 10, pp. 1078–1083, 2002.
[25]  D. Camuesco, M. Comalada, A. Concha et al., “Intestinal anti-inflammatory activity of combined quercitrin and dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, in rats with DSS-induced colitis,” Clinical Nutrition, vol. 25, no. 3, pp. 466–476, 2006.
[26]  P. Chomczynski and N. Sacchi, “The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on,” Nature Protocols, vol. 1, no. 2, pp. 581–585, 2006.
[27]  T. A. Kerr, M. A. Ciorba, H. Matsumoto et al., “Dextran sodium sulfate inhibition of real-time polymerase chain reaction amplification: a poly-A purification solution,” Inflammatory Bowel Diseases, vol. 18, no. 2, pp. 344–348, 2012.
[28]  N. M. Blum, K. Mueller, D. Lippmann, J. Pallauf, T. Linn, and A. S. Mueller, “Glucoraphanin does not reduce plasma homocysteine in rats with sufficient Se supply via the induction of liver ARE-regulated glutathione biosynthesis enzymes,” Food & Function, vol. 2, pp. 654–664, 2011.
[29]  K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001.
[30]  M. Vicario, C. Amat, M. Rivero, M. Moretó, and C. Pelegrí, “Dietary glutamine affects mucosal functions in rats with mild DSS-induced colitis,” Journal of Nutrition, vol. 137, no. 8, pp. 1931–1937, 2007.
[31]  A. Hakansson, C. Br?nning, G. Molin et al., “Colorectal oncogenesis and inflammation in a rat model based on chronic inflammation due to cycling DSS treatments,” Gastroenterology Research and Practice, vol. 2011, Article ID 924045, 15 pages, 2011.
[32]  A. Venkatraman, B. S. Ramakrishna, A. B. Pulimood, S. Patra, and S. Murthy, “Increased permeability in dextran sulphate colitis in rats: time course of development and effect of butyrate,” Scandinavian Journal of Gastroenterology, vol. 35, no. 10, pp. 1053–1059, 2000.
[33]  R. C. Sprong, A. J. Schonewille, and R. van der Meer, “Dietary cheese whey protein protects rats against mild dextran sulfate sodium-induced colitis: role of mucin and microbiota,” Journal of Dairy Science, vol. 93, no. 4, pp. 1364–1371, 2010.
[34]  L. Márquez, B. G. Pérez-Nievas, I. Gárate et al., “Anti-inflammatory effects of Mangifera indica L. extract in a model of colitis,” World Journal of Gastroenterology, vol. 16, no. 39, pp. 4922–4931, 2010.
[35]  A. Tyagi, U. Kumar, S. Reddy et al., “Attenuation of colonic inflammation by partial replacement of dietary linoleic acid with α-linolenic acid in a rat model of inflammatory bowel disease,” British Journal of Nutrition, vol. 108, no. 9, pp. 1612–1622, 2012.
[36]  E. Gaudio, G. Taddei, A. Vetuschi et al., “Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects,” Digestive Diseases and Sciences, vol. 44, no. 7, pp. 1458–1475, 1999.
[37]  L. Pouyet, C. Roisin-Bouffay, A. Clément et al., “Epithelial vanin-1 controls inflammation-driven carcinogenesis in the colitis-associated colon cancer model,” Inflammatory Bowel Diseases, vol. 16, no. 1, pp. 96–104, 2010.
[38]  D. K. Zhang, J. J. Yu, Y. M. Li et al., “A Picrorhiza kurroa derivative, picroliv, attenuates the development of dextran-sulfate-sodium-induced colitis in mice,” Mediators of Inflammation, vol. 2012, Article ID 751629, 9 pages, 2012.
[39]  K. Mueller, N. M. Blum, H. Kluge, and A. S. Mueller, “Influence of broccoli extract and various essential oils on performance and expression of xenobiotic- and antioxidant enzymes in broiler chickens,” British Journal of Nutrition, vol. 108, no. 4, pp. 588–602, 2012.
[40]  K. Mueller, N. M. Blum, H. Kluge et al., “Effects of broccoli extract and various essential oils on intestinal and faecal microflora and on xenobiotic enzymes and the antioxidant system of piglets,” Open Journal of Animal Sciences, vol. 2, no. 2, pp. 78–98, 2012.
[41]  N. M. Blum, K. Mueller, D. Lippmann et al., “Keap 1 in mind: feeding of selenium alone or in combination with glucoraphanin differentially affects intestinal and hepatic ARE regulated antioxidant and phase II enzymes in growing rats,” Biological Trace Element Research, vol. 151, no. 3, pp. 384–399, 2013.
[42]  D. G. Binion, J. Heidemann, M. S. Li, V. M. Nelson, M. F. Otterson, and P. Rafiee, “Vascular cell adhesion molecule-1 expression in human intestinal microvascular endothelial cells is regulated by PI 3-kinase/Akt/MAPK/NF- κB: Inhibitory role of curcumin,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 297, no. 2, pp. G259–G268, 2009.
[43]  L. Gu, N. Li, Q. Li et al., “The effect of berberine in vitro on tight junctions in human Caco-2 intestinal epithelial cells,” Fitoterapia, vol. 80, no. 4, pp. 241–248, 2009.
[44]  R. A. Vreeburg, E. E. van Wezel, F. Oca?a-Calahorro, and J. J. Mes, “Apple extract induces increased epithelial resistance and claudin 4 expression in Caco-2 cells,” Journal of the Science of Food and Agriculture, vol. 92, no. 2, pp. 439–444, 2012.
[45]  S. Juhás, S. Cikos, S. Czikková et al., “Effects of borneol and thymoquinone on TNBS-induced colitis in mice,” Folia Biologica (Praha), vol. 54, no. 1, pp. 1–7, 2008.
[46]  T. Y. Wu, T. O. Khor, C. L. L. Saw et al., “Anti-inflammatory/anti-oxidative stress activities and differential regulation of Nrf2-mediated genes by non-polar fractions of tea Chrysanthemum zawadskii and licorice Glycyrrhiza uralensis,” AAPS Journal, vol. 13, no. 1, pp. 1–13, 2011.
[47]  X. Liu and J. Wang, “Anti-inflammatory effects of iridoid glycosides fraction of Folium syringae leaves on TNBS-induced colitis in rats,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 780–787, 2011.
[48]  D. K. Gessner, R. Ringseis, M. Siebers et al., “Inhibition of the pro-inflammatory NF- pathway by a grape seed and grape marc meal extract in intestinal epithelial cells,” Journal of Animal Physiology and Animal Nutrition, vol. 96, no. 6, pp. 1074–1083, 2011.
[49]  J. Y. Kim, H. J. Park, S. H. Um et al., “Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF- -stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF- and AP-1 signaling pathways,” Vascular Pharmacology, vol. 56, no. 3-4, pp. 131–141, 2012.
[50]  K. L. Reed, A. B. Fruin, A. C. Gower et al., “NF-κB activation precedes increases in mRNA encoding neurokinin-1 receptor, proinflammatory cytokines, and adhesion molecules in dextran sulfate sodium-induced colitis in rats,” Digestive Diseases and Sciences, vol. 50, no. 12, pp. 2366–2378, 2005.
[51]  A. G. Markov, A. Veshnyakova, M. Fromm, M. Amasheh, and S. Amasheh, “Segmental expression of claudin proteins correlates with tight junction barrier properties in rat intestine,” Journal of Comparative Physiology B, vol. 180, no. 4, pp. 591–598, 2010.
[52]  T. O. Khor, M. T. Huang, K. H. Kwon, J. Y. Chan, B. S. Reddy, and A. N. Kong, “Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis,” Cancer Research, vol. 66, no. 24, pp. 11580–11584, 2006.
[53]  M. Larrosa, M. J. Ya?éz-Gascón, M. V. Selma et al., “Effect of a low dose of dietary resveratrol on colon microbiota, inflammation and tissue damage in a DSS-induced colitis rat model,” Journal of Agricultural and Food Chemistry, vol. 57, no. 6, pp. 2211–2220, 2009.
[54]  L. O. Brandenburg, M. Kipp, R. Lucius, T. Pufe, and C. J. Wruck, “Sulforaphane suppresses LPS-induced inflammation in primary rat microglia,” Inflammation Research, vol. 59, no. 6, pp. 443–450, 2010.
[55]  M. Nishida, S. Nishiumi, Y. Mizushina et al., “Monoacetylcurcumin strongly regulates inflammatory responses through inhibition of NF-κB activation,” International Journal of Molecular Medicine, vol. 25, no. 5, pp. 761–767, 2010.
[56]  Q. Jia, I. Ivanov, Z. Z. Zlatev et al., “Dietary fish oil and curcumin combine to modulate colonic cytokinetics and gene expression in dextran sodium sulphate-treated mice,” British Journal of Nutrition, vol. 106, no. 4, pp. 519–529, 2011.
[57]  Y. H. Zhou, J. P. Yu, Y. F. Liu et al., “Effects of Ginkgo biloba extract on inflammatory mediators (SOD, MDA, TNF-α, NF-κBp65, IL-6) in TNBS-induced colitis in rats,” Mediators of Inflammation, vol. 2006, Article ID 92642, 9 pages, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133