全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Changes in Plasma Ghrelin and Serum Leptin Levels after Cisplatin-Based Transcatheter Arterial Infusion Chemotherapy for Hepatocellular Carcinoma

DOI: 10.1155/2013/415450

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background and Objective. Cisplatin-based chemotherapy is widely recognized to cause severe gastrointestinal disorders like nausea, vomiting, and appetite loss. The aim of this study was to assess whether cisplatin-based transcatheter arterial infusion (TAI) chemotherapy reduces plasma ghrelin levels and food intake in hepatocellular carcinoma (HCC) patients. Methods. Seventeen patients with HCC who underwent cisplatin-based TAI chemotherapy (80–100?mg/body) were enrolled in this study. Changes in peptide hormones, including ghrelin and leptin, as well as cytokines, were measured before and after chemotherapy. Appetite was evaluated by visual analog scale (VAS) and food intake was scored by eleven stages (0–10). Results. Appetite and food intake were significantly decreased after chemotherapy ( ). Plasma acylated ghrelin levels before therapy and at day 1, day 7, and day 14 after chemotherapy were 10.4 ± 7.2, 4.7 ± 4.7, 11.7 ± 8.9, and 9.3 ± 6.6?fmol/mL, respectively. The level on day 1 was decreased significantly ( ). In contrast, the levels of leptin, granulocyte colony-stimulating factor (G-CSF), and monocyte chemotactic protein-1 (MCP-1) on day 1 were increased significantly ( ). Conclusions. TAI for HCC reduced plasma acylated ghrelin levels, appetite, and food intake significantly. In addition, it increased serum leptin levels. 1. Introduction Cisplatin-based chemotherapy is widely recognized to cause severe gastrointestinal disorders like nausea, vomiting, and appetite loss. The acute phase of cisplatin-induced gastrointestinal disorders involves increased serotonin (5-hydroxytryptamine (5-HT)) secretion from enterochromaffin cells [1]. Consequently, the 5-HT3-receptor antagonist was developed and is widely used for patients who undergo chemotherapy. However, many patients still suffer from gastrointestinal disorders. Ghrelin is a 28-amino acid peptide found in the stomach. It is an endogenous ligand for growth-hormone secretagogue receptors [2]. Ghrelin is known to have an intense appetite-enhancing effect in addition to the growth-hormone-secretion-promoting effect [3]. Ghrelin is the only hormone that exhibits an orexigenic effect following peripheral administration [4]. In addition, ghrelin exhibits a variety of actions including stimulation of growth hormone (GH) secretion, gastric motility and gastric acid secretion, and induction of positive energy balance [5, 6]. Recently, it has been reported that ghrelin can greatly alleviate the behaviors associated with chemotherapy-induced dyspepsia in rodents [7]. In rats, administration of

References

[1]  L. X. Cubeddu, I. S. Hoffmann, N. T. Fuenmayor, and J. J. Malave, “Changes in serotonin metabolism in cancer patients: its relationship to nausea and vomiting induced by chemotherapeutic drugs,” British Journal of Cancer, vol. 66, no. 1, pp. 198–203, 1992.
[2]  M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999.
[3]  M. Nakazato, N. Murakami, Y. Date et al., “A role for ghrelin in the central regulation of feeding,” Nature, vol. 409, no. 6817, pp. 194–198, 2001.
[4]  A. M. Wren, L. J. Seal, M. A. Cohen et al., “Ghrelin enhances appetite and increases food intake in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 12, pp. 5992–5995, 2001.
[5]  Y. Masuda, T. Tanaka, N. Inomata et al., “Ghrelin stimulates gastric acid secretion and motility in rats,” Biochemical and Biophysical Research Communications, vol. 276, no. 3, pp. 905–908, 2000.
[6]  A. Inui, “Ghrelin: an orexigenic and somatotrophic signal from the stomach,” Nature Reviews Neuroscience, vol. 2, no. 8, pp. 551–560, 2001.
[7]  Y. L. Liu, N. M. Malik, G. J. Sanger, and P. L. R. Andrews, “Ghrelin alleviates cancer chemotherapy-associated dyspepsia in rodents,” Cancer Chemotherapy and Pharmacology, vol. 58, no. 3, pp. 326–333, 2006.
[8]  H. Takeda, C. Sadakane, T. Hattori et al., “Rikkunshito, an herbal medicine, suppresses cisplatin-induced anorexia in rats via 5-HT2 receptor antagonism,” Gastroenterology, vol. 134, no. 7, pp. 2004–2013, 2008.
[9]  Y. Hiura, S. Takiguchi, K. Yamamoto et al., “Effects of ghrelin administration during chemotherapy with advanced esophageal cancer patients: a prospective, randomized, placebo-controlled phase 2 study,” Cancer, vol. 118, no. 19, pp. 4785–4794, 2012.
[10]  G. J. Sanger, “Motilin, ghrelin and related neuropeptides as targets for the treatment of GI diseases,” Drug Discovery Today, vol. 13, no. 5-6, pp. 234–239, 2008.
[11]  M. Fujimiya, K. Ataka, A. Asakawa, C. Y. Chen, I. Kato, and A. Inui, “Ghrelin, des-acyl ghrelin and obestatin on the gastrointestinal motility,” Peptides, vol. 32, no. 11, pp. 2348–2351, 2011.
[12]  C. Y. Chen, A. Asakawa, M. Fujimiya, S. D. Lee, and A. Inui, “Ghrelin gene products and the regulation of food intake and gut motility,” Pharmacological Reviews, vol. 61, no. 4, pp. 430–481, 2009.
[13]  M. El-Salhy, “Ghrelin in gastrointestinal diseases and disorders: a possible role in the pathophysiology and clinical implications,” International Journal of Molecular Medicine, vol. 24, no. 6, pp. 727–732, 2009.
[14]  B. Greenwood-Van Meerveld, M. Kriegsman, and R. Nelson, “Ghrelin as a target for gastrointestinal motility disorders,” Peptides, vol. 32, pp. 2352–2356, 2011.
[15]  P. Jeffery, V. McDonald, E. Tippett, and M. McGuckin, “Ghrelin in gastrointestinal disease,” Molecular and Cellular Endocrinology, vol. 340, no. 1, pp. 35–43, 2011.
[16]  I. Wolf, S. Sadetzki, H. Kanely et al., “Adiponectin, ghrelin, and leptin in cancer cachexia in breast and colon cancer patients,” Cancer, vol. 106, no. 4, pp. 966–973, 2006.
[17]  H. Ataseven, I. H. Bahcecioglu, N. Kuzu et al., “The levels of ghrelin, leptin, TNF-α, and IL-6 in liver cirrhosis and hepatocellular carcinoma due to HBV and HDV infection,” Mediators of Inflammation, vol. 2006, Article ID 78380, 6 pages, 2006.
[18]  T. Shinomiya, M. Fukunaga, T. Akamizu et al., “Plasma acylated ghrelin levels correlate with subjective symptoms of functional dyspepsia in female patients,” Scandinavian Journal of Gastroenterology, vol. 40, no. 6, pp. 648–653, 2005.
[19]  K. Yakabi, C. Sadakane, M. Noguchi et al., “Reduced ghrelin secretion in the hypothalamus of rats due to cisplatin-induced anorexia,” Endocrinology, vol. 151, no. 8, pp. 3773–3782, 2010.
[20]  H. C. Keun, J. Sidhu, D. Pchejetski et al., “Serum molecular signatures of weight change during early breast cancer chemotherapy,” Clinical Cancer Research, vol. 15, no. 21, pp. 6716–6723, 2009.
[21]  Y. Hiura, S. Takiguchi, K. Yamamoto et al., “Fall in plasma ghrelin concentrations after cisplatin-based chemotherapy in esophageal cancer patients,” International Journal of Clinical Oncology, vol. 17, no. 4, pp. 316–323, 2012.
[22]  J. A. Harrold, “Leptin leads hypothalamic feeding circuits in a new direction,” BioEssays, vol. 26, no. 10, pp. 1043–1045, 2004.
[23]  G. Fantuzzi, “Adipose tissue, adipokines, and inflammation,” Journal of Allergy and Clinical Immunology, vol. 115, no. 5, pp. 911–920, 2005.
[24]  F. Tas, D. Duranyildiz, A. Argon et al., “Serum levels of leptin and proinflammatory cytokines in advanced-stage non-small cell lung cancer,” Medical Oncology, vol. 22, no. 4, pp. 353–358, 2005.
[25]  C. A. Dinarello, “Interleukin-18 and the pathogenesis of inflammatory diseases,” Seminars in Nephrology, vol. 27, no. 1, pp. 98–114, 2007.
[26]  E. Gonzalez-Rey, A. Chorny, and M. Delgado, “Therapeutic action of ghrelin in a mouse model of colitis,” Gastroenterology, vol. 130, no. 6, pp. 1707–1720, 2006.
[27]  V. D. Dixit, E. M. Schaffer, R. S. Pyle et al., “Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells,” Journal of Clinical Investigation, vol. 114, no. 1, pp. 57–66, 2004.
[28]  M. Zhang, F. Yuan, H. Chen, X. Qiu, and W. Fang, “Effect of exogenous ghrelin on cell differentiation antigen 40 expression in endothelial cells,” Acta Biochimica et Biophysica Sinica, vol. 39, no. 12, pp. 974–981, 2007.
[29]  T. Kodama, J. I. Ashitani, N. Matsumoto, K. Kangawa, and M. Nakazato, “Ghrelin treatment suppresses neutrophil-dominant inflammation in airways of patients with chronic respiratory infection,” Pulmonary Pharmacology and Therapeutics, vol. 21, no. 5, pp. 774–779, 2008.
[30]  T. Matsumura, M. Arai, Y. Yonemitsu et al., “The traditional Japanese medicine Rikkunshito increases the plasma level of ghrelin in humans and mice,” Journal of Gastroenterology, vol. 45, no. 3, pp. 300–307, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133