全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effect of Weight Loss on Pediatric Nonalcoholic Fatty Liver Disease

DOI: 10.1155/2013/398297

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study evaluated the effect of weight loss on pediatric nonalcoholic fatty liver disease (NAFLD). Subjects included 81 overweight NAFLD patients referred to two pediatric gastroenterologists from 2000 to 2010. Data on subjects were obtained from review of medical charts. The effect of weight loss was assessed at 1–4?months, 5–8?months, 9–12?months, and beyond one year as the change in weight, BMI -score (for age-and-sex), and alanine aminotransferase and the relationship between the change in body weight and BMI -score, and the change in alanine aminotransferase. Subjects were mostly obese (99%), male (86%), and Asian (63%) and had median age of 14.1 (11.2–16.2)?years and alanine aminotransferase of 105 (78–153) U/L at referral. Alanine aminotransferase decreased 32?±?66 ( ), 30?±?65 ( ), 37?±?75 ( ), and 45?±?69 ( ) for subjects with follow-up data at 1–4?months ( ), 5–8?months ( ), 9–12 months ( ), and beyond one year ( ), respectively. During these time periods, neither was body weight (?0.2 to +7.1?kg) or BMI -score (?0.12 to ?0.05) significantly reduced, nor were changes in these variables associated with the change in alanine aminotransferase. These findings suggest that weight and BMI -score may not be sufficient indicators of treatment response in pediatric NAFLD patients. 1. Introduction Nonalcoholic fatty liver disease (NAFLD) is a common complication of pediatric obesity characterized by the inappropriate accumulation of fat in hepatocytes in the absence of other known causes of steatosis [1–3]. Hepatic steatosis is closely related to metabolic syndrome and may contribute to the pathogenesis of other obesity-related conditions [4–7]. Prior investigation of children diagnosed with metabolic syndrome in Hawai’i found that approximately two-thirds had elevated serum alanine aminotransferase (ALT) values suggestive of NAFLD [8]. The majority of children with NAFLD suffer from psychological, physical, and pain-related symptoms, which contribute to a lower physical and psychosocial health, and reduced quality of life [9]. When compared to obese controls, pediatric NAFLD patients were found to have greater depression and influence of body weight on self-esteem [10]. Moreover, hepatic steatosis may be accompanied by inflammation and/or fibrosis, which can progress to liver cirrhosis requiring transplantation [1, 11–13]. Along with this, children with NAFLD were found to have reduced age- and sex-standardized survival free of liver transplantation [13]. Similar to other obesity-related conditions, weight loss is the primary treatment strategy for

References

[1]  J. B. Schwimmer, C. Behling, R. Newbury et al., “Histopathology of pediatric nonalcoholic fatty liver disease,” Hepatology, vol. 42, no. 3, pp. 641–649, 2005.
[2]  J. B. Schwimmer, R. Deutsch, T. Kahen, J. E. Lavine, C. Stanley, and C. Behling, “Prevalence of fatty liver in children and adolescents,” Pediatrics, vol. 118, no. 4, pp. 1388–1393, 2006.
[3]  D. E. Kleiner, E. M. Brunt, M. van Natta et al., “Design and validation of a histological scoring system for nonalcoholic fatty liver disease,” Hepatology, vol. 41, no. 6, pp. 1313–1321, 2005.
[4]  J. B. Schwimmer, P. E. Pardee, J. E. Lavine, A. K. Blumkin, and S. Cook, “Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease,” Circulation, vol. 118, no. 3, pp. 277–283, 2008.
[5]  M. Manco, M. Marcellini, R. DeVito, D. Comparcola, M. R. Sartorelli, and V. Nobili, “Metabolic syndrome and liver histology in paediatric non-alcoholic steatohepatitis,” International Journal of Obesity, vol. 32, no. 2, pp. 381–387, 2008.
[6]  E. Fabbrini, F. Magkos, B. S. Mohammed et al., “Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 36, pp. 15430–15435, 2009.
[7]  E. D'Adamo, M. L. Marcovecchio, C. Giannini et al., “The possible role of liver steatosis in defining metabolic syndrome in prepubertal children,” Metabolism, vol. 59, no. 5, pp. 671–676, 2010.
[8]  D. E. St-Jules, C. A. Watters, J. Davis, and S. H. Waxman, “Liver disease among children in Hawai’i diagnosed with metabolic syndrome,” Hawaii Journal of Medicine & Public Health, vol. 72, no. 5, pp. 167–171, 2013.
[9]  K. D. Kistler, J. Molleston, A. Unalp, S. H. Abrams, C. Behling, and J. B. Schwimmer, “Symptoms and quality of life in obese children and adolescents with non-alcoholic fatty liver disease,” Alimentary Pharmacology and Therapeutics, vol. 31, no. 3, pp. 396–406, 2010.
[10]  N. Kerkar, C. D’Urso, K. van Nostrand, et al., “Psychosocial outcomes for children with nonalcoholic fatty liver disease over time and compared with obese controls,” Journal of Pediatric Gastroenterology and Nutrition, vol. 56, pp. 77–82, 2013.
[11]  C. Carter-Kent, L. M. Yerian, E. M. Brunt et al., “Nonalcoholic steatohepatitis in children: a multicenter clinicopathological study,” Hepatology, vol. 50, no. 4, pp. 1113–1120, 2009.
[12]  R. Kohli, T. Boyd, K. Lake et al., “Rapid progression of NASH in childhood,” Journal of Pediatric Gastroenterology and Nutrition, vol. 50, no. 4, pp. 453–456, 2010.
[13]  A. E. Feldstein, P. Charatcharoenwitthaya, S. Treeprasertsuk, J. T. Benson, F. B. Enders, and P. Angulo, “The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years,” Gut, vol. 58, no. 11, pp. 1538–1544, 2009.
[14]  A. Franzese, P. Vajro, A. Argenziano et al., “Liver involvement in obese children: ultrasonography and liver enzyme levels at diagnosis and during follow-up in an Italian population,” Digestive Diseases and Sciences, vol. 42, no. 7, pp. 1428–1432, 1997.
[15]  V. Nobili, M. Marcellini, R. Devito et al., “NAFLD in children: a prospective clinical-pathological study and effect of lifestyle advice,” Hepatology, vol. 44, no. 2, pp. 458–465, 2006.
[16]  T. Reinehr, C. Schmidt, A. M. Toschke, and W. Andler, “Lifestyle intervention in obese children with nonalcoholic fatty liver disease: 2-year follow-up study,” Archives of Disease in Childhood, vol. 94, no. 6, pp. 437–442, 2009.
[17]  Center for Disease Control and Prevention (CDC), “Percentile data files with LMS values,” 2009, http://www.cdc.gov/growthcharts/percentile_data_files.htm.
[18]  19. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents, “The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents,” Pediatrics, vol. 114, supplement 4th report, pp. 555–576, 2004.
[19]  J. B. Schwimmer, R. Deutsch, J. B. Rauch, C. Behling, R. Newbury, and J. E. Lavine, “Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease,” Journal of Pediatrics, vol. 143, no. 4, pp. 500–505, 2003.
[20]  R. C. Graham, A. Burke, and N. Stettler, “Ethnic and sex differences in the association between metabolic syndrome and suspected nonalcoholic fatty liver disease in a nationally representative sample of US adolescents,” Journal of Pediatric Gastroenterology and Nutrition, vol. 49, no. 4, pp. 442–449, 2009.
[21]  J. B. Schwimmer, W. Dunn, G. J. Norman et al., “SAFETY study: alanine aminotransferase cutoff values are set too high for reliable detection of pediatric chronic liver disease,” Gastroenterology, vol. 138, no. 4, pp. 1357–1364, 2010.
[22]  L. N. Kolonel, B. E. Henderson, J. H. Hankin et al., “A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics,” American Journal of Epidemiology, vol. 151, no. 4, pp. 346–357, 2000.
[23]  US Census Bureau, “census population profile maps,” 2011, http://www.census.gov/geo/www/maps/2010_census_profile_maps/census_profile_2010_main.html.
[24]  National Institutes of Health, “NIH policy on reporting race and ethnicity data: subjects in clinical research,” 2001, http://grants.nih.gov/grants/guide/notice-files/not-od-01-053.html.
[25]  J. B. Schwimmer, N. McGreal, R. Deutsch, M. J. Finegold, and J. E. Lavine, “Influence of gender, race, and ethnicity on suspected fatty liver in obese adolescents,” Pediatrics, vol. 115, no. 5, pp. e561–e565, 2005.
[26]  A. Fraser, M. P. Longnecker, and D. A. Lawlor, “Prevalence of elevated alanine-aminotransferase (ALT) among US adolescents and associated factors: NHANES 1999–2004,” Gastroenterology, vol. 133, no. 6, pp. 1814–1820, 2007.
[27]  S. J. Miyagi, I. W. Brown, J. M. L. Chock, and A. C. Collier, “Developmental changes in hepatic antioxidant capacity are age- and sex-dependent,” Journal of Pharmacological Sciences, vol. 111, no. 4, pp. 440–445, 2009.
[28]  M. I. Goran and B. A. Gower, “Longitudinal study on pubertal insulin resistance,” Diabetes, vol. 50, no. 7–12, pp. 2444–2450, 2001.
[29]  V. Gilsanz, S. A. Chung, and N. Kaplowitz, “Differential effect of gender on hepatic fat,” Pediatric Radiology, vol. 41, no. 9, pp. 1146–1153, 2011.
[30]  T. T. K. Huang, M. S. Johnson, R. Figueroa-Colon, J. H. Dwyer, and M. I. Goran, “Growth of visceral fat, subcutaneous abdominal fat, and total body fat in children,” Obesity Research, vol. 9, no. 5, pp. 283–289, 2001.
[31]  J. S. Ko, J. M. Yoon, H. R. Yang et al., “Clinical and histological features of nonalcoholic fatty liver disease in children,” Digestive Diseases and Sciences, vol. 54, pp. 2225–2230, 2009.
[32]  G. Musso, R. Gambino, and M. Cassader, “Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD),” Progress in Lipid Research, vol. 48, no. 1, pp. 1–26, 2009.
[33]  J. E. Lavine, J. B. Schwimmer, J. P. Molleston et al., “Treatment of nonalcoholic fatty liver disease in children: TONIC trial design,” Contemporary Clinical Trials, vol. 31, no. 1, pp. 62–70, 2010.
[34]  J. E. Lavine, J. B. Schwimmer, M. L. van Natta et al., “Effect of vitamin e or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents the tonic randomized controlled trial,” Journal of the American Medical Association, vol. 305, no. 16, pp. 1659–1668, 2011.
[35]  T. S. Burgert, S. E. Taksali, J. Dziura et al., “Alanine aminotransferase levels and fatty liver in childhood obesity: associations with insulin resistance, adiponectin, and visceral fat,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 11, pp. 4287–4294, 2006.
[36]  D. R. Mager, J. Yap, C. Rodriguez-Dimitrescu, V. Mazurak, G. Ball, and S. Gilmour, “Anthropometric measures of visceral and subcutaneous fat are important in the determination of metabolic dysregulation in body and girls at risk for nonalcoholic fatty liver disease,” Nutrition in Clinical Practice, vol. 28, pp. 101–111, 2013.
[37]  N. A. Johnson and J. George, “Fitness versus fatness: moving beyond weight loss in nonalcoholic fatty liver disease,” Hepatology, vol. 52, no. 1, pp. 370–381, 2010.
[38]  K. A. Lê and M. Bortolotti, “Role of dietary carbohydrates and macronutrients in the pathogenesis of nonalcoholic fatty liver disease,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 11, no. 4, pp. 477–482, 2008.
[39]  R. D. Lee and D. C. Nieman, Nutrition Assessment, McGraw Hill, New York, NY, USA, 5th edition, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133