全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study on the Biological Characteristics of CD133+ Cells Interfered by RNA Interference in Gastric Cancer

DOI: 10.1155/2014/329519

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. To detect the changes of biological characteristics in gastric cancer cells interfered by CD133-specific small interfering RNA (siRNA). Methods. First to select the siRNA which has the strongest interference effect among 3 siRNAs (i.e., siRNA1, siRNA2, and siRNA3) in KATO-III cells by RT-PCR and Western blotting assays. Then, CD133+ cells were sorted out from KATO-III cells using an immunomagnetic bead sorting method and transfected with the selected siRNA. Furthermore, the proliferating characteristics, the antichemotherapeutic assessment, Transwell invasion assay, monoclonal sphere formation assay, and subcutaneous transplanted tumor formation assay in nude mice were investigated. Results. siRNA3 showed the strongest interference effect in KATO-III cells. As compared to the uninterfered control group, the CD133+ cells treated by siRNA3 showed significant decreases in the abilities of proliferation, invasion, clone sphere formation, and resistance to antitumour drugs as well as the weight and size of the transplanted tumor, which was nearly similar to that of CD133? cells. Additionally, the protein expression level of the EMT factor E-cadherin increased while those of EMT-related Snail and N-cadherin decreased in CD133+ cells interfered by siRNA3. Conclusion. Inhibition of CD133 gene expression reduces the abilities of gastric cancer cells in proliferation, invasion, clonal sphere formation, and chemoresistance as well as tumor formation in nude mice. 1. Introduction Gastric cancer (GC) is characterized by high incidences of recurrence and metastasis and low chemosensitivity, whose 5-year survival rate remains less than 24% [1]. Presently, the mechanisms of GC development and progression, invasion and metastasis, and recurrence are not fully understood. In accordance with the hypothesis of tumor-initiating cells (TICs) [2], TICs have the potential of self-renewing, active proliferation, high tumorigenicity, and multidifferentiation; TICs are also the primary cells resistant to radiochemotherapy [3]. Evidence shows that CD133+ cells act as TICs in a variety of solid tumors [4–7]. The CD133 expression level in GC tissues is significantly higher than that in the adjacent normal tissues. A higher CD133+ expression level is indicative of the deeper infiltration, later TNM stage, more lymph node metastases, and shorter survival time [8–10]. Several studies sorted the CD133+ cell subgroup from GC cells and further study of their biological characteristics shows that CD133+ cells have significantly higher abilities of proliferation, monoclonal

References

[1]  A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA: A Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
[2]  T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature, vol. 414, no. 6859, pp. 105–111, 2001.
[3]  A. Schulenburg, K. Br?mswig, H. Herrmann et al., “Neoplastic stem cells: current concepts and clinical perspectives,” Critical Reviews in Oncology/Hematology, vol. 76, no. 2, pp. 79–98, 2010.
[4]  M. Olempska, P. A. Eisenach, O. Ammerpohl, H. Ungefroren, F. Fandrich, and H. Kalthoff, “Detection of tumor stem cell markers in pancreatic carcinoma cell lines,” Hepatobiliary and Pancreatic Diseases International, vol. 6, no. 1, pp. 92–97, 2007.
[5]  S. Ma, W. C. Kwok, T. K.-W. Lee et al., “Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations,” Molecular Cancer Research, vol. 6, no. 7, pp. 1146–1153, 2008.
[6]  L. Zhu, P. Gibson, D. S. Currle et al., “Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation,” Nature, vol. 457, no. 7229, pp. 603–607, 2009.
[7]  G. J. Klarmann, E. M. Hurt, L. A. Mathews et al., “Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature,” Clinical and Experimental Metastasis, vol. 26, no. 5, pp. 433–446, 2009.
[8]  J.-W. Yu, P. Zhang, J.-G. Wu et al., “Expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocacinoma,” Journal of Experimental and Clinical Cancer Research, vol. 29, no. 1, article 141, 2010.
[9]  P. Zhao, Y. Li, and Y. Lu, “Aberrant expression of CD133 protein correlates with Ki-67 expression and is a prognostic marker in gastric adenocarcinoma,” BMC Cancer, vol. 10, article 218, 2010.
[10]  R. Q. Lu, J. G. Wu, G. C. Zhou, H. G. Jiang, J. W. Yu, and B. J. Jiang, “Sorting of CD133+ subset cells in human gastric cancer and the identification of their tumor initiating cell-like properties,” Zhonghua Wei Chang Wai Ke Za Zhi, vol. 15, no. 2, pp. 174–179, 2012.
[11]  S. Takaishi, T. Okumura, S. Tu et al., “Identification of gastric cancer stem cells using the cell surface marker CD44,” Stem Cells, vol. 27, no. 5, pp. 1006–1020, 2009.
[12]  L. Wen, X. Z. Chen, K. Yang et al., “Prognostic value of cancer stem cell marker CD133 expression in gastric cancer: a systematic review,” PLoS ONE, vol. 8, no. 3, Article ID e59154, 2013.
[13]  Y. Wakamatsu, N. Sakamoto, H. Z. Oo et al., “Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer,” Pathology International, vol. 62, no. 2, pp. 112–119, 2012.
[14]  A. de Fougerolles, H.-P. Vornlocher, J. Maraganore, and J. Lieberman, “Interfering with disease: a progress report on siRNA-based therapeutics,” Nature Reviews Drug Discovery, vol. 6, no. 6, pp. 443–453, 2007.
[15]  M. Stevenson, “Mechanisms of disease: therapeutic potential of RNA interference,” The New England Journal of Medicine, vol. 351, no. 17, pp. 1772–1777, 2004.
[16]  D.-H. Xu, C. Huang, L.-Y. Liu, and T.-S. Song, “New progress of the highly efficient siRNA design,” Yi Chuan, vol. 28, no. 11, pp. 1457–1461, 2006.
[17]  D. D. Fang, Y. J. Kim, C. N. Lee et al., “Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery,” British Journal of Cancer, vol. 102, no. 8, pp. 1265–1275, 2010.
[18]  T. M. A. Elsaba, L. Martinez-Pomares, A. R. Robins et al., “The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer,” PLoS ONE, vol. 5, no. 5, Article ID e10714, 2010.
[19]  M. A. Nieto, “The ins and outs of the epithelial to mesenchymal transition in health and disease,” Annual Review of Cell and Developmental Biology, vol. 27, pp. 347–376, 2011.
[20]  R. Kalluri, “EMT: when epithelial cells decide to become mesenchymal-like cells,” The Journal of Clinical Investigation, vol. 119, no. 6, pp. 1417–1419, 2009.
[21]  E. W. Thompson, D. F. Newgreen, and D. Tarin, “Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition?” Cancer Research, vol. 65, no. 14, pp. 5991–5995, 2005.
[22]  C. A. O'Brien, A. Pollett, S. Gallinger, and J. E. Dick, “A human colon cancer cell capable of initiating tumour growth in immunodeficient mice,” Nature, vol. 445, no. 7123, pp. 106–110, 2007.
[23]  L. Ricci-Vitiani, D. G. Lombardi, E. Pilozzi et al., “Identification and expansion of human colon-cancer-initiating cells,” Nature, vol. 445, no. 7123, pp. 111–115, 2007.
[24]  G. Liu, X. Yuan, Z. Zeng et al., “Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma,” Molecular Cancer, vol. 5, article 67, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133