The gut immune system shares many mediators and receptors with the autonomic nervous system. Good examples thereof are the parasympathetic (vagal) and sympathetic neurotransmitters, for which many immune cell types in a gut context express receptors or enzymes required for their synthesis. For some of these the relevance for immune regulation has been recently defined. Earlier and more recent studies in neuroscience and immunology have indicated the anatomical and cellular basis for bidirectional interactions between the nervous and immune systems. Sympathetic immune modulation is well described earlier, and in the last decade the parasympathetic vagal nerve has been put forward as an integral part of an immune regulation network via its release of Ach, a system coined “the cholinergic anti-inflammatory reflex.” A prototypical example is the inflammatory reflex, comprised of an afferent arm that senses inflammation and an efferent arm: the cholinergic anti-inflammatory pathway, that inhibits innate immune responses. In this paper, the current understanding of how innate mucosal immunity can be influenced by the neuronal system is summarized, and cell types and receptors involved in this interaction will be highlighted. Focus will be given on the direct neuronal regulatory mechanisms, as well as current advances regarding the role of microbes in modulating communication in the gut-brain axis. 1. Introduction 1.1. Innervation and Immunity in the Gastrointestinal Tract It is increasingly acknowledged that the neuroendocrine and, the sympathetic and parasympathetic arms of the autonomic nervous system and the enteric nervous system are the key pathways through which the gut and the brain communicate. The principle is established that the immune system can no longer be regarded as an autonomous functioning entity but clearly receives regulatory input from neuronal systems. The “cholinergic inflammatory neuronal reflex” is one example of how action potentials originating in neurons influence immunity. The lymphoid organs of the immune system are innervated by cholinergic, catecholaminergic, and peptidergic, and other neurons, and many neurotransmitters and receptors are shared between the immune system and the nervous system, substantiating claims of a strong regulatory component of the nervous system in immune responses. A good example thereof is the discovery of acetylcholine producing memory T-cells in the circulation [1, 2] and spleen [3]. It is likely that such cells can interact with other antigen presenting cells or feed back on nerve terminals in
References
[1]
S. Dhawan, C. Cailotto, L. F. Harthoorn, and W. J. de Jonge, “Cholinergic signalling in gut immunity,” Life Sciences, vol. 91, no. 21-22, pp. 1038–1042, 2012.
[2]
T. Fujii, Y. Takada-Takatori, and K. Kawashima, “Regulatory mechanisms of acetylcholine synthesis and release by T cells,” Life Sciences, vol. 91, no. 21-22, pp. 981–985, 2012.
[3]
M. Rosas-Ballina, P. S. Olofsson, M. Ochani, et al., “Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit,” Science, vol. 334, pp. 98–101, 2011.
[4]
I. J. Elenkov and G. P. Chrousos, “Stress system—organization, physiology and immunoregulation,” NeuroImmunoModulation, vol. 13, no. 5-6, pp. 257–267, 2007.
[5]
“The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system,” Pharmacological Reviews, vol. 52, pp. 595–638, 2000.
[6]
B. L. Bonaz and C. N. Bernstein, “Brain-gut interactions in inflammatory bowel diseases,” Gastroenterology, vol. 144, no. 1, pp. 36–49, 2013.
[7]
J. B. Furness and M. Costa, “Types of nerves in the enteric nervous system,” Neuroscience, vol. 5, no. 1, pp. 1–20, 1980.
[8]
D. L. Bellinger, D. Lorton, S. Y. Felten, and D. L. Felten, “Innervation of lymphoid organs and implications in development, aging, and autoimmunity,” International Journal of Immunopharmacology, vol. 14, no. 3, pp. 329–344, 1992.
[9]
H. R. Berthoud and W. L. Neuhuber, “Functional and chemical anatomy of the afferent vagal system,” Autonomic Neuroscience, vol. 85, no. 1–3, pp. 1–17, 2000.
[10]
H. Zheng and H. R. Berthoud, “Functional vagal input to gastric myenteric plexus as assessed by vagal stimulation-induced Fos expression,” American Journal of Physiology, vol. 279, no. 1, pp. G73–G81, 2000.
[11]
L. Benthem, T. O. Mundinger, and G. J. Taborsky Jr., “Parasympathetic inhibition of sympathetic neural activity to the pancreas,” American Journal of Physiology, vol. 280, no. 2, pp. E378–E381, 2001.
[12]
C. T. Taylor and S. J. Keely, “The autonomic nervous system and inflammatory bowel disease,” Autonomic Neuroscience, vol. 133, no. 1, pp. 104–114, 2007.
[13]
C. T. Taylor and S. J. Keely, “The autonomic nervous system and inflammatory bowel disease,” Autonomic Neuroscience, vol. 133, no. 1, pp. 104–114, 2007.
[14]
J. B. Furness, “Types of neurons in the enteric nervous system,” Journal of the Autonomic Nervous System, vol. 81, pp. 87–96, 2000.
[15]
S. Livnat, S. Y. Felten, S. L. Carlson, D. L. Bellinger, and D. L. Felten, “Involvement of peripheral and central catecholamine systems in neural-immune interactions,” Journal of Neuroimmunology, vol. 10, no. 1, pp. 5–30, 1985.
[16]
D. L. Felten, S. Y. Felten, S. L. Carlson, J. A. Olschowka, and S. Livnat, “Noradrenergic and peptidergic innervation of lymphoid tissue,” Journal of Immunology, vol. 135, no. 2, pp. 755s–765s, 1985.
[17]
K. S. Madden, J. A. Moynihan, G. J. Brenner, S. Y. Felten, D. L. Felten, and S. Livnat, “Sympathetic nervous system modulation of the immune system. III. Alterations in T and B cell proliferation and differentiation in vitro following chemical sympathectomy,” Journal of Neuroimmunology, vol. 49, no. 1-2, pp. 77–87, 1994.
[18]
S. Y. Felten and J. Olschowka, “Noradrenergic sympathetic innervation of the spleen: II. Tyrosine hydroxylase, (TH)-positive nerve terminals form synapticlike contacts on lymphocytes in the splenic white pulp,” Journal of Neuroscience Research, vol. 18, no. 1, pp. 37–48, 1987.
[19]
A. Salonen, W. M. de Vos, and A. Palva, “Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives,” Microbiology, vol. 156, pp. 3205–3215, 2010.
[20]
E. Li, C. M. Hamm, A. S. Gulati, et al., “Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition,” PLoS One, vol. 7, article e26284, 2012.
[21]
P. Bercik, S. M. Collins, and E. F. Verdu, “Microbes and the gut-brain axis,” Neurogastroenterology & Motility, vol. 24, pp. 405–413, 2012.
[22]
S. M. Collins, E. Denou, E. F. Verdu, and P. Bercik, “The putative role of the intestinal microbiota in the irritable bowel syndrome,” Digestive and Liver Disease, vol. 41, no. 12, pp. 850–853, 2009.
[23]
J. E. Ghia, A. J. Park, P. Blennerhassett, W. I. Khan, and S. M. Collins, “Adoptive transfer of macrophage from mice with depression-like behavior enhances susceptibility to colitis,” Inflammatory Bowel Diseases, vol. 17, no. 7, pp. 1474–1489, 2011.
[24]
S. M. Collins, M. Surette, and P. Bercik, “The interplay between the intestinal microbiota and the brain,” Nature Reviews Microbiology, vol. 10, pp. 735–742, 2012.
[25]
P. Bercik, E. Denou, J. Collins, et al., “The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice,” Gastroenterology, vol. 141, pp. 599–609, 2011.
[26]
A. P. Kohm and V. M. Sanders, “Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo,” Pharmacological Reviews, vol. 53, no. 4, pp. 487–525, 2001.
[27]
R. M. Williams, H. R. Berthoud, and R. H. Stead, “Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa,” NeuroImmunoModulation, vol. 4, no. 5-6, pp. 266–270, 1998.
[28]
R. H. Stead, E. C. Colley, B. Wang, et al., “Vagal influences over mast cells,” Autonomic Neuroscience, vol. 125, no. 1-2, pp. 53–61, 2006.
[29]
R. Giorgio and G. Barbara, “Is irritable bowel syndrome an inflammatory disorder?” Current Gastroenterology Reports, vol. 10, pp. 385–390, 2008.
[30]
G. J. M. Maestroni, “Sympathetic nervous system influence on the innate immune response,” Annals of the New York Academy of Sciences, vol. 1069, pp. 195–207, 2006.
[31]
G. J. M. Maestroni, “Sympathetic nervous system influence on the innate immune response,” Annals of the New York Academy of Sciences, vol. 1069, pp. 195–207, 2006.
[32]
I. J. Elenkov, R. L. Wilder, G. P. Chrousos, and E. S. Vizi, “The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system,” Pharmacological Reviews, vol. 52, no. 4, pp. 595–638, 2000.
[33]
V. M. Sanders and R. H. Straub, “Norepinephrine, the β-adrenergic receptor, and immunity,” Brain, Behavior, and Immunity, vol. 16, no. 4, pp. 290–332, 2002.
[34]
G. Salamone, G. Lombardi, S. Gori, et al., “Cholinergic modulation of dendritic cell function,” Journal of Neuroimmunology, vol. 236, pp. 47–56, 2011.
[35]
Y. Yanagawa, M. Matsumoto, and H. Togashi, “Enhanced dendritic cell antigen uptake via α2 adrenoceptor-mediated PI3K activation following brief exposure to noradrenaline,” Journal of Immunology, vol. 185, no. 10, pp. 5762–5768, 2010.
[36]
D. Lorton, D. Hewitt, D. L. Bellinger, S. Y. Felten, and D. L. Felten, “Noradrenergic reinnervation of the rat spleen following chemical sympathectomy with 6-hydroxydopamine: pattern and time course of reinnervation,” Brain, Behavior, and Immunity, vol. 4, no. 3, pp. 198–222, 1990.
[37]
E. Giacobini, “Neuronal control of neurotransmitters biosynthesis during development,” Journal of Neuroscience Research, vol. 1, no. 3-4, pp. 315–331, 1975.
[38]
F. Magro, M. A. Vieira-Coelho, S. Fraga, et al., “Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease,” Digestive Diseases and Sciences, vol. 47, pp. 216–224, 2002.
[39]
D. M. McCafferty, J. L. Wallace, and K. A. Sharkey, “Effects of chemical sympathectomy and sensory nerve ablation on experimental colitis in the rat,” American Journal of Physiology, vol. 272, no. 2, pp. G272–G280, 1997.
[40]
K. J. Tracey, “Reflex control of immunity,” Nature Reviews Immunology, vol. 9, pp. 418–428, 2009.
[41]
M. Rosas-Ballina and K. J. Tracey, “The neurology of the immune system: neural reflexes regulate immunity,” Neuron, vol. 64, no. 1, pp. 28–32, 2009.
[42]
G. Matteoli and G. E. Boeckxstaens, “The vagal innervation of the gut and immune homeostasis,” Gut, 2012.
[43]
H. Wang, M. Yu, M. Ochani, et al., “Nicotinic acetylcholine receptor 7 subunit is an essential regulator of inflammation,” Nature, vol. 421, pp. 384–388, 2002.
[44]
G. Vida, G. Pena, E. A. Deitch, and L. Ulloa, “α7-cholinergic receptor mediates vagal induction of splenic norepinephrine,” Journal of Immunology, vol. 186, no. 7, pp. 4340–4346, 2011.
[45]
P. S. Olofsson, M. Rosas-Ballina, Y. A. Levine, and K. J. Tracey, “Rethinking inflammation: neural circuits in the regulation of immunity,” Immunological Reviews, vol. 248, no. 1, pp. 188–204, 2012.
[46]
C. Cailotto, L. M. Costes, J. van der Vliet, et al., “Neuroanatomical evidence demonstrating the existence of the vagal anti-inflammatory reflex in the intestine,” Neurogastroenterology & Motility, vol. 24, article e93, pp. 191–200, 2011.
[47]
F. The, C. Cailotto, J. van der Vliet, et al., “Central activation of the cholinergic anti-inflammatory pathway reduces surgical inflammation in experimental post-operative ileus,” British Journal of Pharmacology, vol. 163, pp. 1007–1016, 2011.
[48]
W. J. de Jonge, E. P. van der Zanden, F. O. The, et al., “Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway,” Nature Immunology, vol. 6, pp. 844–851, 2005.
[49]
J. E. Ghia, P. Blennerhassett, H. Kumar-Ondiveeran, E. F. Verdu, and S. M. Collins, “The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model,” Gastroenterology, vol. 131, no. 4, pp. 1122–1130, 2006.
[50]
J. E. Ghia, P. Blennerhassett, and S. M. Collins, “Vagus nerve integrity and experimental colitis,” American Journal of Physiology, vol. 293, no. 3, pp. G560–G567, 2007.
[51]
S. A. Snoek, M. I. Verstege, E. P. van der Zanden, et al., “Selective 7 nicotinic acetylcholine receptor agonists worsen disease in experimental colitis,” British Journal of Pharmacology, vol. 160, pp. 322–333, 2010.
[52]
N. Moser, N. Mechawar, I. Jones, et al., “Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures,” Journal of Neurochemistry, vol. 102, pp. 479–492, 2007.
[53]
S. A. Grando, K. Kawashima, and I. Wessler, “Introduction: the non-neuronal cholinergic system in humans,” Life Sciences, vol. 72, no. 18-19, pp. 2009–2012, 2003.
[54]
K. Kawashima, T. Fujii, Y. Watanabe, and H. Misawa, “Acetylcholine synthesis and muscarinic receptor subtype mRNA expression in T-lymphocytes,” Life Sciences, vol. 62, no. 17-18, pp. 1701–1705, 1998.
[55]
G. Matteoli and G. E. Boeckxstaens, “The vagal innervation of the gut and immune homeostasis,” Gut, 2012.
[56]
E. P. van der Zanden, S. A. Snoek, S. E. Heinsbroek, et al., “Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor 4 2,” Gastroenterology, vol. 137, pp. 1029.e4–1039.e4, 2009.
[57]
R. M. Drenan and H. A. Lester, “Insights into the neurobiology of the nicotinic cholinergic system and nicotine addiction from mice expressing nicotinic receptors harboring gain-of-function mutations,” Pharmacological Reviews, vol. 64, pp. 869–879, 2012.
[58]
P. S. Olofsson, M. Rosas-Ballina, Y. A. Levine, and K. J. Tracey, “Rethinking inflammation: neural circuits in the regulation of immunity,” Immunological Reviews, vol. 248, pp. 188–204, 2012.
[59]
H. Yoshikawa, M. Kurokawa, N. Ozaki, et al., “Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7,” Clinical & Experimental Immunology, vol. 146, pp. 116–123, 2006.
[60]
G. Pe?a, B. Cai, J. Liu, et al., “Unphosphorylated STAT3 modulates alpha7 nicotinic receptor signaling and cytokine production in sepsis,” European Journal of Immunology, vol. 40, pp. 2580–2589, 2010.
[61]
E. P. Van Der Zanden, G. E. Boeckxstaens, and W. J. De Jonge, “The vagus nerve as a modulator of intestinal inflammation,” Neurogastroenterology and Motility, vol. 21, no. 1, pp. 6–17, 2009.
[62]
M. Kox, J. C. Pompe, P. Pickkers, C. W. Hoedemaekers, A. B. Van Vugt, and J. G. Van Der Hoeven, “Increased vagal tone accounts for the observed immune paralysis in patients with traumatic brain injury,” Neurology, vol. 70, no. 6, pp. 480–485, 2008.
[63]
H. Klapproth, T. Reinheimer, J. Metzen et al., “Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 355, no. 4, pp. 515–523, 1997.
[64]
I. Rinner, K. Kawashima, and K. Schauenstein, “Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation,” Journal of Neuroimmunology, vol. 81, no. 1-2, pp. 31–37, 1998.
[65]
I. Shaked, A. Meerson, Y. Wolf et al., “MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase,” Immunity, vol. 31, no. 6, pp. 965–973, 2009.
[66]
I. Wessler, H. Kilbinger, F. Bittinger, R. Unger, and C. J. Kirkpatrick, “The non-neuronal cholinergic system in humans: expression, function and pathophysiology,” Life Sciences, vol. 72, no. 18-19, pp. 2055–2061, 2003.
[67]
G. Pe?a, B. Cai, L. Ramos, G. Vida, E. A. Deitch, and L. Ulloa, “Cholinergic regulatory lymphocytes re-establish neuromodulation of innate immune responses in sepsis,” Journal of Immunology, vol. 187, no. 2, pp. 718–725, 2011.
[68]
J. E. Ghia, P. Blennerhassett, and S. M. Collins, “Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression,” Journal of Clinical Investigation, vol. 118, no. 6, pp. 2209–2218, 2008.
[69]
F. O. The, G. E. Boeckxstaens, S. A. Snoek, et al., “Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice,” Gastroenterology, vol. 133, pp. 1219–1228, 2007.
[70]
M. D. Luyer, J. W. M. Greve, M. Hadfoune, J. A. Jacobs, C. H. Dejong, and W. A. Buurman, “Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve,” Journal of Experimental Medicine, vol. 202, no. 8, pp. 1023–1029, 2005.
[71]
G. J. M. Maestroni, “Sympathetic nervous system influence on the innate immune response,” Annals of the New York Academy of Sciences, vol. 1069, pp. 195–207, 2006.
[72]
J. A. Johnston, D. D. Taub, A. R. Lloyd et al., “lymphocyte chemotaxis and adhesion induced by vasoactive intestinal peptide,” The Journal of Immunology, vol. 153, no. 4, pp. 1762–1768, 1994.
[73]
A. Spiegel, S. Shivtiel, A. Kalinkovich et al., “Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling,” Nature Immunology, vol. 8, no. 10, pp. 1123–1131, 2007.
[74]
E. Gonzalez-Rey and M. Delgado, “Therapeutic treatment of experimental colitis with regulatory dendritic cells generated with vasoactive intestinal peptide,” Gastroenterology, vol. 131, no. 6, pp. 1799–1811, 2006.
[75]
S. Manicassamy and B. Pulendran, “Dendritic cell control of tolerogenic responses,” Immunological Reviews, vol. 241, no. 1, pp. 206–227, 2011.
[76]
L. Mazelin, V. Theodorou, J. More, X. Emonds-Alt, J. Fioramonti, and L. Bueno, “Comparative effects of nonpeptide tachykinin receptor antagonists on experimental gut inflammation in rats and guinea-pigs,” Life Sciences, vol. 63, no. 4, pp. 293–304, 1998.
[77]
G. Alvaro and R. Di Fabio, “Neurokinin 1 receptor antagonists—current prospects,” Current Opinion in Drug Discovery and Development, vol. 10, no. 5, pp. 613–621, 2007.
[78]
P. Naveilhan, H. Hassani, G. Lucas et al., “Reduced antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor,” Nature, vol. 409, no. 6819, pp. 513–517, 2001.
[79]
J. Wheway, C. R. Mackay, R. A. Newton, et al., “A fundamental bimodal role for neuropeptide Y1 receptor in the immune system,” The Journal of Experimental Medicine, vol. 202, pp. 1527–1538, 2005.
[80]
Y. Shimizu, H. Matsuyama, T. Shiina, T. Takewaki, and J. B. Furness, “Tachykinins and their functions in the gastrointestinal tract,” Cellular and Molecular Life Sciences, vol. 65, no. 2, pp. 295–311, 2008.
[81]
W. K. Hon and C. Pothoulakis, “Immunomodulatory properties of substance P: the gastrointestinal system as a model,” Annals of the New York Academy of Sciences, vol. 1088, pp. 23–40, 2006.
[82]
K. J. Gross and C. Pothoulakis, “Role of neuropeptides in inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 13, no. 7, pp. 918–932, 2007.
[83]
T. M. O'Connor, J. O'Connell, D. I. O'Brien, T. Goode, C. P. Bredin, and F. Shanahan, “The role of substance P in inflammatory disease,” Journal of Cellular Physiology, vol. 201, pp. 167–180, 2004.
[84]
I. Castagliuolo, A. C. Keates, B. Qiu et al., “Increased substance P responses in dorsal root ganglia and intestinal macrophages during Clostridium difficile toxin A enteritis in rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4788–4793, 1997.
[85]
D. Renzi, B. Pellegrini, F. Tonelli, C. Surrenti, and A. Calabro, “Substance P (neurokinin-1) and neurokinin A (neurokinin-2) receptor gene and protein expression in the healthy and inflamed human intestine,” American Journal of Pathology, vol. 157, no. 5, pp. 1511–1522, 2000.
[86]
A. F. Stucchi, S. Shofer, S. Leeman, et al., “NK-1 antagonist reduces colonic inflammation and oxidative stress in dextran sulfate-induced colitis in rats,” American Journal of Physiology, vol. 279, pp. G1298–G1306, 2000.
[87]
M. Costa and J. B. Furness, “The origins, pathways and terminations of neurons with VIP-like immunoreactivity in the guinea-pig small intestine,” Neuroscience, vol. 8, no. 4, pp. 665–676, 1983.
[88]
D. L. Bellinger, D. Lorton, L. Horn, S. Brouxhon, S. Y. Felten, and D. L. Felten, “Vasoactive intestinal polypeptide (VIP) innervation of rat spleen, thymus, and lymph nodes,” Peptides, vol. 18, no. 8, pp. 1139–1149, 1997.
[89]
M. Delgado, C. Martinez, J. Leceta, and R. P. Gomariz, “Vasoactive intestinal peptide in thymus: synthesis, receptors and biological actions,” NeuroImmunoModulation, vol. 6, no. 1-2, pp. 97–107, 1999.
[90]
T. Yukawa, N. Oshitani, H. Yamagami, K. Watanabe, K. Higuchi, and T. Arakawa, “Differential expression of vasoactive intestinal peptide receptor 1 expression in inflammatory bowel disease,” International Journal of Molecular Medicine, vol. 20, no. 2, pp. 161–167, 2007.
[91]
S. T. Dorsam, E. Vomhof-DeKrey, R. J. Hermann et al., “Identification of the early VIP-regulated transcriptome and its associated, interactome in resting and activated murine CD4 T cells,” Molecular Immunology, vol. 47, no. 6, pp. 1181–1194, 2010.
[92]
J. C. Massacand, P. Kaiser, B. Ernst et al., “Intestinal bacteria condition dendritic cells to promote IgA production,” PLoS ONE, vol. 3, no. 7, article e2588, 2008.
[93]
R. P. Gomariz, “Time-course expression of Toll-like receptors 2 and 4 in inflammatory bowel disease and homeostatic effect of VIP,” Journal of Leukocyte Biology, vol. 78, pp. 491–502, 2005.
[94]
M. G. Toscano, M. Delgado, W. Kong, F. Martin, M. Skarica, and D. Ganea, “Dendritic cells transduced with lentiviral vectors expressing vip differentiate into vip-secreting tolerogenic-like DCs,” Molecular Therapy, vol. 18, no. 5, pp. 1035–1045, 2010.
[95]
E. Gonzalez-Rey, N. Varela, A. Chorny, and M. Delgado, “Therapeutical approaches of vasoactive intestinal peptide as a pleiotropic immunomodulator,” Current Pharmaceutical Design, vol. 13, no. 11, pp. 1113–1139, 2007.
[96]
M. Delgado and D. Ganea, “Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions,” Amino Acids, 2011.
[97]
C. Surrenti, D. Renzi, M. R. Garcea, E. Surrenti, and G. Salvadori, “Colonic vasoactive intestinal polypeptide in ulcerative colitis,” Journal of Physiology Paris, vol. 87, no. 5, pp. 307–311, 1993.
[98]
S. Lin, D. Boey, and H. Herzog, “NPY and Y receptors: lessons from transgenic and knockout models,” Neuropeptides, vol. 38, no. 4, pp. 189–200, 2004.
[99]
A. G. Blomqvist and H. Herzog, “Y-receptor subtypes—how many more?” Trends in Neurosciences, vol. 20, no. 7, pp. 294–298, 1997.
[100]
S. Bedoui, N. Kawamura, R. H. Straub, R. Pabst, T. Yamamura, and S. von H?rsten, “Relevance of neuropeptide Y for the neuroimmune crosstalk,” Journal of Neuroimmunology, vol. 134, pp. 1–11, 2003.
[101]
J. Holler, A. Zakrzewicz, A. Kaufmann, et al., “Neuropeptide Y is expressed by rat mononuclear blood leukocytes and strongly down-regulated during inflammation,” The Journal of Immunology, vol. 181, no. 10, pp. 6906–6912, 2008.
[102]
B. Chandrasekharan, V. Bala, V. L. Kolachala et al., “Targeted deletion of neuropeptide Y (NPY) modulates experimental colitis,” PLoS ONE, vol. 3, no. 10, article e3304, 2008.
[103]
H. Hassani, G. Lucas, B. Rozell, and P. Ernfors, “Attenuation of acute experimental colitis by preventing NPY Y1 receptor signaling,” American Journal of Physiology, vol. 288, no. 3, pp. G550–G556, 2005.
[104]
A. C. B. Meedeniya, A. C. Schloithe, J. Toouli, and G. T. P. Saccone, “Characterization of the intrinsic and extrinsic innervation of the gall bladder epithelium in the Australian Brush-tailed possum (Trichosurus vulpecula),” Neurogastroenterology and Motility, vol. 15, no. 4, pp. 383–392, 2003.
[105]
W. J. De Jonge and D. R. Greaves, “Immune modulation in gastrointestinal disorders: new opportunities for therapeutic peptides?” Expert Review of Gastroenterology and Hepatology, vol. 2, pp. 741–748, 2008.
[106]
G. E. Boeckxstaens and W. J. De Jonge, “Neuroimmune mechanisms in postoperative ileus,” Gut, vol. 58, no. 9, pp. 1300–1311, 2009.
[107]
H. Wang, H. Liao, M. Ochani, et al., “Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis,” Nature Medicine, vol. 10, no. 11, pp. 1216–1221, 2004.
[108]
L. Ulloa, “The vagus nerve and the nicotinic anti-inflammatory pathway,” Nature Reviews Drug Discovery, vol. 4, no. 8, pp. 673–684, 2005.