Objectives. The aim of this study is to investigate the effects of coeliac disease on cardiac function in children using conventional transthoracic echocardiography (TTE) and tissue Doppler echocardiography (TDE). Methods. Coeliac disease patients were evaluated in two different groups based on serum endomysial antibody (EmA) titers (EmA (+) and EmA (?)), and the data obtained by conventional and TDE studies were compared between the patient groups and healthy controls. Results. There was no significant difference between EmA (+) and EmA (?) groups in terms of the conventional TTE parameters, including ejection fraction (EF), fractional shortening (FS), and left ventricle end diastolic diameter (LVEDD), that show the left ventricular systolic function ( , , ). TDE showed a significant difference in left ventricle (LV) isovolumic relaxation time (LV IVRT) and LV myocardial performance index (LV MPI) parameters between EmA (+) and EmA (?) patient groups ( ). Conclusion. The measurement of LV MPI and LV IVRT parameters by TDE would be beneficial in early determination of the cardiac involvement and establishing appropriate treatment and followup of patients with coeliac disease as well as in making distinction between EmA (+) and EmA (?) patients. 1. Introduction Coeliac disease (CD) is childhood disorder characterized by malabsorption and steatorrhoea but can also affect adults of any age [1, 2]. Studies have shown that Coeliac disease affects about 1% of European and American children and adults [3, 4]. This disease may present in various forms depending on the age at onset and disease duration and may be silent or remain asymptomatic [5, 6]. Autoimmune myocarditis and idiopathic dilated cardiomyopathy are a well-known cause of significant morbidity and mortality among comorbidities of Coeliac disease [7]. In Coeliac disease, many theories have been proposed to explain the development of cardiomyopathy [8, 9]. One theory suggests that intestinal malabsorption leads to nutritional deficiency, and another theory suggests that abnormalities of intestinal absorption leads to increased intestinal absorption of antigens and infectious agents and thus to activation of immune mechanisms, which eventuates in myocardial damage. Finally, the direct immune response may cause damage to small intestine and myocardium [10]. In one study, gluten-free diet was found to be protective in the development of autoimmune diseases [11]. However, it is controversial whether gluten-free diet prevents the progression once the Coeliac disease has been diagnosed [12]. Tissue Doppler
References
[1]
D. H. Andersen, “Celiac syndrome. VI. The relationship of celiac disease, starch intolerance, andsteatorrhea,” The Journal of Pediatrics, vol. 30, no. 5, pp. 564–582, 1947.
[2]
M. H. Sleisenger, H. J. Rynbergen, J. H. Pert, and T. P. Almy, “Treatment of non-tropical sprue: a wheat-, rye-, and oat-free diet,” Journal of the American Dietetic Association, vol. 33, pp. 1137–1140, 1957.
[3]
J. West, R. F. A. Logan, P. G. Hill et al., “Seroprevalence, correlates, and characteristics of undetected coeliac disease in England,” Gut, vol. 52, no. 7, pp. 960–965, 2003.
[4]
A. Fasano, I. Berti, T. Gerarduzzi et al., “Prevalence of Celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study,” Archives of Internal Medicine, vol. 163, no. 3, pp. 286–292, 2003.
[5]
D. Branski and R. Troncone, “Celiac disease: a reappraisal,” Journal of Pediatrics, vol. 133, no. 2, pp. 181–187, 1998.
[6]
J. F. Ludvigsson, P. Ansved, K. F?lth-Magnusson et al., “Symptoms and signs have changed in Swedish children with coeliac disease,” Journal of Pediatric Gastroenterology and Nutrition, vol. 38, no. 2, pp. 181–186, 2004.
[7]
N. R. Reilly and P. H. R. Green, “Epidemiology and clinical presentations of celiac disease,” Seminars in Immunopathology, vol. 34, no. 4, pp. 473–478, 2012.
[8]
R. M. Van Elburg, J. J. Uil, C. J. J. Mulder, and H. S. A. Heymans, “Intestinal permeability in patients with coeliac disease and relatives of patients with coeliac disease,” Gut, vol. 34, no. 3, pp. 354–357, 1993.
[9]
M. T. DeMeo, E. A. Mutlu, A. Keshavarzian, and M. C. Tobin, “The small intestine and nutrition: intestinal permeation and gastrointestinal disease,” Journal of Clinical Gastroenterology, vol. 34, no. 4, pp. 385–396, 2002.
[10]
M. Curione, M. Barbato, F. Viola, P. Francia, L. De Biase, and S. Cucchiara, “Idiopathic dilated cardiomyopathy associated with coeliac disease: the effect of a gluten-free diet on cardiac performance,” Digestive and Liver Disease, vol. 34, no. 12, pp. 866–869, 2002.
[11]
J. Cosnes, C. Cellier, S. Viola et al., “Incidence of autoimmune diseases in celiac disease: protective effect of the gluten-free diet,” Clinical Gastroenterology and Hepatology, vol. 6, no. 7, pp. 753–758, 2008.
[12]
S. Metso, H. Hyyti?-Ilmonen, K. Kaukinen et al., “Gluten-free diet and autoimmune thyroiditis in patients with celiac disease. A prospective controlled study,” Scandinavian Journal of Gastroenterology, vol. 47, no. 1, pp. 43–48, 2012.
[13]
D. Vinereanu, A. A. Ionescu, and A. G. Fraser, “Assessment of left ventricular long axis contraction can detect early myocardial dysfunction in asymptomatic patients with severe aortic regurgitation,” Heart, vol. 85, no. 1, pp. 30–36, 2001.
[14]
S. Tassan-Mangina, C. Brasselet, P. Nazeyrollas et al., “Value of pulsed Doppler tissue imaging for early detection of myocardial dysfunction with anthracyclines,” Archives des Maladies du Coeur et des Vaisseaux, vol. 95, no. 4, pp. 263–268, 2002.
[15]
F. A. Flachskampf, O. A. Breithardt, and W. G. Daniel, “Diagnostic value of tissue doppler parameters in the early diagnosis of cardiomyopathies,” Herz, vol. 32, no. 2, pp. 89–96, 2007.
[16]
M. Dandel, M. Hummel, J. Müller et al., “Reliability of tissue Doppler wall motion monitoring after heart transplantation for replacement of invasive routine screenings by optimally timed cardiac biopsies and catheterizations,” Circulation, vol. 104, no. 1, pp. i184–i191, 2001.
[17]
R. J. Farrell and C. P. Kelly, “Celiac sprue,” New England Journal of Medicine, vol. 346, no. 3, pp. 180–188, 2002.
[18]
A. Fasano, I. Berti, T. Gerarduzzi et al., “Prevalence of Celiac disease in at-risk and not-at-risk groups in the United States: a large multicenter study,” Archives of Internal Medicine, vol. 163, no. 3, pp. 286–292, 2003.
[19]
K. Rostami, J. Kerckhaert, R. Tiemessen, B. M. E. Von Blomberg, J. W. R. Meijer, and C. J. J. Mulder, “Sensitivity of antiendomysium and antigliadin antibodies in untreated celiac disease: disappointing in clinical practice,” American Journal of Gastroenterology, vol. 94, no. 4, pp. 888–894, 1999.
[20]
L. G. Rudski, W. W. Lai, J. Afilalo et al., “Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography,” Journal of the American Society of Echocardiography, vol. 23, no. 7, pp. 685–713, 2010.
[21]
L. E. Teichholz, M. V. Cohen, E. H. Sonnenblick, and R. Gorlin, “Study of left ventricular geometry and function by B-scan ultrasonography in patients with and without asynergy,” New England Journal of Medicine, vol. 291, no. 23, pp. 1220–1226, 1974.
[22]
P. H. R. Green and C. Cellier, “Medical progress: Celiac disease,” New England Journal of Medicine, vol. 357, no. 17, pp. 1731–1743, 2007.
[23]
P. Collin, T. Reunala, E. Pukkala, P. Laippala, O. Keyrilainen, and A. Pasternack, “Coeliac disease—associated disorders and survival,” Gut, vol. 35, no. 9, pp. 1215–1218, 1994.
[24]
D. Prati, M. T. Bardella, M. Peracchi, L. Porretti, M. Scalamogna, and D. Conte, “Antiendomysial antibodies in patients with end-stage heart failure,” American Journal of Gastroenterology, vol. 97, no. 1, pp. 218–219, 2002.
[25]
D. Prati, M. T. Bardella, M. Peracchi et al., “High frequency of anti-endomysial reactivity in candidates to heart transplant,” Digestive and Liver Disease, vol. 34, no. 1, pp. 39–43, 2002.
[26]
A. Lodha, M. Haran, G. Hollander, R. Frankel, and J. Shani, “Celiac disease associated with dilated cardiomyopathy,” Southern Medical Journal, vol. 102, no. 10, pp. 1052–1054, 2009.
[27]
M. Curione, M. Barbato, L. De Biase, F. Viola, L. Lo Russo, and E. Cardi, “Prevalence of coeliac disease in idiopathic dilated cardiomyopathy,” The Lancet, vol. 354, no. 9174, pp. 222–223, 1999.
[28]
Z. A. Makhdoom and N. W. Randall, “Dilated cardiomyopathy due to anticardiolipin syndrome in association with celiac sprue,” Journal of Clinical Gastroenterology, vol. 31, no. 1, pp. 91–92, 2000.
[29]
R. S. T. De Bem, S. R. Da Ro Sa Utiyama, R. M. Nisihara et al., “Celiac disease prevalence in Brazilian dilated cardiomyopathy patients,” Digestive Diseases and Sciences, vol. 51, no. 5, pp. 1016–1019, 2006.
[30]
A. Frustaci, L. Cuoco, C. Chimenti et al., “Celiac disease associated with autoimmune myocarditis,” Circulation, vol. 105, no. 22, pp. 2611–2618, 2002.
[31]
T. B. Polat, N. Urganci, Y. Yalcin et al., “Cardiac functions in children with coeliac disease during follow-up: insights from tissue Doppler imaging,” Digestive and Liver Disease, vol. 40, no. 3, pp. 182–187, 2008.
[32]
C. Sari, N. A. Bayram, F. E. A. Do?an et al., “The evaluation of endothelial functions in patients with celiac disease,” Echocardiography, vol. 29, no. 4, pp. 471–477, 2012.