Genetics and epigenetics coregulate the cancer initiation and progression. Epigenetic mechanisms include DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs. Aberrant epigenetic modifications play a fundamental role in the formation of gastrointestinal cancers. Advances in epigenetics offer a better understanding of the carcinogenesis and provide new insights into the discovery of biomarkers for diagnosis, and prognosis prediction of human cancers. This review aims to overview the epigenetic aberrance and the clinical applications as biomarkers in gastrointestinal cancers mainly gastric cancer and colorectal cancer. 1. Introduction Cancer is one of the major disorders threatening our life. Gastrointestinal cancers mainly, including gastric cancer (GC) and colorectal cancer (CRC), account for a large proportion of human malignancies. They are both aggressive and the common cause of cancer-related deaths with a high disease-specific mortality rate around the world. There have been a great number of studies on the pathogenesis of gastrointestinal cancers. With a long history of chronic inflammation, GC and CRC result from the accumulation of both genetic and epigenetic changes that cause the transformation of normal cells into cancer cells. The classic genetic alterations are the mutations in key tumor suppressor genes or oncogenes, leading to defects of protein functions or deregulation of gene expression. In contrast, epigenetic events could affect gene expression without any changes in DNA sequence. 2. Overview of the Epigenetics The term epigenetics was coined in 1942 by C. H. Waddington when he was studying the causality between the genotype and the phenotype [1]. Now epigenetics refers to heritable modifications of the genome without any changes in primary DNA sequences [2]. In 1982, Feinberg and Vogelstein first discovered aberrant epigenetic alterations in human colorectal cancer [3]. Epigenetics which focuses on the process transforming genotype into phenotype is corresponding to genetics that refers to the heredity of genotype. Epigenetic alterations, like gene mutations, contribute to the pathogenesis and molecular heterogeneity of cancers. Epigenetics is different from the traditional genetics, mainly in the reversibility and position effect. The epigenetic modifications currently believed to play a role in cancers include DNA methylation, specific histone modifications, chromatin remodeling, and noncoding RNAs. 2.1. DNA Methylation The best-characterized epigenetic modification is methylation, a covalent addition of
References
[1]
C. H. Waddington, “The epigenotype. 1942,” International Journal of Epidemiology, vol. 41, no. 1, pp. 10–13, 2012.
[2]
S. L. Berger, T. Kouzarides, R. Shiekhattar, and A. Shilatifard, “An operational definition of epigenetics,” Genes and Development, vol. 23, no. 7, pp. 781–783, 2009.
[3]
A. P. Feinberg and B. Vogelstein, “Hypomethylation distinguishes genes of some human cancers from their normal counterparts,” Nature, vol. 301, no. 5895, pp. 89–92, 1983.
[4]
T. H. Bestor, “The DNA methyltransferases of mammals,” Human Molecular Genetics, vol. 9, no. 16, pp. 2395–2402, 2000.
[5]
M. Gardiner-Garden and M. Frommer, “CpG islands in vertebrate genomes,” Journal of Molecular Biology, vol. 196, no. 2, pp. 261–282, 1987.
[6]
A. Portela and M. Esteller, “Epigenetic modifications and human disease,” Nature Biotechnology, vol. 28, no. 10, pp. 1057–1068, 2010.
[7]
A. Hellman and A. Chess, “Gene body-specific methylation on the active X chromosome,” Science, vol. 315, no. 5815, pp. 1141–1143, 2007.
[8]
C. Stresemann, B. Brueckner, T. Musch, H. Stopper, and F. Lyko, “Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines,” Cancer Research, vol. 66, no. 5, pp. 2794–2800, 2006.
[9]
K. D. Robertson, “DNA methylation and human disease,” Nature Reviews Genetics, vol. 6, no. 8, pp. 597–610, 2005.
[10]
S. A. Belinsky, “Gene-promoter hypermethylation as a biomarker in lung cancer,” Nature Reviews Cancer, vol. 4, no. 9, pp. 707–717, 2004.
[11]
A. Bird, “DNA methylation patterns and epigenetic memory,” Genes and Development, vol. 16, no. 1, pp. 6–21, 2002.
[12]
A. Hermann, H. Gowher, and A. Jeltsch, “Biochemistry and biology of mammalian DNA methyltransferases,” Cellular and Molecular Life Sciences, vol. 61, no. 19-20, pp. 2571–2587, 2004.
[13]
M. Okano, D. W. Bell, D. A. Haber, and E. Li, “DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development,” Cell, vol. 99, no. 3, pp. 247–257, 1999.
[14]
T. Kouzarides, “Chromatin modifications and their function,” Cell, vol. 128, no. 4, pp. 693–705, 2007.
[15]
A. J. Bannister and T. Kouzarides, “Regulation of chromatin by histone modifications,” Cell Research, vol. 21, no. 3, pp. 381–395, 2011.
[16]
M. Bots and R. W. Johnstone, “Rational combinations using HDAC inhibitors,” Clinical Cancer Research, vol. 15, no. 12, pp. 3970–3977, 2009.
[17]
R. Kanwal and S. Gupta, “Epigenetic modifications in cancer,” Clinical Genetics, vol. 81, no. 4, pp. 303–311, 2012.
[18]
X. J. Yang and E. Seto, “HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention,” Oncogene, vol. 26, no. 37, pp. 5310–5318, 2007.
[19]
S. Ropero and M. Esteller, “The role of histone deacetylases (HDACs) in human cancer,” Molecular Oncology, vol. 1, no. 1, pp. 19–25, 2007.
[20]
M. A. Glozak and E. Seto, “Histone deacetylases and cancer,” Oncogene, vol. 26, no. 37, pp. 5420–5432, 2007.
[21]
L. Ellis, P. W. Atadja, and R. W. Johnstone, “Epigenetics in cancer: targeting chromatin modifications,” Molecular Cancer Therapeutics, vol. 8, no. 6, pp. 1409–1420, 2009.
[22]
Y. Shi, F. Lan, C. Matson et al., “Histone demethylation mediated by the nuclear amine oxidase homolog LSD1,” Cell, vol. 119, no. 7, pp. 941–953, 2004.
[23]
Y. Sun, Y. Xu, K. Roy, and B. D. Price, “DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity,” Molecular and Cellular Biology, vol. 27, no. 24, pp. 8502–8509, 2007.
[24]
A. Shilatifard, “Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression,” Annual Review of Biochemistry, vol. 75, pp. 243–269, 2006.
[25]
E. J. Richards and S. C. R. Elgin, “Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects,” Cell, vol. 108, no. 4, pp. 489–500, 2002.
[26]
F. Lan and Y. Shi, “Epigenetic regulation: methylation of histone and non-histone proteins,” Science in China C, vol. 52, no. 4, pp. 311–322, 2009.
[27]
S. J. Nowak and V. G. Corces, “Phosphorylation of histone H3 correlates with transcriptionally active loci,” Genes and Development, vol. 14, no. 23, pp. 3003–3013, 2000.
[28]
A. Izzo and R. Schneider, “Chatting histone modifications in mammals,” Briefings in functional genomics, vol. 9, no. 5-6, pp. 429–443, 2010.
[29]
M. Masiero, G. Nardo, S. Indraccolo, and E. Favaro, “RNA interference: implications for cancer treatment,” Molecular Aspects of Medicine, vol. 28, no. 1, pp. 143–166, 2007.
[30]
T. Tsukiyama, C. Daniel, J. Tamkun, and C. Wu, “ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor,” Cell, vol. 83, no. 6, pp. 1021–1026, 1995.
[31]
P. D. Varga-Weisz, M. Wilm, E. Bonte, K. Dumas, M. Mann, and P. B. Becker, “Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II,” Nature, vol. 388, no. 6642, pp. 598–602, 1997.
[32]
M. Esteller, “Non-coding RNAs in human disease,” Nature Reviews Genetics, vol. 12, no. 12, pp. 861–874, 2011.
[33]
J. Lu, G. Getz, E. A. Miska et al., “MicroRNA expression profiles classify human cancers,” Nature, vol. 435, no. 7043, pp. 834–838, 2005.
[34]
D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004.
[35]
A. Rouhi, D. L. Mager, R. K. Humphries, and F. Kuchenbauer, “MiRNAs, epigenetics, and cancer,” Mammalian Genome, vol. 19, no. 7-8, pp. 517–525, 2008.
[36]
W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008.
[37]
L. He and G. J. Hannon, “MicroRNAs: small RNAs with a big role in gene regulation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 522–531, 2004.
[38]
M. V. Iorio, C. Piovan, and C. M. Croce, “Interplay between microRNAs and the epigenetic machinery: an intricate network,” Biochimica et Biophysica Acta, vol. 1799, no. 10–12, pp. 694–701, 2010.
[39]
R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993.
[40]
P. Lopez-Serra and M. Esteller, “DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer,” Oncogene, vol. 31, no. 13, pp. 1609–1622, 2012.
[41]
D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2005.
[42]
K. D. Crew and A. I. Neugut, “Epidemiology of gastric cancer,” World Journal of Gastroenterology, vol. 12, no. 3, pp. 354–362, 2006.
[43]
P. Lauren, “The two histological main types of gastric carcinoma: diffuse and so called intestinal-type carcinoma: an attempt at a histo-clinical classification,” Acta pathologica et microbiologica Scandinavica, vol. 64, pp. 31–49, 1965.
[44]
N. Jinawath, Y. Furukawa, S. Hasegawa et al., “Comparison of gene-expression profiles between diffuse- and intestinal-type gastric cancers using a genome-wide cDNA microarray,” Oncogene, vol. 23, no. 40, pp. 6830–6844, 2004.
[45]
S. B. Baylin and P. A. Jones, “A decade of exploring the cancer epigenome-biological and translational implications,” Nature Reviews Cancer, vol. 11, no. 10, pp. 726–734, 2011.
[46]
S. Z. Ding, J. B. Goldberg, and M. Hatakeyama, “Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis,” Future Oncology, vol. 6, no. 5, pp. 851–862, 2010.
[47]
G. Tamura, J. Yin, S. Wang et al., “E-cadherin gene promoter hypermethylation in primary human gastric carcinomas,” Journal of the National Cancer Institute, vol. 92, no. 7, pp. 569–573, 2000.
[48]
F. Graziano, F. Arduini, A. Ruzzo et al., “Prognostic analysis of E-cadherin gene promoter hypermethylation in patients with surgically resected, node-positive, diffuse gastric cancer,” Clinical Cancer Research, vol. 10, no. 8, pp. 2784–2789, 2004.
[49]
G. H. Kang, Y. H. Shim, H. Y. Jung, W. H. Kim, J. Y. Ro, and M. G. Rhyu, “CpG island methylation in premalignant stages of gastric carcinoma,” Cancer Research, vol. 61, no. 7, pp. 2847–2851, 2001.
[50]
T. Waki, G. Tamura, T. Tsuchiya, K. Sato, S. Nishizuka, and T. Motoyama, “Promoter methylation status of E-cadherin, hMLH1, and p16 genes in nonneoplastic gastric epithelia,” American Journal of Pathology, vol. 161, no. 2, pp. 399–403, 2002.
[51]
A. Ooki, K. Yamashita, S. Kikuchi et al., “Potential utility of HOP homeobox gene promoter methylation as a marker of tumor aggressiveness in gastric cancer,” Oncogene, vol. 29, no. 22, pp. 3263–3275, 2010.
[52]
J. O. Boison, C. D. Salisbury, W. Chan, and J. D. MacNeil, “Determination of penicillin G residues in edible animal tissues by liquid chromatography,” Journal of the Association of Official Analytical Chemists, vol. 74, no. 3, pp. 497–501, 1991.
[53]
H. Osaka, Y. L. Wang, K. Takada et al., “Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron,” Human Molecular Genetics, vol. 12, no. 16, pp. 1945–1958, 2003.
[54]
J. Yu, Q. Tao, K. F. Cheung et al., “Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors,” Hepatology, vol. 48, no. 2, pp. 508–518, 2008.
[55]
W. Du, S. Wang, Q. Zhou et al., “ADAMTS9 is a functional tumor suppressor through inhibiting AKT/mTOR pathway and associated with poor survival in gastric cancer,” Oncogene, vol. 32, no. 28, pp. 3319–3328, 2013.
[56]
J. Yu, Q. Tao, Y. Y. Cheng et al., “Promoter methylation of the Wnt/β-catenin signaling antagonist Dkk-3 is associated with poor survival in gastric cancer,” Cancer, vol. 115, no. 1, pp. 49–60, 2009.
[57]
K. Yamashita, S. Sakuramoto, and M. Watanabe, “Genomic and epigenetic profiles of gastric cancer: potential diagnostic and therapeutic applications,” Surgery Today, vol. 41, no. 1, pp. 24–38, 2011.
[58]
K. F. Cheung, C. N. Y. Lam, K. Wu et al., “Characterization of the gene structure, functional significance, and clinical application of RNF180, a novel gene in gastric cancer,” Cancer, vol. 118, no. 4, pp. 947–959, 2012.
[59]
E. K. O. Ng, C. P. H. Leung, V. Y. Shin et al., “Quantitative analysis and diagnostic significance of methylated SLC19A3 DNA in the plasma of breast and gastric cancer patients,” PLoS ONE, vol. 6, no. 7, Article ID e22233, 2011.
[60]
W. K. Leung, K. F. To, E. S. H. Chu et al., “Potential diagnostic and prognostic values of detecting promoter hypermethylation in the serum of patients with gastric cancer,” British Journal of Cancer, vol. 92, no. 12, pp. 2190–2194, 2005.
[61]
A. M. Deaton and A. Bird, “CpG islands and the regulation of transcription,” Genes and Development, vol. 25, no. 10, pp. 1010–1022, 2011.
[62]
C. O. Gigek, M. F. Leal, P. N. O. Silva et al., “HTERT methylation and expression in gastric cancer,” Biomarkers, vol. 14, no. 8, pp. 630–636, 2009.
[63]
M. A. Glozak, N. Sengupta, X. Zhang, and E. Seto, “Acetylation and deacetylation of non-histone proteins,” Gene, vol. 363, no. 1-2, pp. 15–23, 2005.
[64]
P. K. Davis and R. K. Brackmann, “Chromatin remodeling and cancer,” Cancer Biology & Therapy, vol. 2, no. 1, pp. 22–29, 2003.
[65]
N. Koshiishi, J. M. Chong, T. Fukasawa et al., “p300 gene alterations in intestinal and diffuse types of gastric carcinoma,” Gastric Cancer, vol. 7, no. 2, pp. 85–90, 2004.
[66]
M. Z. Ying, J. J. Wang, D. W. Li et al., “The p300/CBP associated factor is frequently downregulated in intestinal-type gastric carcinoma and constitutes a biomarker for clinical outcome,” Cancer Biology and Therapy, vol. 9, no. 4, pp. 312–320, 2010.
[67]
P. Collas, “The state-of-the-art of chromatin immunoprecipitation,” Methods in Molecular Biology, vol. 567, pp. 1–25, 2009.
[68]
J. Song, J. H. Noh, J. H. Lee et al., “Increased expression of histone deacetylase 2 is found in human gastric cancer,” APMIS, vol. 113, no. 4, pp. 264–268, 2005.
[69]
Y. Ye, Y. Xiao, W. Wang et al., “Inhibition of expression of the chromatin remodeling inhibition of expression of the chromatin remodeling gene, SNF2L, selectively leads to DNA damage, growth inhibition, and cancer cell death,” Molecular Cancer Research, vol. 7, no. 12, pp. 1984–1999, 2009.
[70]
C. O. Gigek, L. C. F. Lisboa, M. F. Leal et al., “SMARCA5 methylation and expression in gastric cancer,” Cancer Investigation, vol. 29, no. 2, pp. 162–166, 2011.
[71]
J. H. Lee, M. Y. Song, E. K. Song et al., “Overexpression of SIRT1 protects pancreatic β-cells against cytokine toxicity by suppressing the nuclear factor-κB signaling pathway,” Diabetes, vol. 58, no. 2, pp. 344–351, 2009.
[72]
Y. Mitani, N. Oue, Y. Hamai et al., “Histone H3 acetylation is associated with reduced p21WAFI/CIPI expression by gastric carcinoma,” Journal of Pathology, vol. 205, no. 1, pp. 65–73, 2005.
[73]
I. S. Song, G. H. Ha, J. M. Kim et al., “Human ZNF312b oncogene is regulated by Sp1 binding to its promoter region through DNA demethylation and histone acetylation in gastric cancer,” International Journal of Cancer, vol. 129, no. 9, pp. 2124–2133, 2011.
[74]
S. Ono, N. Oue, H. Kuniyasu et al., “Acetylated histone H4 is reduced in human gastric adenomas and carcinomas,” Journal of Experimental and Clinical Cancer Research, vol. 21, no. 3, pp. 377–382, 2002.
[75]
W. Yasui, N. Oue, S. Ono, Y. Mitani, R. Ito, and H. Nakayama, “Histone acetylation and gastrointestinal carcinogenesis,” Annals of the New York Academy of Sciences, vol. 983, pp. 220–231, 2003.
[76]
M. F. Fraga, E. Ballestar, A. Villar-Garea et al., “Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer,” Nature Genetics, vol. 37, no. 4, pp. 391–400, 2005.
[77]
Y. S. Park, M. Y. Jin, Y. J. Kim, J. H. Yook, B. S. Kim, and S. J. Jang, “The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma,” Annals of Surgical Oncology, vol. 15, no. 7, pp. 1968–1976, 2008.
[78]
H. Takahashi, Y. Murai, K. Tsuneyama et al., “Overexpression of phosphorylated histone H3 is an indicator of poor prognosis in gastric adenocarcinoma patients,” Applied Immunohistochemistry and Molecular Morphology, vol. 14, no. 3, pp. 296–302, 2006.
[79]
R. W. Carthew and E. J. Sontheimer, “Origins and Mechanisms of miRNAs and siRNAs,” Cell, vol. 136, no. 4, pp. 642–655, 2009.
[80]
B. Song and J. Ju, “Impact of miRNAs in gastrointestinal cancer diagnosis and prognosis,” Expert reviews in Molecular Medicine, vol. 12, article e33, 2010.
[81]
G. A. Calin, C. D. Dumitru, M. Shimizu et al., “Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15524–15529, 2002.
[82]
R. Shen, S. Pan, S. Qi, X. Lin, and S. Cheng, “Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer,” Biochemical and Biophysical Research Communications, vol. 394, no. 4, pp. 1047–1052, 2010.
[83]
J. Tie, Y. Pan, L. Zhao et al., “MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the robo1 receptor,” PLoS Genetics, vol. 6, no. 3, Article ID e1000879, 2010.
[84]
K. Pfannkuche, H. Summer, O. Li, J. Hescheler, and P. Dr?ge, “The high mobility group protein HMGA2: a co-regulator of chromatin structure and pluripotency in stem cells?” Stem Cell Reviews and Reports, vol. 5, no. 3, pp. 224–230, 2009.
[85]
K. Motoyama, H. Inoue, Y. Nakamura, H. Uetake, K. Sugihara, and M. Mori, “Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 MicroRNA family,” Clinical Cancer Research, vol. 14, no. 8, pp. 2334–2340, 2008.
[86]
P. A. Gregory, A. G. Bert, E. L. Paterson et al., “The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1,” Nature Cell Biology, vol. 10, no. 5, pp. 593–601, 2008.
[87]
M. Korpal, E. S. Lee, G. Hu, and Y. Kang, “The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2,” Journal of Biological Chemistry, vol. 283, no. 22, pp. 14910–14914, 2008.
[88]
Y. Du, Y. Xu, L. Ding et al., “Down-regulation of miR-141 in gastric cancer and its involvement in cell growth,” Journal of Gastroenterology, vol. 44, no. 6, pp. 556–561, 2009.
[89]
H. Luo, H. Zhang, Z. Zhang et al., “Down-regulated miR-9 and miR-433 in human gastric carcinoma,” Journal of Experimental and Clinical Cancer Research, vol. 28, no. 1, article 82, 2009.
[90]
H. Y. Wan, L. M. Guo, T. Liu, M. Liu, X. Li, and H. Tang, “Regulation of the transcription factor NF-κB1 by microRNA-9 in human gastric adenocarcinoma,” Molecular Cancer, vol. 9, article 16, 2010.
[91]
B. Xiao, J. Guo, Y. Miao et al., “Detection of miR-106a in gastric carcinoma and its clinical significance,” Clinica Chimica Acta, vol. 400, no. 1-2, pp. 97–102, 2009.
[92]
T. Ueda, S. Volinia, H. Okumura et al., “Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis,” The Lancet Oncology, vol. 11, no. 2, pp. 136–146, 2010.
[93]
H. Zhou, J. M. Guo, Y. R. Lou et al., “Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker,” Journal of Molecular Medicine, vol. 88, no. 7, pp. 709–717, 2010.
[94]
E. Bandres, N. Bitarte, F. Arias et al., “microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells,” Clinical Cancer Research, vol. 15, no. 7, pp. 2281–2290, 2009.
[95]
L. Xia, D. Zhang, R. Du et al., “miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells,” International Journal of Cancer, vol. 123, no. 2, pp. 372–379, 2008.
[96]
X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008.
[97]
A. Keller, P. Leidinger, R. Gislefoss et al., “Stable serum miRNA profiles as potential tool for non-invasive lung cancer diagnosis,” RNA Biology, vol. 8, no. 3, pp. 506–516, 2011.
[98]
H. Liu, L. Zhu, B. Liu et al., “Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer,” Cancer Letters, vol. 316, no. 2, pp. 196–203, 2012.
[99]
Y. Zhang, J. Guo, D. Li et al., “Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance,” Medical Oncology, vol. 27, no. 3, pp. 685–689, 2010.
[100]
E. R. Fearon and B. Vogelstein, “A genetic model for colorectal tumorigenesis,” Cell, vol. 61, no. 5, pp. 759–767, 1990.
[101]
M. Esteller, A. Sparks, M. Toyota et al., “Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer,” Cancer Research, vol. 60, no. 16, pp. 4366–4371, 2000.
[102]
?. Bruserud, C. Stapnes, E. Ersv?r, B. T. Gjertsen, and A. Ryningen, “Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cells,” Current Pharmaceutical Biotechnology, vol. 8, no. 6, pp. 388–400, 2007.
[103]
P. W. Laird, L. Jackson-Grusby, A. Fazeli et al., “Suppression of intestinal neoplasia by DNA hypomethylation,” Cell, vol. 81, no. 2, pp. 197–205, 1995.
[104]
H. Cui, P. Onyango, S. Brandenburg, Y. Wu, C. L. Hsieh, and A. P. Feinberg, “Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2,” Cancer Research, vol. 62, no. 22, pp. 6442–6446, 2002.
[105]
J. J. L. Wong, N. J. Hawkins, and R. L. Ward, “Colorectal cancer: a model for epigenetic tumorigenesis,” Gut, vol. 56, no. 1, pp. 140–148, 2007.
[106]
W. Ji, R. Hernandez, X. Y. Zhang et al., “DNA demethylation and pericentromeric rearrangements of chromosome 1,” Mutation Research, vol. 379, no. 1, pp. 33–41, 1997.
[107]
C. M. Suter, D. I. Martin, and R. I. Ward, “Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue,” International Journal of Colorectal Disease, vol. 19, no. 2, pp. 95–101, 2004.
[108]
S. Ogino, K. Nosho, G. J. Kirkner et al., “A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer,” Journal of the National Cancer Institute, vol. 100, no. 23, pp. 1734–1738, 2008.
[109]
K. Kawakami, A. Matsunoki, M. Kaneko, K. Saito, G. Watanabe, and T. Minamoto, “Long interspersed nuclear element-1 hypomethylation is a potential biomarker for the prediction of response to oral fluoropyrimidines in microsatellite stable and CpG island methylator phenotype-negative colorectal cancer,” Cancer Science, vol. 102, no. 1, pp. 166–174, 2011.
[110]
W. M. Grady and J. M. Carethers, “Genomic and epigenetic instability in colorectal cancer pathogenesis,” Gastroenterology, vol. 135, no. 4, pp. 1079–1099, 2008.
[111]
L. Migliore, F. Migheli, R. Spisni, and F. Coppedè, “Genetics, cytogenetics, and epigenetics of colorectal cancer,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 792362, 19 pages, 2011.
[112]
L. Shen, M. Toyota, Y. Kondo et al., “Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 47, pp. 18654–18659, 2007.
[113]
T. Ide, Y. Kitajima, K. Ohtaka, M. Mitsuno, Y. Nakafusa, and K. Miyazaki, “Expression of the hMLH1 gene is a possible predictor for the clinical response to 5-fluorouracil after a surgical resection in colorectal cancer,” Oncology Reports, vol. 19, no. 6, pp. 1571–1576, 2008.
[114]
J. G. Herman, F. Latif, Y. Weng et al., “Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9700–9704, 1994.
[115]
J. M. Cunningham, E. R. Christensen, D. J. Tester et al., “Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability,” Cancer Research, vol. 58, no. 15, pp. 3455–3460, 1998.
[116]
M. F. Kane, M. Loda, G. M. Gaida et al., “Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines,” Cancer Research, vol. 57, no. 5, pp. 808–811, 1997.
[117]
J. G. Herman, A. Umar, K. Polyak et al., “Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 6870–6875, 1998.
[118]
W. D. Chen, Z. J. Han, J. Skoletsky et al., “Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene,” Journal of the National Cancer Institute, vol. 97, no. 15, pp. 1124–1132, 2005.
[119]
S. H. Itzkowitz, L. Jandorf, R. Brand et al., “Improved fecal DNA test for colorectal cancer screening,” Clinical Gastroenterology and Hepatology, vol. 5, no. 1, pp. 111–117, 2007.
[120]
D. M. E. I. Hellebrekers, M. H. F. M. Lentjes, S. M. Van Den Bosch et al., “GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer,” Clinical Cancer Research, vol. 15, no. 12, pp. 3990–3997, 2009.
[121]
J. D. Warren, W. Xiong, A. M. Bunker et al., “Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer,” BMC Medicine, vol. 9, article 133, 2011.
[122]
M. Tanaka, P. Chang, Y. Li et al., “Association of CHFR promoter methylation with disease recurrence in locally advanced colon cancer,” Clinical Cancer Research, vol. 17, no. 13, pp. 4531–4540, 2011.
[123]
J. M. Yi, M. Dhir, L. Van Neste et al., “Genomic and epigenomic integration identifies a prognostic signature in colon cancer,” Clinical Cancer Research, vol. 17, no. 6, pp. 1535–1545, 2011.
[124]
M. Esteller and J. G. Herman, “Generating mutations but providing chemosensitivity: the role of O 6-methylguanine DNA methyltransferase in human cancer,” Oncogene, vol. 23, no. 1, pp. 1–8, 2004.
[125]
F. V. Jacinto and M. Esteller, “MGMT hypermethylation: a prognostic foe, a predictive friend,” DNA Repair, vol. 6, no. 8, pp. 1155–1160, 2007.
[126]
R. Agrelo, W. H. Cheng, F. Setien et al., “Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 23, pp. 8822–8827, 2006.
[127]
T. Kawasaki, M. Ohnishi, Y. Suemoto et al., “WRN promoter methylation possibly connects mucinous differentiation, microsatellite instability and CpG island methylator phenotype in colorectal cancer,” Modern Pathology, vol. 21, no. 2, pp. 150–158, 2008.
[128]
W. Weichert, A. R?ske, S. Niesporek et al., “Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo,” Clinical Cancer Research, vol. 14, no. 6, pp. 1669–1677, 2008.
[129]
C. G. Wang, Y. J. Ye, J. Yuan, F. F. Liu, H. Zhang, and S. Wang, “EZH2 and STAT6 expression profiles are correlated with colorectal cancer stage and prognosis,” World Journal of Gastroenterology, vol. 16, no. 19, pp. 2421–2427, 2010.
[130]
C. C. Lee, W. S. Chen, C. C. Chen et al., “TCF12 protein functions as transcriptional repressor of E-cadherin, and its overexpression is correlated with metastasis of colorectal cancer,” Journal of Biological Chemistry, vol. 287, no. 4, pp. 2798–2809, 2012.
[131]
D. Mossman and R. J. Scott, “Long term transcriptional reactivation of epigenetically silenced genes in colorectal cancer cells requires DNA hypomethylation and histone acetylation,” PLoS ONE, vol. 6, no. 8, Article ID e23127, 2011.
[132]
M. Z. Michael, S. M. O'Connor, N. G. Van Holst Pellekaan, G. P. Young, and R. J. James, “Reduced accumulation of specific MicroRNAs in colorectal neoplasia,” Molecular Cancer Research, vol. 1, no. 12, pp. 882–891, 2003.
[133]
Y. Akao, Y. Nakagawa, and T. Naoe, “MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers,” Oncology Reports, vol. 16, no. 4, pp. 845–850, 2006.
[134]
X. Chen, X. Guo, H. Zhang et al., “Role of miR-143 targeting KRAS in colorectal tumorigenesis,” Oncogene, vol. 28, no. 10, pp. 1385–1392, 2009.
[135]
W. M. Grady, R. K. Parkin, P. S. Mitchell et al., “Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer,” Oncogene, vol. 27, no. 27, pp. 3880–3888, 2008.
[136]
A. Strillacci, C. Griffoni, P. Sansone et al., “MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells,” Experimental Cell Research, vol. 315, no. 8, pp. 1439–1447, 2009.
[137]
Y. Xi, R. Shalgi, O. Fodstad, Y. Pilpel, and J. Ju, “Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer,” Clinical Cancer Research, vol. 12, no. 7 I, pp. 2014–2024, 2006.
[138]
T. C. Chang, E. A. Wentzel, O. A. Kent et al., “Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis,” Molecular Cell, vol. 26, no. 5, pp. 745–752, 2007.
[139]
H. Tazawa, N. Tsuchiya, M. Izumiya, and H. Nakagama, “Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 39, pp. 15472–15477, 2007.
[140]
M. Yamakuchi, M. Ferlito, and C. J. Lowenstein, “miR-34a repression of SIRT1 regulates apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 36, pp. 13421–13426, 2008.
[141]
E. Bandrés, E. Cubedo, X. Agirre et al., “Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues,” Molecular Cancer, vol. 5, article 29, 2006.
[142]
O. Slaby, M. Svoboda, P. Fabian et al., “Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer,” Oncology, vol. 72, no. 5-6, pp. 397–402, 2008.
[143]
I. A. Asangani, S. A. K. Rasheed, D. A. Nikolova et al., “MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer,” Oncogene, vol. 27, no. 15, pp. 2128–2136, 2008.
[144]
Z. Huang, D. Huang, S. Ni, Z. Peng, W. Sheng, and X. Du, “Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer,” International Journal of Cancer, vol. 127, no. 1, pp. 118–126, 2010.