全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2013 

Sustaining Cavity-Using Species: Patterns of Cavity Use and Implications to Forest Management

DOI: 10.1155/2013/457698

Full-Text   Cite this paper   Add to My Lib

Abstract:

Many bird and mammal species rely on cavities in trees to rear their young or roost. Favourable cavity sites are usually created by fungi, so they are more common in older, dying trees that are incompatible with intensive fiber production. Forestry has reduced amounts of such trees to the extent that many cavity-using vertebrates are now designated “at risk.” The simple model of cavity use presented helps unite research findings, explain patterns of use, and clarify trade-offs that can, or cannot, be made in snag management. Predictions generated are tested using data from over 300 studies. Implications to forest management are derived from the tests, including the following: ensure sustained provision of dying and dead trees, retain both conifers and hardwoods and a range of size and age classes, sustain a range of decay classes, ensure that some large trees or snags are retained, promote both aggregated and dispersed retention of dead and dying trees, meet dead wood requirements for larger species where intensive fibre production is not emphasized, do not do the same thing everywhere, and limit salvage logging after tree mortality. The paper focuses on species breeding in the Pacific Northwest, but draws on data from throughout those species’ ranges. 1. Introduction Most cavities in trees begin with fungi. Because trees resist decay, it takes time for fungi to soften wood enough that cavity excavation by birds is possible. By that time, trees are often old and beginning to die. Old and dying trees reduce economic efficiencies within managed forests, so for decades we have sought to remove them. Our actions were successful, and cavity sites have been much reduced [1–3]. I focus on the Pacific Northwest of North America (PNW), here defined as Alaska, Yukon Territory, Alberta, British Columbia, Washington, Oregon, Idaho, Montana and northern Nevada, and California. Of the 67 vertebrate species commonly using cavities in the PNW, 20 (30%) are designated “at risk” or “potentially at risk.” Where forestry has been practiced longer, the proportion of cavity users among forest-dwelling vertebrates designated “at risk” is higher [4]. I review kinds of cavity use, present a general framework of cavity use in the PNW, review key factors influencing cavity use, and interpret those in terms of management implications. Focus is on primary excavators, but all birds and mammals commonly using cavities are included. Summary tables and figures highlight regional differences: coastal forests (under maritime influence), subboreal plus boreal forest, and inland (all other

References

[1]  B. G. Jonsson, N. Kruys, and T. Ranius, “Ecology of species living on dead wood—lessons for dead wood management,” Silva Fennica, vol. 39, no. 2, pp. 289–309, 2005.
[2]  C. D. Oliver, C. Harrington, M. Bickford, et al., “Maintaining and creating old growth structural features in previously disturbed stands typical of the Eastern Washington Cascades,” Journal of Sustainable Forestry, vol. 2, no. 3, pp. 353–387, 1994.
[3]  G. F. Wilhere, “Simulations of snag dynamics in an industrial Douglas-fir forest,” Forest Ecology and Management, vol. 174, no. 1–3, pp. 521–539, 2003.
[4]  A. Berg, B. Ehnstrom, L. Gustafsson, T. Hallingback, M. Jonsell, and J. Weslien, “Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat associations,” Conservation Biology, vol. 8, no. 3, pp. 718–731, 1994.
[5]  J. Pojar, K. Klinka, and D. V. Meidinger, “Biogeoclimatic ecosystem classification in British Columbia,” Forest Ecology and Management, vol. 22, no. 1-2, pp. 119–154, 1987.
[6]  L. W. Spring, “Climbing and pecking adaptations in some North American woodpeckers,” The Condor, vol. 67, no. 6, pp. 457–488, 1965.
[7]  K. E. H. Aitken and K. Martin, “The importance of excavators in hole-nesting communities: availability and use of natural tree holes in old mixed forests of western Canada,” Journal of Ornithology, vol. 148, supplement 2, pp. S425–S434, 2007.
[8]  E. L. Bull, S. R. Peterson, and J. W. Thomas, “Resource partitioning among woodpeckers in northeastern Oregon,” USDA Forest Service—Research Note, vol. 444, pp. 1–18, 1986.
[9]  K. L. Cockle, K. Martin, and T. Weso?owski, “Woodpeckers, decay, and the future of cavity-nesting vertebrate communities worldwide,” Frontiers in Ecology and the Environment, vol. 9, no. 7, pp. 377–382, 2011.
[10]  G. C. Daily, P. R. Ehrlich, and N. M. Haddad, “Double keystone bird in a keystone species complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 2, pp. 592–594, 1993.
[11]  D. S. Dobkin, A. C. Rich, J. A. Pretare, and W. H. Pyle, “Nest-site relationships among cavity-nesting birds of riparian and snowpocket aspen woodlands in the northwestern Great Basin,” Condor, vol. 97, no. 3, pp. 694–704, 1995.
[12]  W. L. Foster and T. Tate Jr., “The activities and coactions of animals at sapsucker trees,” Living Bird, vol. 5, pp. 87–113, 1966.
[13]  R. S. Miller and R. W. Nero, “Hummingbird- sapsucker associations in northern climates,” Canadian Journal of Zoology, vol. 61, no. 7, pp. 1540–1546, 1983.
[14]  G. D. Sutherland, C. L. Gass, P. A. Thompson, and K. P. Lertzman, “Feeding territoriality in migrant rufous hummingbirds: defense of yellow-bellied sapsucker (Sphyrapicus varius) feeding sites (Selasphorus rufus),” Canadian Journal of Zoology, vol. 60, no. 9, pp. 2046–2050, 1982.
[15]  R. T. Holmes, “Ecological and evolutionary impacts of bird predation on forest insects: an overview,” Studies in Avian Biology, no. 13, pp. 6–13, 1990.
[16]  J. W. Thomas, R. G. Anderson, C. Maser, et al., “Snags,” in Wildlife Habitats in Managed Forests. The Blue Mountains of Oregon and Washington, J. W. Thomas, Ed., pp. 60–77, USDA Forest Service Agricultural Handbook, 1979.
[17]  F. L. Bunnell and L. A. Dupuis, “Riparian habitats in British Columbia: their nature and role,” in Riparian Habitat Management and Research, K. H. Morgan and M. A. Lashmar, Eds., pp. 7–21, Special Publication of the Fraser River Action Plan, Canadian Wildlife Service, Delta, Canada, 1995.
[18]  R. B. Bury, “Differences in amphibian populations in logged and old growth redwood forest,” Northwest Science, vol. 57, no. 3, pp. 167–178, 1983.
[19]  J. J. Stelmock and A. S. Harestad, “Food habits and life history of the clouded salamander (Aneides ferreus) on northern Vancouver Island,” Syesis, vol. 12, pp. 71–75, 1979.
[20]  P. H. Baldwin and N. K. Zaczkowski, “Breeding biology of the Vaux Swift,” The Condor, vol. 65, no. 5, pp. 400–406, 1963.
[21]  C. M. Davis, “A nesting study of the Brown Creeper,” Living Bird, vol. 17, pp. 237–263, 1978.
[22]  P. R. Ehrlich, D. S. Dobkin, and D. Wheye, The Birder’s Handbook: A Field Guide to the Natural History of North American Birds, Simon and Schuster, New York, NY, USA, 1988.
[23]  L. de K. Lawrence, “A comparative life-history study of four species of woodpeckers,” Ornithological Monographs, no. 5, pp. 1–156, 1967.
[24]  E. L. Walters, E. H. Miller, and P. E. Lowther, “Yellow-bellied Sapsucker (Sphyrapicus varius),” in The Birds of North America Online, A. Poole, Ed., Cornell Lab of Ornithology, Ithaca, NY, USA, 2002.
[25]  M. C. Kalcounis and M. R. Brigham, “Secondary use of aspen cavities by tree-roosting big brown bats,” Journal of Wildlife Management, vol. 62, no. 2, pp. 603–611, 1998.
[26]  S. E. Lewis, “Roost fidelity of bats: a review,” Journal of Mammalogy, vol. 76, no. 2, pp. 481–496, 1995.
[27]  F. L. Bunnell and A. C. Allaye-Chan, “Potential of ungulate winter-range reserves as habitat for cavity-nesting birds,” in Proceedings of the Symposium on Fish and Wildlife Relationships in Old-Growth Forests, W. R. Meehan, T. R. Merrell, and T. A. Hanley, Eds., pp. 357–365, American Institute of Fishery Research Biologists, 1984.
[28]  R. N. Conner, O. K. Miller, and C. S. Adkisson, “Woodpecker dependence on trees infected by fungal heart rots,” The Wilson Bulletin, vol. 88, no. 4, pp. 575–581, 1976.
[29]  A. S. Harestad and D. G. Keisker, “Nest tree use by primary cavity-nesting birds in south central British Columbia,” Canadian Journal of Zoology, vol. 67, no. 4, pp. 1067–1073, 1989.
[30]  L. Kilham, “Reproductive behavior of yellow-bellied sapsuckers. I. Preference for nesting in Fomes infested aspens and nest hole interrelations with flying squirrels, raccoons, and other animals,” The Wilson Bulletin, vol. 83, no. 2, pp. 159–171, 1971.
[31]  A. L. Shigo and L. Kilham, “Sapsuckers and Fomes ignarius var. populinus,” USDA Forest Service Research Note, vol. NE-RN-84, pp. 1–2, 1968.
[32]  M. O. G. Eriksson, “Clutch sizes and incubation efficiency in relation to nest box size among goldeneyes Bucephala clangula,” Ibis, vol. 121, no. 1, pp. 107–109, 1979.
[33]  M. R. Evans, D. B. Lank, W. S. Boyd, and F. Cooke, “A comparison of the characteristics and fate of Barrow's Goldeneye and Bufflehead nests in nest boxes and natural cavities,” Condor, vol. 104, no. 3, pp. 610–619, 2002.
[34]  L. Gustaffson and S. G. Nilsson, “Clutch size and breeding success of pied and collared flycatchers Ficedula spp. in nest boxes of different sizes,” Ibis, vol. 127, no. 3, pp. 380–385, 1985.
[35]  J. H. Van Balen, “The relationship between nest-box size, occupation and breeding parameters of the great tit (Parus major) and some other hole- nesting species.,” Ardea, vol. 72, no. 2, pp. 163–175, 1984.
[36]  K. E. H. Aitken, K. L. Wiebe, and K. Martin, “Nest-site reuse patterns for a cavity-nesting bird community in interior British Columbia,” Auk, vol. 119, no. 2, pp. 391–402, 2002.
[37]  C. E. Bock, A. Cruz, M. C. Grant, C. S. Aid, and T. R. Strong, “Field experimental evidence for diffuse competition among southwestern riparian birds,” American Naturalist, vol. 140, no. 5, pp. 815–828, 1992.
[38]  L. von Haartman, “Adaptation in hole-nesting birds,” Evolution, vol. 11, no. 3, pp. 339–347, 1957.
[39]  E. L. Bull, “Longevity of snags and their use by woodpeckers,” in Proceedings of the Snag Habitat Management Symposium, J. W. Davis, G. A. Goodwin, and R. A. Ochenfels, Eds., pp. 264–67, USDA Forest Service General Technical Report, RM-GTR-99, 1983.
[40]  R. Everett, J. Lehmkuhl, R. Schellhaas et al., “Snag dynamics in a chronosequence of 26 wildfires on the east slope of the cascade range in Washington State, USA,” International Journal of Wildland Fire, vol. 9, no. 4, pp. 223–234, 2000.
[41]  S. M. Garber, J. P. Brown, D. S. Wilson, D. A. Maguire, and L. S. Heath, “Snag longevity under alternative silvicultural regimes in mixed-species forests of central Maine,” Canadian Journal of Forest Research, vol. 35, no. 4, pp. 787–796, 2005.
[42]  M. L. Morrison and M. G. Raphael, “Modeling the dynamics of snags,” Ecological Applications, vol. 3, no. 2, pp. 322–330, 1993.
[43]  R. E. Russell, V. A. Saab, J. G. Dudley, and J. J. Rotella, “Snag longevity in relation to wildfire and postfire salvage logging,” Forest Ecology and Management, vol. 232, no. 1–3, pp. 179–187, 2006.
[44]  J. K. Agee, Fire Ecology of Pacific Northwest Forests, Island Press, Washington, DC, USA, 2003.
[45]  F. L. Bunnell, “Forest-dwelling vertebrate faunas and natural fire regimes in British Columbia: patterns and implications for conservation,” Conservation Biology, vol. 9, no. 3, pp. 636–644, 1995.
[46]  F. L. Bunnell, I. Houde, B. Johnston, et al., “How dead trees sustain live organisms in western forests,” in Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests, W. F. Laudenslayer Jr., P. J. Shea, B. E. Valentine, C. P. Weatherspoon, and T. E. Lisle, Eds., pp. 291–318, USDA Forest Service, General Technical Report PSW-GTR-181, 2002.
[47]  W. G. Dahms, “How long do ponderosa pine snags stand?” in Research Note, pp. 1–4, USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Ore, USA, 1949.
[48]  F. P. Keen, “How soon do yellow pine snags fall?” Journal of Forestry, vol. 27, no. 6, pp. 735–737, 1929.
[49]  J. M. Schmid, S. A. Mata, and W. F. McCambridge, “Natural falling of beetle-killed ponderosa pine,” pp. 1–3, USDA Forest Service Research Note RM-454, 1985.
[50]  S. Zack, T. L. George, and W. F. Laudenslayer Jr., “Are there snags in the system? Comparing cavity use among nesting birds in “snag-rich” and “snag-poor” eastside pine forests,” in Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests USDA Forest Service, General Technical Report PSW- GTR-181, W. F. Laudenslayer Jr., P. J. Shea, B. E. Valentine, C. P. Weatherspoon, and T. E. Lisle, Eds., pp. 179–191, 2002.
[51]  K. Martin, A. Norris, and M. Drever, “Effects of bark beetle outbreaks on avian biodiversity in the British Columbia interior: implications for critical habitat management,” BC Journal of Ecosystems and Management, vol. 7, no. 3, pp. 10–24, 2006.
[52]  J. Schepps, S. Lohr, and T. E. Martin, “Does tree hardness influence nest-tree selection by primary cavity nesters?” Auk, vol. 116, no. 3, pp. 658–665, 1999.
[53]  P. Li and T. E. Martin, “Nest-site selection and nesting success of cavity-nesting birds in high elevation forest drainages,” The Auk, vol. 108, no. 2, pp. 405–418, 1991.
[54]  B. Schreiber and D. S. deCalesta, “The relationship between cavity-nesting birds and snags on clearcuts in western Oregon,” Forest Ecology and Management, vol. 50, no. 3-4, pp. 299–316, 1992.
[55]  K. Martin, K. E. H. Aitken, and K. L. Wiebe, “Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: nest characteristics and niche partitioning,” Condor, vol. 106, no. 1, pp. 5–19, 2004.
[56]  K. B. Aubry and C. M. Raley, “Selection of nest and roost trees by pileated woodpeckers in coastal forests of Washington,” Journal of Wildlife Management, vol. 66, no. 2, pp. 392–406, 2002.
[57]  E. L. Bull, “Ecology of the pileated woodpecker in northeastern Oregon,” Journal of Wildlife Management, vol. 51, no. 2, pp. 472–481, 1987.
[58]  P. Ohanjanian, I. A. Manley, and P. Davidson, “Williamson’s sapsucker in the East Kootenay Region of British Columbia: results of 2006 inventory,” Report to Tembec Industries, Forest Investment Account, BC Ministry of Environment, Victoria, Canada, 2006.
[59]  R. van den Driessche, T. Chatwin, and M. Mather, “Habitat selection by bats in temperate old-growth forests, Clayoquot Sound, British Columbia,” in Proceedings of the Conference on the Biology and Management of Species and Habitats at Risk, L. Darling, Ed., vol. 1, pp. 313–319, BC Ministry of Environment, Lands and Parks, University College of the Cariboo, Kamloops, Canada, 2000.
[60]  M. J. Vonhof and J. C. Gwilliam, “Intra- and interspecific patterns of day roost selection by three species of forest-dwelling bats in Southern British Columbia,” Forest Ecology and Management, vol. 252, no. 1–3, pp. 165–175, 2007.
[61]  C. L. Mahon, J. D. Steventon, and K. Martin, “Cavity and bark nesting bird response to partial cutting in Northern conifer forests,” Forest Ecology and Management, vol. 256, no. 12, pp. 2145–2153, 2008.
[62]  D. E. Runde and D. E. Capen, “Characteristics of northern hardwood trees used by cavity-nesting birds.,” Journal of Wildlife Management, vol. 51, no. 1, pp. 217–223, 1987.
[63]  C. Savignac and C. S. Machtans, “Habitat requirements of the Yellow-bellied Sapsucker, Sphyrapicus varius, in boreal mixedwood forests of northwestern Canada,” Canadian Journal of Zoology, vol. 84, no. 9, pp. 1230–1239, 2006.
[64]  N. Nielsen-Pincus and E. O. Garton, “Responses of cavity-nesting birds to changes in available habitat reveal underlying determinants of nest selection,” Northwest Naturalist, vol. 88, no. 3, pp. 135–146, 2007.
[65]  J. A. Deal and M. Setterington, Woodpecker Nest Habitat in the Nimpkish Valley, Northern Vancouver Island, Canadian Forest Products Ltd., Woss, Canada, 2000.
[66]  British Columbia Nest Records Scheme, Biodiversity Centre of Wildlife Studies, Victoria, Canada.
[67]  R. T. Reynolds, B. D. Linkhart, and J. J. Jeanson, Characteristics of Snags and Trees Containing Cavities in a Colorado Conifer Forest, USDA Forest Service Research Note RM-RN-455, 1985.
[68]  W. Klenner and D. J. Huggard, “Nesting and foraging habitat requirements of woodpeckers in relation to experimental harvesting treatments at Opax Mountain,” in Proceedings of the Dry Douglas-Fir Workshop New Information for the Management of Dry Douglas-Fir Forests, C. Hollstedt, A. Vyse, and D. Huggard, Eds., pp. 277–291, Research Branch, BC Ministry of Forests, 1998.
[69]  S. J. Madsen, Habitat use by cavity-nesting birds in the Okanogan National Forest, Washington [M.S. thesis], University of Washington, Seattle, Wash, USA, 1985.
[70]  M. G. Raphael and M. White, “Use of snags by cavity-nesting birds in the Sierra Nevada,” Wildlife Monographs, no. 86, pp. 1–66, 1984.
[71]  B. Winternitz and H. Cahn, “Nestholes in live and dead aspen,” in Proceedings of the Symposium in Snag Habitat Management, J. W. Davis, G. A. Goodwin, and R. A. Ockenfels, Eds., pp. 102–106, USDA Forest Service General Technical Report RM-99, 1983.
[72]  R. W. Lundquist and J. M. Mariani, “Nesting habitat and abundance of snag-dependent birds in the southern Washington Cascade Range,” in Wildlife and Vegetation of Unmanaged Douglas-Fir Forest, L. F. Ruggiero, K. B. Aubry, A. B. Carey, and M. H. Huff, Eds., pp. 220–239, USDA Forest Service General Technical Report PNW-286, 1991.
[73]  E. Miller and D. R. Miller, “Snag use by birds,” in Management of Western Forests and Grasslands for Nongame Birds, R. M. DeGraaf, Ed., pp. 337–356, USDA Forest Service General Technical Report INT-GTR-86, 1980.
[74]  E. L. Bull, Resource partitioning among woodpeckers in northeastern Oregon [Ph.D. thesis], University of Idaho, Moscow, Idaho, USA, 1980.
[75]  E. L. Caton, Effects of fire and salvage logging on the cavity-nesting bird community in northwestern Montana [Ph.D. thesis], University of Montana, Missoula, Mont, USA, 1996.
[76]  N. Hoffman, Distribution of Picoides woodpeckers in relation to habitat disturbance within theYellow stone area [M.S. thesis], Montana State University, Bozeman, Mont, USA, 1997.
[77]  R. W. Campbell, N. K. Dawe, I. McTaggart-Cowan, et al., The Birds of British Columbia. Vol. 2, Diurnal Birds of Prey Through Woodpeckers, University of British Columbia Press, Vancouver, Canada, 1990.
[78]  R. N. Conner, R. G. Hooper, H. S. Crawford, et al., “Woodpecker nesting habitat in cut and uncut woodlands in Virginia,” Journal of Wildlife Management, vol. 39, no. 1, pp. 144–150, 1975.
[79]  K. E. Kelleher, A study of hole-nesting avifauna of southwest British Columbia [M.S. thesis], University of British Columbia, Vancouver, Canada, 1963.
[80]  V. E. Scott, J. A. Whelan, and P. L. Svoboda, “Cavity-nesting birds and forest management,” in Proceedings of the Workshop on the Management of Western Forests and Grasslands for Nongame Birds, R. M. DeGraaf, Ed., pp. 311–324, USDA Forest Service General Technical Report INT-GTR-86, 1980.
[81]  K. L. Wiebe, “Microclimate of tree cavity nests: is it important for reproductive success in northern flickers?” Auk, vol. 118, no. 2, pp. 412–421, 2001.
[82]  B. R. McClelland and P. T. McClelland, “Pileated woodpecker nest and roost trees in Montana: links with old-growth and forest “health”,” Wildlife Society Bulletin, vol. 27, no. 3, pp. 846–857, 1999.
[83]  T. K. Mellen, Home range and habitat use of Pileated Woodpeckers, western Oregon [M.S. thesis], Oregon State University, Corvalis, Ore, USA, 1987.
[84]  J. B. Joy, “Characteristics of nest cavities and nest trees of the Red-breasted Sapsucker in Coastal Montane forests,” Journal of Field Ornithology, vol. 71, no. 3, pp. 525–530, 2000.
[85]  B. R. McClelland and P. T. McClelland, “Red-naped Sapsucker nest trees in Northern Rocky Mountain old-growth forest,” Wilson Bulletin, vol. 112, no. 1, pp. 44–50, 2000.
[86]  C. J. Conway and T. E. Martin, “Habitat suitability for Williamsons's sapsuckers in mixed-conifer forests,” Journal of Wildlife Management, vol. 57, no. 2, pp. 322–328, 1993.
[87]  P. N. Hooge, M. T. Stanback, and W. D. Koenig, “Nest-site selection in the acorn woodpecker,” Auk, vol. 116, no. 1, pp. 45–54, 1999.
[88]  R. W. Campbell, N. K. Dawe, I. Mctaggart-Cowan, et al., The Birds of British Columbia. Vol. 3. Passerines: Flycatchers Through Vireos, University of British Columbia Press, Vancouver, Canada, 1997.
[89]  G. K. Peck and R. D. James, Breeding Birds of Ontario, Nidiology and Distribution, Volume 2: Passerines, Royal Ontario Museum, Toronto, Canada, 1987.
[90]  A. H. Miller and C. E. Bock, “Natural history of the Nuttall Woodpecker at the Hastings Reservation,” The Condor, vol. 74, no. 3, pp. 284–294, 1972.
[91]  S. M. McEllin, “Nest sites and population demographies of White-breasted and Pygmy Nuthatches in Colorado,” The Condor, vol. 81, no. 4, pp. 348–352, 1979.
[92]  K. A. Milne and S. J. Hejl, “Nest-site characteristics of white-headed woodpeckers,” Journal of Wildlife Management, vol. 53, no. 1, pp. 50–55, 1989.
[93]  R. D. Dixon, Ecology of White-headed Woodpeckers in the central Oregon Cascades [M.S. thesis], University of Idaho, Moscow, Idaho, USA, 1995.
[94]  M. Haggard and W. L. Gaines, “Effects of stand-replacement fire and salvage logging on a cavity-nesting bird community in eastern Cascades, Washington,” Northwest Science, vol. 75, no. 4, pp. 387–396, 2001.
[95]  S. M. Hitchcock, Abundanceand nesting success of cavity nesting birds in unlogged and salvage-logged burned forests in northwest Montana [M.S. thesis], University of Montana, Missoula, Mont, USA, 1996.
[96]  C. Y. Smith, I. G. Warkentin, and M. T. Moroni, “Snag availability for cavity nesters across a chronosequence of post-harvest landscapes in western Newfoundland,” Forest Ecology and Management, vol. 256, no. 4, pp. 641–647, 2008.
[97]  M. A. Harris, Habitat use among woodpeckers on forest burns [M.S. thesis], University of Montana, Missoula, Mont, USA, 1982.
[98]  J. A. Sedgwick and F. L. Knopf, “Habitat relationships and nest site characteristics of cavity- nesting birds in cottonwood floodplains,” Journal of Wildlife Management, vol. 54, no. 1, pp. 112–124, 1990.
[99]  L. W. Gyug, C. Steeger, and I. Ohanjanian, “Characteristics and densities of Williamson's Sapsucker nest trees in British Columbia,” Canadian Journal of Forest Research, vol. 39, no. 12, pp. 2319–2331, 2009.
[100]  G. C. Daily, “Heartwood decay and vertical distribution of red-naped sapsucker nest cavities,” Wilson Bulletin, vol. 105, no. 4, pp. 674–679, 1993.
[101]  C. J. Conway and T. E. Martin, “Habitat suitability for Williamsons's sapsuckers in mixed-conifer forests,” Journal of Wildlife Management, vol. 57, no. 2, pp. 322–328, 1993.
[102]  L. Saari, E. Pulliainen, O. Hildén, A. J?rvinen, and I. M?kisalo, “Breeding biology of the Siberian Tit Parus cinctus in Finland,” Journal of Ornithology, vol. 135, no. 4, pp. 549–575, 1994.
[103]  D. G. Keisker, “Nest tree selection by primary cavity-nesting birds in south-central British Columbia,” Wildlife Report R-13, BC Ministry of Environment, Lands and Parks, Victoria, Canada, 1987.
[104]  K. M. Mazur, P. C. James, and S. D. Frith, “Barred Owl (Strix varia) nest site characteristics in the boreal forest of Saskatchewan,” in Proceedings of the 2nd International Symposium in Biology and Conservation of Owls of the Northern Hemisphere, J. R. Duncan, D. H. Johnson, and T. H. Nicholls, Eds., pp. 267–271, USDA Forest Service, General Technical Report NC-190, 1997.
[105]  M. R. Evans, Breeding habitat selection by Barrow’s Goldeneye and Bufflehead in the Cariboo-Chilcotin region of British Columbia: nest sites, brood-rearing habitat, and competition [Ph.D. thesis], Simon Fraser University, Burnaby, Canada, 2003.
[106]  C. M. Davis, “A nesting study of the Brown Creeper,” Living Bird, vol. 17, pp. 237–263, 1978.
[107]  J. J. Siegel, An evaluation of the minimum habitat quality standards for birds in old-growthponderosa pine forests, northern Arizona [M.S. thesis], University of Arizona, Tucson, Ariz, USA, 1989.
[108]  C. Steeger and J. Dulisse, “Ecological interrelationships of three-toed woodpeckers with bark beetles and pine trees,” in Research Summary RS-035, pp. 1–4, BC Ministry of Forests, Nelson, Canada, 1997.
[109]  M. A. Stern, T. G. Wise, and K. L. Theodore, “Use of natural cavity by bufflehead nesting in Oregon,” The Murrelet, vol. 68, no. 2, p. 50, 1987.
[110]  D. P. Arsenault, “Differentiating nest sites of primary and secondary cavity-nesting birds in New Mexico,” Journal of Field Ornithology, vol. 75, no. 3, pp. 257–265, 2004.
[111]  R. W. Campbell, N. K. Dawe, I. McTaggart-Cowan, et al., “The birds of British Columbia,” in Introduction, Loons Through Waterfowl, vol. 1, University of British Columbia Press, Vancouver, Canada, 1990.
[112]  D. F. Stauffer and L. B. Best, “Nest-site selection by cavity-nesting birds of riparian habitats in Iowa.,” Wilson Bulletin, vol. 94, no. 3, pp. 329–337, 1982.
[113]  W. B. Rendell and R. J. Robertson, “Nest-site characteristics, reproductive success and cavity availability for Tree Swallows breeding in natural cavities,” The Condor, vol. 91, no. 4, pp. 875–885, 1989.
[114]  E. L. Bull and C. T. Collins, “Nest site fidelity, breeding age, and adult longevity in the Vaux's swift,” North American Bird Bander, vol. 21, no. 2, pp. 49–51, 1996.
[115]  E. L. Bull and H. D. Cooper, “Vaux's swift nests in hollow trees,” Western Birds, vol. 22, no. 2, pp. 85–91, 1991.
[116]  J. E. Hunter and M. J. Mazurek, “Characteristics of trees used by nesting and roosting Vaux's Swifts in northwestern California,” Western Birds, vol. 34, no. 4, pp. 225–229, 2003.
[117]  G. D. Hayward, P. H. Hayward, and E. O. Garton, “Ecology of boreal owls in the northern Rocky Mountains, USA,” Wildlife Monographs, no. 124, pp. 1–59, 1993.
[118]  J. B. Cunningham, R. P. Balda, and W. S. Gaud, “Selection and use of snags by secondary and cavity-nesting birds of the ponderosa pine forest,” USDA Forest Service Research Paper RM-RP-222, 1980.
[119]  J. R. Robb and T. A. Bookhout, “Factors influencing wood duck use of natural cavities,” Journal of Wildlife Management, vol. 59, no. 2, pp. 372–383, 1995.
[120]  D. S. Gilmer, I. J. Ball, L. M. Cowardin, et al., “Natural cavities used by wood ducks in north-central Minnesota,” Journal of Wildlife Management, vol. 42, no. 2, pp. 288–298, 1978.
[121]  G. J. Soulliere, “Density of suitable wood duck nest cavities in a northern hardwood forest,” Journal of Wildlife Management, vol. 52, no. 1, pp. 86–89, 1988.
[122]  H. H. Prince, “Nest sites used by wood ducks and common goldeneyes in New Brunswick,” Journal of Wildlife Management, vol. 32, no. 3, pp. 489–500, 1968.
[123]  L. L. C. Jones, M. G. Raphael, J. T. Forbes, et al., “Using remotely activated cameras to monitor maternal dens of martens,” in Martes: Taxonomy, Ecology, Techniques, and Management, G. Proulx, H. N. Bryant, and P. M. Woodard, Eds., pp. 329–349, Provincial Museum of Alberta, Edmonton, Canada, 1997.
[124]  S. K. Martin and R. H. Barrett, “Resting site selection by marten at Sagehen Creek, California,” Northwestern Naturalist, vol. 72, no. 2, pp. 37–42, 1991.
[125]  M. G. Raphael and L. L. C. Jones, “Characteristics of resting and denning sites of American martens in central Oregon and western Washington,” in Martes: Taxonomy, Ecology, Techniques and Management, G. Proulx, H. N. Bryant, and P. M. Woodward, Eds., pp. 146–166, Provincial Museum of Alberta, Edmonton, Canada, 1997.
[126]  L. F. Ruggiero, D. E. Pearson, and S. E. Henry, “Characteristics of American marten den sites in Wyoming,” Journal of Wildlife Management, vol. 62, no. 2, pp. 663–673, 1998.
[127]  W. D. Spencer, “Seasonal rest-site preferences of pine martens in the northern Sierra Nevada,” Journal of Wildlife Management, vol. 51, no. 3, pp. 616–621, 1987.
[128]  B. J. Betts, “Roosting behaviour of silver-haired bats (Lasionycteris noctivagans) and big brown bats (Eptesicus fuscus) in northeast Oregon,” in Proceedings of the Bats and Forests Symposium, R. M. R. Barclay and R. M. Brigham, Eds., pp. 61–66, British Columbia Ministry of Forests, 1996.
[129]  M. J. Rabe, T. E. Morrell, and H. Green, “Characteristics of ponderosa pine snag roosts used by reproductive bats in northern Arizona,” Journal of Wildlife Management, vol. 62, no. 2, pp. 612–621, 1998.
[130]  S. A. Rasheed and S. L. Holroyd, Roosting Habitat Assessment and Inventory of Bats in the Mica Wildlife Compensation Area, Columbia Basin Fish and Wildlife Compensation Program, Nelson, Canada, 1995.
[131]  M. J. Vonhof, A Survey of the Abundance, Diversity, and Roost-Site Preferences of Bats in the Pend d'Oreille Valley, British Columbia, Columbia Basin Fish and Wildlife Compensation Program, Nelson, Canada, 1996.
[132]  J. Akenson, Black Bear Den Summary NE Region—Interim Progress Report. Starkey Bear Study, Oregon Department of Fish and Game, La Grande, Ore, USA, 1994.
[133]  E. L. Bull, J. J. Akenson, B. J. Betts, et al., “The interdependence of wildlife and old-growth forests,” in Proceedings of the Workshop on Wildlife Tree/Stand-Level Biodiversity, P. Bradford, T. Manning, and B. I'Anson, Eds., pp. 71–76, BC Ministry of Environment, Lands, and Parks and Ministry of Forests, 1996.
[134]  H. Davis, Characteristics and selection of winter dens by black bears in coastal British Columbia [M.S. thesis], Simon Fraser University, Burnaby, Canada, 1996.
[135]  D. Immell and M. C. Boulay, Progress Report—Black Bear Ecology Research Project. Wildlife Research Project, Oregon Department of Fish and Wildlife, Portland, Ore, USA, 1994.
[136]  D. J. Lindsay, Black Bear den Catalogue: A Listing of Coastal Black Bear Dens, Timberwest Forest, Crofton, Canada, 1999.
[137]  F. G. Lindzey and C. Meslow, “Characteristics of black bear dens on Long Island, Washington,” Northwest Science, vol. 60, no. 4, pp. 236–242, 1976.
[138]  W. O. Noble, C. E. Meslow, and M. D. Pope, Denning Habits of Black Bears in the Central Coast Range of Oregon, Department of Fisheries and Wildlife, Oregon State University, Corvallis, Ore, USA, 1990.
[139]  R. M. Brigham, M. J. Vonhof, R. M. R. Barclay, and J. C. Gwilliam, “Roosting behavior and roost-site preferences of forest-dwelling california bats (Myotis californicus),” Journal of Mammalogy, vol. 78, no. 4, pp. 1231–1239, 1997.
[140]  S. Grindal, Upper Kootenay River Bat Survey, Columbia Basin Fish and Wildlife Compensation Program, Nelson, Canada, 1997.
[141]  T. F. Paragi, S. M. Arthur, and W. B. Krohn, “Importance of tree cavities as natal dens for fishers,” Northern Journal of Applied Forestry, vol. 13, no. 2, pp. 79–83, 1996.
[142]  J. S. Yaeger, Habitat at fisher resting sites in the Klamath province of northern California [M.S. thesis], Humboldt State University, Arcata, Calif, USA, 2005.
[143]  A. B. Carey, T. M. Wilson, C. C. Maguire, and B. L. Biswell, “Dens of northern flying squirrels in the pacific northwest,” Journal of Wildlife Management, vol. 61, no. 3, pp. 684–699, 1997.
[144]  R. A. Mowrey and J. C. Zasada, “Den tree use and movements of northern flying squirrels in interior Alaska and implications for forest management,” in Proceedings of the Symposium on Fish and Wildlife Relationships in Old-Growth Forests, W. R. Meehan, T. R. Merrell, and T. A. Hanley, Eds., pp. 351–356, American Institute of Fishery Research Biologists, 1984.
[145]  C. Steeger and J. Dulisse, “Characteristics and dynamics of cavity nest trees in southern British Columbia,” in Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests, W. F. Laudenslayer Jr., P. J. Shea, B. E. Valentine, C. P. Weatherspoon, and T. E. Lisle, Eds., pp. 275–289, USDA Forest Service, General Technical Report PSW-GTR-181, 2002.
[146]  T. J. Weller and C. J. Zabel, “Characteristics of fringed myotis day roosts in northern California,” Journal of Wildlife Management, vol. 65, no. 3, pp. 489–497, 2001.
[147]  L. H. Crampton and R. M. R. Barclay, “Relationships between bats and stand age and structure in aspen mixedwood forests in Alberta,” in Relationships Between Stand Age, Stand Structure and Biodiversity in Aspen Mixedwood Forests in Alberta, B. Stelfox, Ed., pp. 211–225, Alberta Environmental Centre, Vegreville, Canada; Canadian Forest Service, Edmonton, Canada, 1995.
[148]  M. C. Kalcounis and K. R. Hecker, “Intraspecific variation in roost-site selection by little brown bats (Myotis lucifugus),” in Proceedings of the Bats and Forests Symposium, R. M. R. Barclay and R. M. Brigham, Eds., pp. 81–90, British Columbia Ministry of Forests, 1996.
[149]  P. C. Ormsbee and W. C. McComb, “Selection of day roosts by female long-legged myotis in the central Oregon Cascade Range,” Journal of Wildlife Management, vol. 62, no. 2, pp. 596–603, 1998.
[150]  M. C. Caceres, The summer ecology of Myotis species bats in the interior wet-belt of British Columbia [M.S. thesis], University of Calgary, Calgary, Canada, 1998.
[151]  M. A. Menzel, S. F. Owen, W. M. Ford et al., “Roost tree selection by northern long-eared bat (Myotis septentrionalis) maternity colonies in an industrial forest of the central Appalachian mountains,” Forest Ecology and Management, vol. 155, no. 1-3, pp. 107–114, 2002.
[152]  D. L. Waldien, J. P. Hayes, and E. B. Arnett, “Day-roosts of female long-eared myotis in western Oregon,” Journal of Wildlife Management, vol. 64, no. 3, pp. 785–796, 2000.
[153]  L. A. Campbell, J. G. Hallett, and M. A. O'Connell, “Conservation of bats in managed forests: use of roosts by Lasionycteris noctivagans,” Journal of Mammalogy, vol. 77, no. 4, pp. 976–984, 1996.
[154]  M. J. Vonhof and R. M. R. Barclay, “Use of tree stumps as roosts by the western long-eared bat,” Journal of Wildlife Management, vol. 61, no. 3, pp. 674–684, 1997.
[155]  P. L. Svoboda, K. E. Young, and V. E. Scott, “Recent nesting records of Purple Martins in western Colorado,” Western Birds, vol. 11, no. 4, pp. 195–198, 1980.
[156]  A. D. M. Rayner and L. Boddy, Fungal Decomposition of Wood, John Wiley and Sons, Chichester, UK, 1988.
[157]  F. L. Bunnell and A. C. Chan-McLeod, “Terrestrial vertebrates,” in The Rain Forests of Home. Profile of a North American Bioregion, P. K. Schoonmaker, B. von Hagen, and E. C. Wolf, Eds., pp. 103–130, Island Press, Washington, DC, USA, 1997.
[158]  J. J. Akenson and M. G. Henjum, “Black bear den site selection in the Starkey study area,” Blue Mountains Natural Resources Institute, Natural Resource News, vol. 4, no. 2, pp. 1–2, 1994.
[159]  A. T. Hamilton, Personal Communication, BC Ministry of Fish and Wildlife, Victoria, Canada, 2010.
[160]  W. C. McComb and R. E. Noble, “Nest-box and natural-cavity use in three mid-south forest habitats,” Journal of Wildlife Management, vol. 445, no. 1, pp. 93–101, 1981.
[161]  S. J. Hejl, K. R. Newlon, M. E. Mcfadzen, et al., “Brown Creeper (Certhia americana),” in The Birds of North America Online, A. Poole, Ed., Cornell Lab of Ornithology, Ithaca, NY, USA, 2002.
[162]  B. Peterson and G. Gauthier, “Nest site use by cavity-nesting birds of the Cariboo Parkland, British Columbia,” The Wilson Bulletin, vol. 97, no. 3, pp. 319–331, 1985.
[163]  F. L. Bunnell, E. Wind, and R. Wells, “Dying and dead hardwoods: their implications to management,” in Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests, W. F. Laudenslayer Jr, P. J. Shea, B. E. Valentine, C. P. Weatherspoon, and T. E. Lisle, Eds., pp. 695–716, USDA Forest Service, General Technical Report PSW-GTR-181, 2002.
[164]  R. Goggans, R. D. Dixon, and L. C. Seminara, “Habitat use by three-toed and black- backed woodpeckers, Deschutes National Forest,” USDA Forest Service Technical Report 87-3-02, 1989.
[165]  W. Klenner and D. Huggard, “Three-toed woodpecker nesting and foraging at Sicamous Creek,” in Proceedings of the Workshop on the Sicamous Creek Silvicultural Systems Project, C. Hollstedt and A. Vyse, Eds., pp. 224–233, Research Branch, BC Ministry of Forests, 1997.
[166]  E. L. Bull and J. A. Jackson, “Pileated woodpecker (Dryocopus pileatus),” in The Birds of North America Online, A. Poole, Ed., Cornell Lab of Ornithology, Ithaca, NY, USA, 2011.
[167]  A. B. Crockett and H. H. Hadow, “Nest site selection by Williamson's and red-naped sapsuckers,” The Condor, vol. 77, no. 3, pp. 365–368, 1975.
[168]  M. Axelrod, “Observations on a boreal chickadee nest,” The Loon, vol. 51, pp. 135–140, 1979.
[169]  C. Galen, “A preliminary assessment of the status of the Lewis' Woodpecker in Wasco County, Oregon,” Tech. Rep. 88-3-01, Oregon Department of Fish and Wildlife, Portland, Ore, USA, 1989.
[170]  B. P. Booth, The effects of thinning on forest bird communities in dry, interior Douglas-fir forests [M.S. thesis], University of British Columbia, Vancouver, Canada.
[171]  K. L. Garrett, M. G. Raphael, and R. D. Dixon, “White-headed Woodpecker (Picoides albolarvatus),” in The Birds of North America Online, A. Poole, Ed., Cornell Lab of Ornithology, Ithaca, NY, USA, 1996.
[172]  W. C. Weber and S. R. Cannings, “The white-headed woodpecker (Dendrocopus albovatus) In British Columbia,” Syesis, vol. 9, pp. 215–220, 1976.
[173]  C. L. Hartwig, D. S. Eastman, and A. S. Harestad, “Characteristics of pileated woodpecker (Dryocopus pileatus) cavity trees and their patches on southeastern Vancouver Island, British Columbia, Canada,” Forest Ecology and Management, vol. 187, no. 2-3, pp. 225–234, 2004.
[174]  C. Steeger, M. Machmer, and E. Walters, “Ecology and management of woodpeckers and wildlife trees in British Columbia,” in Fraser River Action Plan, pp. 1–23, Canadian Wildlife Service, Delta, Canada, 1996.
[175]  R. L. Hutto and S. M. Gallo, “The effects of postfire salvage logging on cavity-nesting birds,” Condor, vol. 108, no. 4, pp. 817–831, 2006.
[176]  R. A. Cannings, R. J. Cannings, and S. G. Cannings, Birds of the Okanagan Valley, British Columbia, Royal British Columbia Museum, Victoria, Canada, 1987.
[177]  J. A. Deal and D. W. Gilmore, “Effects of vertical structure and biogeoclimatic subzone on nesting locations for woodpeckers on north central Vancouver Island: nest tree attributes,” Northwest Science, vol. 72, no. 2, pp. 119–121, 1998.
[178]  S. H?gvar, G. H?gvar, and E. M?nness, “Nest site selection in Norwegian woodpeckers,” Holarctic Ecology, vol. 13, no. 2, pp. 156–165, 1990.
[179]  T. Weso?owski and L. Tomia?oj?, “The breeding ecology of woodpeckers in a temperate primaeval forest—preliminary data,” Acta Ornithologica, vol. 22, no. 1, pp. 1–21, 1986.
[180]  K. Eckert, “First Minnesota nesting record of northern three-toed woodpecker,” Loon, vol. 53, pp. 221–223, 1981.
[181]  A. J. Erskine and W. D. McLaren, “Sapsucker nest holes and their use by other species,” The Canadian Field-Naturalist, vol. 86, no. 4, pp. 357–361, 1972.
[182]  C. E. Bock, “The ecology and behavior of the Lewis's Woodpecker (Asyndesmus lewis),” in University of California Publication in Zoology, vol. 92, University of California Press, Berkeley, Calif, USA, 1970.
[183]  W. M. Block, “Foraging ecology of Nuttall's woodpecker,” The Auk, vol. 108, no. 2, pp. 303–318, 1991.
[184]  L. L. Short Jr., “The systematics and behavior of some North American woodpeckers, genus Picoides(Aves),” Bulletin of the American Museum of Natural History, vol. 145, 118 pages, 1971.
[185]  J. R. Waters, Population and habitat characteristics of cavity-nesting birds in a California oak woodland [M.S. thesis], Humboldt State University, Arcata, Calif, USA, 1988.
[186]  V. A. Saab and J. G. Dudley, Responses of Cavity-Nesting Birds to Stand-Replacement Fire and Salvage Logging in Ponderosa Pine/Douglas-Fir Forests of Southwestern Idaho, USDA Forest Service Research Paper RMRS-RP-11, 1998.
[187]  D. L. Leonard Jr., “Three-toed Woodpecker (Picoides tridactylus),” in The Birds of North America Online, A. Poole, Ed., Cornell Lab of Ornithology, Ithaca, NY, USA, 2001.
[188]  R. W. Mannan, E. C. Meslow, and H. M. Wight, “Use of snags by birds in Douglas-fir forests, Western Oregon,” Journal of Wildlife Management, vol. 44, no. 4, pp. 787–797, 1980.
[189]  B. G. Marcot and R. Hill, “Flammulated owls in northwestern California,” Western Birds, vol. 11, no. 3, pp. 141–149, 1980.
[190]  M. L. Richmond, L. R. DeWeese, and R. E. Pillmore, “Brief observations on the breeding biology of the flammulated owl in Colorado,” Western Birds, vol. 11, no. 1, pp. 35–46, 1980.
[191]  B. Webb, “Distribution and nesting requirements of montane forest owls in Colorado—part III: flammulated owl (Otus flammeolus),” Journal of the Colorado Field Ornithologists, vol. 6, pp. 76–81, 1982.
[192]  E. L. Bull, A. L. Wright, and M. G. Henjum, “Nesting habitat of flammulated owls in Oregon,” Journal of Raptor Research, vol. 24, no. 3, pp. 52–55, 1990.
[193]  R. T. Reynolds and B. D. Linkhart, “The nesting biology of flammulated owls in Colorado,” in Proceedings of the Biology and Conservation of Northern Forest Owls Symposium, R. W. Nero, R. J. Clark, R. J. Knapton, and R. H. Hamre, Eds., pp. 239–248, USDA Forest Service Technical Report RM-GTR-42, 1997.
[194]  A. M. van Woudenberg, Integrated management of flammulated owl breeding habitat and timber harvest in British Columbia [M.S. thesis], University of British Columbia, Vancouver, Canada, 1992.
[195]  H. E. Kingery and C. K. Ghalambor, “Pygmy nuthatch (Sitta pygmaea),” in The Birds of North America Online, A. Poole, Ed., Cornell Lab of Ornithology, Ithaca, NY, USA, 2001.
[196]  T. Brush, B. W. Anderson, and R. D. Ohmart, “Habitat selection related to resource availability among cavity-nesting birds,” in Proceedings of the Snag Habitat Management Symposium, J. W. Davis and G. A. Goodwin R .A. Ockenfels, Eds., pp. 88–98, USDA Forest Service General Technical Report RM-99, 1983.
[197]  S. P. Cline, A. B. Berg, and H. M. Wight, “Snag characteristics and dynamics in Douglas-fir forests, western Oregon,” Journal of Wildlife Management, vol. 44, no. 4, pp. 773–786, 1980.
[198]  K. H. Wright and G. M. Harvey, The Deterioration of Beetle-Killed Douglas-Fir in Western Oregon and Washington, USDA Forest Service Research Paper PNW-RP-50, 1967.
[199]  C. Steeger and C. L. Hitchcock, “Influence of forest structure and diseases on nestsite selection by red-breasted nuthatches,” Journal of Wildlife Management, vol. 62, no. 4, pp. 1349–1358, 1998.
[200]  T. S. Buchanan and G. H. Englerth, Decay and Other Losses in Windthrown Timber on the Olympic Peninsula, Washington, USDA Forest Service Technical Bulletin 733, Washington, DC, USA, 1940.
[201]  N. T. Engelhardt, “Pathological deterioration of looper-killed western hemlock on southern Vancouver Island,” Forest Science, vol. 3, no. 2, pp. 125–136, 1957.
[202]  S. Parsons, K. J. Lewis, and J. M. Psyllakis, “Relationships between roosting habitat of bats and decay of aspen in the sub-boreal forests of British Columbia,” Forest Ecology and Management, vol. 177, no. 1–3, pp. 559–570, 2003.
[203]  P. M. Cryan, M. A. Bogan, and G. M. Yanega, “Roosting habits of four bat species in the black hills of South Dakota,” Acta Chiropterologica, vol. 3, no. 1, pp. 43–52, 2001.
[204]  R. W. Perry and R. E. Thill, “Roost selection by big brown bats in forests of Arkansas: importance of Pine snags sand open forest habitats to males,” Southeastern Naturalist, vol. 7, no. 4, pp. 607–618, 2008.
[205]  S. J. Rancourt, M. I. Rule, and M. A. O'Connell, “Maternity roost site selection of big brown bats in ponderosa pine forests of the Channeled Scablands of northeastern Washington State, USA,” Forest Ecology and Management, vol. 248, no. 3, pp. 183–192, 2007.
[206]  R. M. R. Barclay and R. M. Brigham, “Year-to-year reuse of tree-roosts by California bats (Myotis californicus) in southern British Columbia,” American Midland Naturalist, vol. 146, no. 1, pp. 80–85, 2001.
[207]  J. L. Boland, J. P. Hayes, W. P. Smith, and M. M. Huso, “Selection of day-roosts by Keen's myotis (Myotis Keenii) at multiple spatial scales,” Journal of Mammalogy, vol. 90, no. 1, pp. 222–234, 2009.
[208]  L. H. Crampton and R. M. R. Barclay, “Selection of roosting and foraging habitat by bats in different-aged aspen mixedwood stands,” Conservation Biology, vol. 12, no. 6, pp. 1347–1358, 1998.
[209]  J. M. Psyllakis and R. M. Brigham, “Characteristics of diurnal roosts used by female Myotis bats in sub-boreal forests,” Forest Ecology and Management, vol. 223, no. 1–3, pp. 93–102, 2006.
[210]  P. C. Ormsbee, “Characteristics, use, and distribution of day roosts selected by female Myotis volans (long-legged myotis) in forested habitat of the central Oregon Cascades,” in Proceedings of the Bats and Forests Symposium, R. M. R. Barclay and R. M. Brigham, Eds., pp. 124–130, British Columbia Ministry of Forests, 1996.
[211]  R. W. Foster and A. Kurta, “Roosting ecology of the northern bat (Myotis septentrionalis) and comparisons with the endangered Indiana bat (Myotis sodalis),” Journal of Mammalogy, vol. 80, no. 2, pp. 659–672, 1999.
[212]  M. J. Lacki and J. H. Schwierjohann, “Day-roost characteristics of northern bats in mixed mesophytic forest,” Journal of Wildlife Management, vol. 65, no. 3, pp. 482–488, 2001.
[213]  M. D. Baker, M. J. Lacki, G. A. Faixa, P. L. Droppelman, R. A. Slack, and S. A. Slankard, “Habitat use of pallid bats in coniferous forests of northern California,” Northwest Science, vol. 82, no. 4, pp. 269–275, 2008.
[214]  R. M. R. Barclay, P. A. Faure, and D. R. Farr, “Roosting behavior and roost selection by migrating silver-haired bats (Lasionycteris noctivagans),” Journal of Mammalogy, vol. 69, no. 4, pp. 821–825, 1988.
[215]  T. A. Mattson, S. W. Buskirk, and N. L. Stanton, “Roost sites of the silver-haired bat (Lasionycteris noctivagans) in the Black Hills, South Dakota,” Great Basin Naturalist, vol. 56, no. 3, pp. 247–253, 1996.
[216]  C. L. Cotton and K. L. Parker, “Winter habitat and nest trees used by northern flying squirrels in subboreal forests,” Journal of Mammalogy, vol. 81, no. 4, pp. 1071–1086, 2000.
[217]  J. S. Gerrow, Home range, habitat use, nesting ecology and diet of the northern flying squirrel in southern New Brunswick [M.S. thesis], Acadia University, Wolfville, Canada, 1996.
[218]  G. L. Holloway and J. R. Malcolm, “Nest-tree use by northern and southern flying squirrels in central Ontario,” Journal of Mammalogy, vol. 88, no. 1, pp. 226–233, 2007.
[219]  K. J. Martin, Movements and habitat characteristics of northern flying squirrels in the central Oregon Cascades [M.S. thesis], Oregon State University, Corvallis, Ore, USA, 1994.
[220]  M. D. Meyer, D. A. Kelt, and M. P. North, “Nest trees of northern flying squirrels in the Sierra Nevada,” Journal of Mammalogy, vol. 86, no. 2, pp. 275–280, 2005.
[221]  M. D. Meyer, M. P. North, and D. A. Kelt, “Nest trees of northern flying squirrels in Yosemite National Park, California,” Southwestern Naturalist, vol. 52, no. 1, pp. 157–161, 2007.
[222]  J. W. Witt, “Home range and density estimates for the northern flying squirrel, Glaucomys sabrinus, in western Oregon,” Journal of Mammalogy, vol. 73, no. 4, pp. 921–929, 1992.
[223]  M. J. Lacki and M. D. Baker, “Day roosts of female fringed myotis (Myotis thysanodes) in xeric forests of the pacific northwest,” Journal of Mammalogy, vol. 88, no. 4, pp. 967–973, 2007.
[224]  C. R. Willis and R. M. Brigham, “Physiological and ecological aspects of roost selection by reproductive female hoary bats (Lasiurus cinereus),” Journal of Mammalogy, vol. 86, no. 1, pp. 86–94, 2005.
[225]  D. G. Constantine, “Ecological observations on lasiurine bats in Iowa,” Journal of Mammalogy, vol. 47, no. 1, pp. 34–41, 1966.
[226]  M. A. Vonhof and J. C. Gwilliam, A Summary of Bat Research in the Pend d'Oreille Valley in Southern British Columbia, Columbia Basin Fish and Wildlife Compensation Program, Nelson, Canada, 2000.
[227]  D. I. Solick and R. M. R. Barclay, “Thermoregulation and roosting behaviour of reproductive and nonreproductive female western long-eared bats (Myotis evotis) in the Rocky Mountains of Alberta,” Canadian Journal of Zoology, vol. 84, no. 4, pp. 589–599, 2006.
[228]  S. J. Rancourt, M. I. Rule, and M. A. O'Connell, “Maternity roost site selection of long-eared myotis, Myotis evotis,” Journal of Mammalogy, vol. 86, no. 1, pp. 77–84, 2005.
[229]  M. J. Vonhof and J. C. Gwilliam, Survey of the Roost-Site Preferences of California, Western Long-Eared, and Long-Legged Bats in the Pend d'Oreille Valley, British Columbia, Columbia Basin Fish and Wildlife Compensation Program, Nelson, Canada, 1999.
[230]  R. H. Waring and J. F. Franklin, “Evergreen coniferous forests of the Pacific Northwest,” Science, vol. 204, no. 4400, pp. 1380–1386, 1979.
[231]  S. S. Niemiec, G. R. Ahrens, S. Willits, et al., Hardwoods of the Pacific Northwest, Research Contribution No. 8, Forest Research Laboratory, Oregon State University, Corvallis, Ore, USA, 1995.
[232]  F. L. Bunnell, E. Wind, and M. Boyland, “Diameters and heights of trees with cavities: their implications to management,” in Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests, W. F. Laudenslayer Jr., P. J. Shea, B. E. Valentine, C. P. Weatherspoon, and T. E. Lisle, Eds., pp. 717–738, USDA Forest Service, General Technical Report PSW-GTR-181, 2002.
[233]  F. L. Bunnell, L. L. Kremsater, and E. Wind, “Managing to sustain vertebrate richness in forests of the Pacific Northwest: relationships within stands,” Environmental Reviews, vol. 7, no. 3, pp. 97–146, 1999.
[234]  D. A. Sibley, The Sibley Field Guide to Birds of Western North America, Alfred A. Knopf, New York, NY, USA, 2003.
[235]  B. J. Putnam, Songbird responses of precommercially thinned and unthinned stands in east- central Washington [M.S. thesis], Oregon State University, Corvallis, Ore, US, 1983.
[236]  B. R. McClelland, Relationships between hole-nesting birds, forest snags, and decay in Western larch-douglas-fir forests of the Northern Rocky Mountains [M.S. thesis], University of Montana, Missoula, Mont, USA, 1977.
[237]  B. R. McClelland, S. S. Frissle, W. C. Fischer, et al., “Habitat management for hole-nesting birds in forests of western larch and Douglas-fir,” Journal of Forestry, vol. 77, no. 8, pp. 480–483, 1979.
[238]  S. K. Nelson, Habitat use and densities of cavity-nesting birds in the Oregon coast ranges [M.S. thesis], Oregon State University, Corvallis, Ore, USA, 1988.
[239]  J. E. Zarnowitz and D. A. Manuwal, “The effects of forest management on cavity-nesting birds in northwestern Washington.,” Journal of Wildlife Management, vol. 49, no. 1, pp. 255–263, 1985.
[240]  M. A. Machmer and B. Korol, “Assessment of wildlife tree habitat in the Revelstoke Forest District,” Final Technical Report, Forest Renewal BC, Victoria, Canada, 1998.
[241]  E. L. Bull and C. Meslow, “Habitat requirements of the pileated woodpecker in northeastern Oregon,” Journal of Forestry, vol. 75, no. 6, pp. 335–337, 1977.
[242]  E. L. Bull, R. S. Holthausen, and M. G. Henjum, “Roost trees used by pileated woodpeckers in northeastern Oregon,” Journal of Wildlife Management, vol. 56, no. 4, pp. 786–793, 1992.
[243]  E. L. Walters, Habitat and space use of red-naped sapsucker, Sphyrapicus nuchalis, in the Hat Creek valley, south-central British Columbia [M.S. thesis], University of Victoria, Victoria, Canada, 1990.
[244]  C. L. Mahon, K. Martin, and J. D. Steventon, “Habitat attributes and chestnut-backed chickadee nest site selection in uncut and partial-cut forests,” Canadian Journal of Forest Research, vol. 37, no. 7, pp. 1272–1285, 2007.
[245]  K. A. Linder, Habitat utilization and behavior of nesting Lewis's Woodpeckers (Melanerpes lewis) in the Laramie range, southeast Wyoming [M.S. thesis], University of Wyoming, Laramie, Wyo, USA, 1994.
[246]  K. T. Vierling, “Habitat selection of Lewis' woodpeckers in southeastern Colorado,” Wilson Bulletin, vol. 109, no. 1, pp. 121–130, 1997.
[247]  V. A. Saab, R. E. Russell, and J. G. Dudley, “Nest-site selection by cavity-nesting birds in relation to postfire salvage logging,” Forest Ecology and Management, vol. 257, no. 1, pp. 151–159, 2009.
[248]  R. W. Mannan and E. C. Meslow, “Bird populations and vegetation characteristics in managed and old-growth forests, northeastern Oregon,” Journal of Wildlife Management, vol. 48, no. 4, pp. 1219–1238, 1984.
[249]  K. Viste-Sparkman, White-breasted nuthatch density and nesting ecology in oak woodlands of the Willamette Valley, Oregon [M.S. thesis], Oregon State University, Corvallis, Ore, USA, 2005.
[250]  R. D. Dixon, “Density, nest-site and roost-site characteristics, home-range, habitat-use, and behavior of White-headed Woodpeckers: Deshutes and Winema National Forests, Oregon,” in Nongame Project 93-3-01, pp. 1–90, Oregon Department of Fish and Wildlife, Salem, Ore, USA, 1995.
[251]  B. Fall, “Early summer warbler records and boreal chickadee nest near Itasca Park,” The Loon, vol. 49, pp. 198–201, 1977.
[252]  D. B. Hay and M. Guntert, “Seasonal selection of tree cavities by pygmy nuthatches based on cavity characteristics,” in Proceedings of the Symposium on Snag Habitat Management, J. W. Davis, G. A. Goodwin, and R. A. Ockenfels, Eds., pp. 117–120, USDA Forest Service General Technical Report RM-99, 1983.
[253]  J. F. Poulin, M. A. Villard, M. Edman, P. J. Goulet, and A. M. Eriksson, “Thresholds in nesting habitat requirements of an old forest specialist, the Brown Creeper (Certhia americana), as conservation targets,” Biological Conservation, vol. 141, no. 4, pp. 1129–1137, 2008.
[254]  M. A. Stern, T. G. Wise, and K. L. Theodore, “Use of natural cavity by bufflehead nesting in Oregon,” The Murrelet, vol. 68, no. 2, p. 50, 1987.
[255]  A. P. Yetter, S. P. Havera, and C. S. Hine, “Natural-cavity use by nesting wood ducks in Illinois,” Journal of Wildlife Management, vol. 63, no. 2, pp. 630–638, 1999.
[256]  G. M. Haramis, Wood duck (Aix sponsa) ecology and management within the green-timber impoundments at Montezuma National Wildlife Refuge [M.S. thesis], Cornell University, Ithaca, NY, USA, 1975.
[257]  L. R. Belmonte, Home range and habitat characteristics of boreal owls in northeastern Minnesota [M.S. thesis], University of Minnesota, Duluth, Minn, USA, 2005.
[258]  F. L. Bunnell, L. L. Kremsater, and R. W. Wells, Likely Consequences of Forest Management on Terrestrial, Forest-Dwelling Vertebrates in Oregon, Oregon Forest Resources Institute, Portland, Ore, USA, 1997.
[259]  W. J. Sydeman and M. Guntert, “Winter communal roosting in the pygmy nuthatch,” in Proceedings of the Symposium on Snag Habitat Management, J. W. Davis, G. A. Goodwin, and R. A. Ockenfels, Eds., pp. 121–124, USDA Forest Service General Technical Report RM-99, 1983.
[260]  E. L. Bull and A. K. Blumton, “Roosting behavior of postfledging Vaux's Swifts in northeastern Oregon,” Journal of Field Ornithology, vol. 68, no. 2, pp. 302–305, 1997.
[261]  M. C. Kalcounis-Rüppell, J. M. Psyllakis, and R. M. Brigham, “Tree roost selection by bats: an empirical synthesis using meta-analysis,” Wildlife Society Bulletin, vol. 33, no. 3, pp. 1123–1132, 2005.
[262]  R. M. Brigham, “Flexibility in foraging and roosting behaviour by the big brown bat (Eptesicus fuscus),” Canadian Journal of Zoology, vol. 69, no. 1, pp. 117–121, 1991.
[263]  H. G. Broders and G. J. Forbes, “Interspecific and intersexual variation in roost-site selection of northern long-eared and little brown bats in the greater fundy national park ecosystem,” Journal of Wildlife Management, vol. 68, no. 3, pp. 602–610, 2004.
[264]  C. Caceres, “Northern long-eared bat,” Progress Report 014, Columbia Basin Fish and Wildlife Compensation Program, Nelson, Canada, 1997.
[265]  M. D. Baker and M. J. Lacki, “Day-roosting habitat of female long-legged myotis in ponderosa pine forests,” Journal of Wildlife Management, vol. 70, no. 1, pp. 207–215, 2006.
[266]  T. C. Carter and G. A. Feldhamer, “Roost tree use by maternity colonies of Indiana bats and northern long-eared bats in southern Illinois,” Forest Ecology and Management, vol. 219, no. 2-3, pp. 259–268, 2005.
[267]  C. J. Garroway and H. G. Broders, “Day roost characteristics of northern long-eared bats (Myotis septentrionalis) in relation to female reproductive status,” Ecoscience, vol. 15, no. 1, pp. 89–93, 2008.
[268]  J. B. Johnson, J. W. Edwards, W. M. Ford, and J. E. Gates, “Roost tree selection by northern myotis (Myotis septentrionalis) maternity colonies following prescribed fire in a Central Appalachian Mountains hardwood forest,” Forest Ecology and Management, vol. 258, no. 3, pp. 233–242, 2009.
[269]  T. S. Jung, I. D. Thompson, and R. D. Titman, “Roost site selection by forest-dwelling male Myotis in central Ontario, Canada,” Forest Ecology and Management, vol. 202, no. 1–3, pp. 325–335, 2004.
[270]  M. A. Menzel, S. F. Owen, W. M. Ford et al., “Roost tree selection by northern long-eared bat (Myotis septentrionalis) maternity colonies in an industrial forest of the central Appalachian mountains,” Forest Ecology and Management, vol. 155, no. 1–3, pp. 107–114, 2002.
[271]  R. W. Perry and R. E. Thill, “Roost selection by male and female northern long-eared bats in a pine-dominated landscape,” Forest Ecology and Management, vol. 247, no. 1–3, pp. 220–226, 2007.
[272]  D. B. Sasse and P. J. Pekins, “Summer roosting ecology of northern long-eared bats (Myotis septentrionalis) in the White Mountain National Forest,” in Proceedings of the Bats and Forests Symposium, R. M. R. Barclay and R. M. Brigham, Eds., pp. 91–101, British Columbia Ministry of Forests, 1996.
[273]  J. C. Timpone, J. G. Boyles, K. L. Murray, D. P. Aubrey, and L. W. Robbins, “Overlap in roosting habits of Indiana bats (Myotis sodalis) and northern bats (Myotis septentrionalis),” American Midland Naturalist, vol. 163, no. 1, pp. 115–123, 2010.
[274]  M. J. Evelyn, D. A. Stiles, and R. A. Young, “Conservation of bats in suburban landscapes: roost selection by Myotis yumanensis in a residential area in California,” Biological Conservation, vol. 115, no. 3, pp. 463–473, 2004.
[275]  V. J. Bakker and K. Hastings, “Den trees used by northern flying squirrels (Glaucomys sabrinus) in southeastern Alaska,” Canadian Journal of Zoology, vol. 80, no. 9, pp. 1623–1633, 2002.
[276]  H. M. Hackett and J. F. Pagels, “Nest site characteristics of the endangered northern flying squirrel (Glaucomys sabrinus coloratus) in Southwest Virginia,” American Midland Naturalist, vol. 150, no. 2, pp. 321–331, 2003.
[277]  L. McDonald, “Relationships between northern flying squirrels and stand age and structure in aspen mixedwood forests in Alberta,” in Relationships between Stand Age, Stand Structure, and Biodiversity in Aspen Mixedwood Forests in Alberta, J. B. Stelfox, Ed., pp. 227–231, Alberta Environmental Centre, Vegreville, Canada; Canadian Forest Service, Edmonton, Canada, 1995.
[278]  P. D. Weigl, “Study of the northern flying squirrel, Glaucomys sabrinus, by temperature telemetry,” American Midland Naturalist, vol. 92, no. 2, pp. 482–486, 1974.
[279]  M. J. Merrick, S. R. Bertelsen, and J. L. Koprowski, “Characteristics of mount graham red squirrel nest sites in a mixed conifer forest,” Journal of Wildlife Management, vol. 71, no. 6, pp. 1958–1963, 2007.
[280]  E. L. Bull and T. W. Heater, “Resting and denning sites of American martens in Northeastern Oregon,” Northwest Science, vol. 74, no. 3, pp. 179–185, 2000.
[281]  T. G. Chapin, D. M. Phillips, D. J. Harrison, et al., “Seasonal selection of habitat by resting marten in Maine,” in Martes: Taxonomy, Ecology, Techniques, and Management, G. Proulx, H. N. Bryant, and P. M. Woodard, Eds., pp. 166–181, Provincial Museum of Alberta, Edmonton, Canada, 1997.
[282]  J. H. Gilbert, J. L. Wright, D. J. Lauten, et al., “Den and rest-site characteristics of American marten and fisher in northern Wisconsin,” in Martes: Taxonomy, Ecology, Techniques, and Management, G. Proulx, H. N. Bryant, and P. M. Woodard, Eds., pp. 135–1145, Provincial Museum of Alberta, Edmonton, Canada, 1997.
[283]  T. N. Hauptman, Spatial and temporal distribution and feeding ecology of the pine marten [M.S. thesis], Idaho State University, Pocatello, Idaho, USA, 1979.
[284]  G. R. Ryder, “Characteristics of three natal den sites of American marten in the lower mainland region of southwestern British Columbia,” Wildlife Afield, vol. 6, no. 1, pp. 32–35, 2009.
[285]  K. M. Wynne and J. A. Sherburne, “Summer home range use by adult marten in northwestern Maine,” Canadian Journal of Zoology, vol. 62, no. 5, pp. 941–943, 1984.
[286]  S. M. Arthur, W. B. Krohn, and J. R. Gilbert, “Habitat use and diet of fishers,” Journal of Wildlife Management, vol. 53, no. 3, pp. 680–688, 1989.
[287]  A. K. Mazzoni, Habitat use by fishers (Martes pennanti) in the southern Sierra Nevada, California [M.S. thesis], California State University, Fresno, Calif, USA, 2002.
[288]  T. F. Paragi, S. M. Arthur, and W. B. Krohn, “Importance of tree cavities as natal dens for fishers,” Northern Journal of Applied Forestry, vol. 13, no. 2, pp. 79–83, 1996.
[289]  R. A. Powell and W. J. Zielinsky, “Fisher,” in The Scientific Basis For Conserving Forest Carnivores: American Marten, Fisher, Lynx and Wolverine in the Western United States, K. B. Aubry, S. W. Buskirk, L. J. Lyon, and W. J. Zielinski, Eds., pp. 38–73, USDA Forest Service General Technical Report RM-254, 1994.
[290]  C. M. Raley, “Ecological characteristics of fishers (Martes pennanti) in the Southern Oregon Cascade Range, update: July 2006. Report,” in USDA Forest Service, pp. 1–31, Olympia Forestry Sciences Laboratory, Olympia, Wash, USA, 2006.
[291]  R. D. Weir, Diet, spatial organization, and habitat relationships of fishers in south-central British Columbia [M.S. thesis], Simon Fraser University, Burnaby, Canada, 1995.
[292]  R. D. Weir, Fisher Ecology in the Kiskatinaw Plateau Ecosection, Year-End Report, Ministry of Environment of British Columbia, Victoria, Canada, 2008.
[293]  R. D. Weir, F. Corbould, and A. Harestad, “Effect of ambient temperature on the selection of rest structures by fishers,” in Martens and Fishers (Martes) in HumAn-Altered Environments: An International Perspective, D. J. Harrison, A. K. Fuller, and G. Proulx, Eds., pp. 187–197, Springer Science and Business Media, New York, NY, USA, 2004.
[294]  J. J. Beecham, D. G. Reynolds, and M. G. Hornocker, “Black bear denning activities and den characteristics in west-central Idaho,” Bears: Their Biology and Management, vol. 5, pp. 79–86, 1983.
[295]  E. L. Bull, J. J. Akenson, and M. G. Henjum, “Characteristics of black bear dens in trees and logs in northeastern Oregon,” Northwest Naturalist, vol. 81, no. 3, pp. 148–153, 2000.
[296]  A. W. Erickson, B. M. Hanson, and J. J. Brueggeman, “Black bear denning study, Mitkof Island, Alaska,” Project Report FRI-UW-8214, School of Fisheries, University of Washington, Seattle, Wash, USA, 1982.
[297]  T. K. Fuller and L. B. Keith, “Summer ranges, cover type use, and denning of black bears near Fort. McMurray, Alberta,” The Canadian Field-Naturalist, vol. 94, no. 1, pp. 80–83, 1980.
[298]  K. G. Johnson and M. R. Pelton, “Selection and availability of dens for black bears in Tennessee,” Journal of Wildlife Management, vol. 45, no. 1, pp. 111–119, 1981.
[299]  C. J. Jonkel and I. M. Cowan, “The black bear in the spruce-fir forest,” Wildlife Monographs, no. 27, pp. 1–55, 1971.
[300]  G. B. Kolenosky and S. M. Strathearn, “Winter denning of black bears in east-central Ontario,” Bears: Their Biology and Management, vol. 7, pp. 305–316, 1987.
[301]  D. A. Martorello and M. R. Pelton, “Microhabitat characteristics of American black bear nest dens,” Ursus, vol. 14, no. 1, pp. 21–26, 2003.
[302]  Manning, Cooper and Associates, 2002 Black Bear Winter Den Inventory. TFL 37, Northern Vancouver Island, BC, Canadian Forest Products, Woss, Canada, 2003.
[303]  M. K. Oli, H. A. Jacobson, and B. D. Leopold, “Denning ecology of black bears in the White River National Wildlife Refuge, Arkansas,” Journal of Wildlife Management, vol. 61, no. 3, pp. 700–706, 1997.
[304]  C. W. Ryan and M. R. Vaughan, “Den characteristics of black bears in southwestern Virginia,” Southeastern Naturalist, vol. 3, no. 4, pp. 659–668, 2004.
[305]  W. G. Wathen, K. G. Johnson, and M. R. Pelton, “Characteristics of black bear dens in the southern Appalachian region,” Bears: Their Biology and Management, vol. 6, pp. 119–127, 1986.
[306]  T. H. White, J. L. Bowman, H. A. Jacobson, B. D. Leopold, and W. P. Smith, “Forest management and female black bear denning,” Journal of Wildlife Management, vol. 65, no. 1, pp. 34–40, 2001.
[307]  F. L. Bunnell and I. Houde, “Down wood and biodiversity—implications to forest practices,” Environmental Reviews, vol. 8, pp. 397–421, 2010.
[308]  D. Huber and H. U. Roth, “Denning of brown bears in Croatia,” Bears: Their Biology and Management, vol. 9, pp. 79–83, 1997.
[309]  K. Elgmork, “Denning behaviour of a female brown bear, Ursus arctos (Linne, 1758), with three young,” S?ugetierkundliche Mitteilungen, vol. 29, no. 3, pp. 59–66, 1981.
[310]  S. P. Cline, The characteristics and dynamics of snags in Douglas-fir forests of the Oregon Coast Range [Ph.D. thesis], Oregon State University, Corvallis, Ore, USA, 1977.
[311]  S. G. Nilsson, “The evolution of nest-site selection among hole-nesting birds: the importance of nest predation and competition.,” Ornis Scandinavica, vol. 15, no. 3, pp. 167–175, 1984.
[312]  A. Nappi and P. Drapeau, “Reproductive success of the black-backed woodpecker (Picoides arcticus) in burned boreal forests: are burns source habitats?” Biological Conservation, vol. 142, no. 7, pp. 1381–1391, 2009.
[313]  N. Nielsen-Pincus, Nest site selection, nest success, and density of selected cavity-nesting birds in northeastern Oregon with a method for improving accuracy of density estimates [M.S. thesis], University of Idaho, Moscow, Idaho, USA, 2005.
[314]  W. F. Laudenslayer Jr., “Cavity-nesting bird use of snags in eastside pine forests of northeastern California,” in Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests, W. F. Laudenslayer Jr., P. J. Shea, B. E. Valentine, C. P. Weatherspoon, and T. E. Lisle, Eds., pp. 223–236, USDA Forest Service, General Technical Report PSW-GTR-181, 2002.
[315]  S. T. Walter and C. C. Maguire, “Snags, cavity-nesting birds, and silvicultural treatments in western Oregon,” Journal of Wildlife Management, vol. 69, no. 4, pp. 1578–1591, 2005.
[316]  R. J. Fisher and K. L. Wiebe, “Nest site attributes and temporal patterns of northern flicker nest loss: effects of predation and competition,” Oecologia, vol. 147, no. 4, pp. 744–753, 2006.
[317]  K. J. Gutzwiller and S. H. Anderson, “Multiscale associations between cavity-nesting birds and features of Wyoming streamside woodlands,” Condor, vol. 89, no. 3, pp. 534–548, 1987.
[318]  C. L. Hartwig, Effect of forest age, structural elements, and prey density on the relative abundance of Pileated Woodpecker (Dryocopus pileatus abieticola) on southeastern Vancouver Island [M.S. thesis], University of Victoria, Victoria, Canada, 1999.
[319]  T. K. Mellen, E. C. Meslow, and R. W. Mannan, “Summertime home range and habitat use of pileated woodpeckers in western Oregon,” Journal of Wildlife Management, vol. 56, no. 1, pp. 96–103, 1992.
[320]  R. G. Troetschler, “Acorn woodpecker breeding strategy as affected by starling nest-hole competition,” The Condor, vol. 78, no. 2, pp. 151–165, 1976.
[321]  B. G. Hill and M. R. Lein, “Ecological relations of sympatric black-capped and mountain chickadees in southwestern Alberta,” The Condor, vol. 90, no. 4, pp. 875–884, 1988.
[322]  S. M. Ramsay, K. Otter, and L. M. Ratcliffe, “Nest-site selection by female black-capped Chickadees: settlement based on conspecific attraction?” Auk, vol. 116, no. 3, pp. 604–617, 1999.
[323]  A. E. Allin, “Nesting of the barred owl (Strix varia) in Ontario,” The Canadian Field-Naturalist, vol. 58, pp. 8–9, 1944.
[324]  K. R. Bevis, “Primary excavators in grand fir forests of Washington's east Cascades and forestry on the Yakima Indian Nation, Washington,” in Proceedings of the Wildlife Tree/Stand-Level Biodiversity Workshop, P. Bradford, T. Manning, and B. I'Anson, Eds., pp. 77–86, BC Ministry of Environment, Lands, and Parks and Ministry of Forests, Victoria, Canada, 1996.
[325]  D. J. Spiering and R. L. Knight, “Snag density and use by cavity-nesting birds in managed stands of the Black Hills National Forest,” Forest Ecology and Management, vol. 214, no. 1–3, pp. 40–52, 2005.
[326]  A. B. Carey, M. M. Hardt, S. P. Horton, et al., “Spring bird communities in the Oregon Coast Range,” in Wildlife and Vegetation of Unmanaged Douglas-Fir Forests, L. F. Ruggiero, K. B. Aubry, A. B. Carey, and M. F. Huff, Eds., pp. 123–144, USDA Forest Service General Technical Report, PNW-GTR-285, 1991.
[327]  R. W. Mannan, Use of snags by birds, Douglas-fir region, western Oregon [M.S. thesis], Oregon State University, Corvallis, Ore, USA, 1977.
[328]  R. W. Mannan and E. C. Meslow, “Bird populations and vegetation characteristics in managed and old-growth forests, northeastern Oregon,” Journal of Wildlife Management, vol. 48, no. 4, pp. 1219–1238, 1984.
[329]  J. E. Zarnowitz and D. A. Manuwal, “The effects of forest management on cavity-nesting birds in northwestern Washington,” Journal of Wildlife Management, vol. 49, no. 1, pp. 255–263, 1985.
[330]  C. Steeger and H. Quesnel, “Impacts of partial cutting on old-growth forests in the Rocky Mountain trench: interim report,” Tech. Rep. 9, Enhanced Forest Management Pilot Project, Invermere, Canada, 1998.
[331]  R. L. Hutto, “Toward meaningful snag-management guidelines for postfire salvage logging in North American conifer forests,” Conservation Biology, vol. 20, no. 4, pp. 984–993, 2006.
[332]  E. L. Bull, C. G. Parks, and T. Torgerson, Trees and Logs Important to Wildlife in the Interior Columbia River Basin, USDA Forest Service General Technical Report PNW-GTR-391, 1997.
[333]  W. C. McComb, S. A. Bonney, R. M. Sheffield, and N. D. Cost, “Snag resources in Florida—are they sufficient for average populations of primary cavity-nesters?” Wildlife Society Bulletin, vol. 14, no. 1, pp. 40–48, 1986.
[334]  G. A. McPeek, W. C. McComb, J. J. Moriarty, et al., “Bark-foraging bird abundance unaffected by increased snag availability in a mixed mesophytic forest,” The Wilson Bulletin, vol. 99, no. 2, pp. 253–257, 1987.
[335]  W. A. Nietro, V. W. Binkley, S. P. Cline, et al., “Snags (wildlife trees),” in Management of Wildlife and Fish Habitats in Forests of Western Oregon and Washington, E. R. Brown, Ed., pp. 129–169, USDA Forest Service Publication R6-F&WL-192-1985, 1985.
[336]  F. L. Bunnell, T. Spribille, I. Houde, T. Goward, and C. Bj?rk, “Lichens on down wood in logged and unlogged forest stands,” Canadian Journal of Forest Research, vol. 38, no. 5, pp. 1033–1041, 2008.
[337]  F. R. Larson, Downed Woody Material in Southeast Alaska Forest Stands, USDA Forest Service Research Paper PNW-RP-452, 1992.
[338]  P. Sollins, “Input and decay of coarse woody debris in coniferous stands in western Oregon and Washington,” Canadian Journal of Forest Research, vol. 12, no. 1, pp. 18–28, 1982.
[339]  B. G. Marcot, J. L. Ohmann, K. L. Mellen-McLean, and K. L. Waddell, “Synthesis of regional wildlife and vegetation field studies to guide management of standing and down dead trees,” Forest Science, vol. 56, no. 4, pp. 391–404, 2010.
[340]  D. J. Huggard, Synthesis of Studies of Forest Bird Responses to Partial-Retention Forest Harvesting, Pamphlet, Centre for Applied Conservation Research, University of British Columbia, Vancouver, Canada, 2006.
[341]  F. L. Bunnell and B. G. Dunsworth, “Making adaptive management for biodiversity work—the example of Weyerhaeuser in coastal British Columbia,” Forestry Chronicle, vol. 80, no. 1, pp. 37–43, 2004.
[342]  A. J. Huggett, “The concept and utility of “ecological thresholds” in biodiversity conservation,” Biological Conservation, vol. 124, no. 3, pp. 301–310, 2005.
[343]  D. B. Lindenmayer and G. Luck, “Synthesis: thresholds in conservation and management,” Biological Conservation, vol. 124, no. 3, pp. 351–354, 2005.
[344]  J. S. Guénette and M. A. Villard, “Thresholds in forest bird response to habitat alteration as quantitative targets for conservation,” Conservation Biology, vol. 19, no. 4, pp. 1168–1180, 2005.
[345]  D. Huggard, “Forest birds and retention levels,” BC Journal of Ecosystems and Management, vol. 8, no. 3, pp. 120–124, 2007.
[346]  F. L. Bunnell, M. Boyland, and E. Wind, “How should we spatially distribute dead and dying wood?” in Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests, W. F. Laudenslayer Jr., P. J. Shea, B. E. Valentine, C. P. Weatherspoon, and T. E. Lisle, Eds., pp. 739–752, USDA Forest Service, General Technical Report PSW-GTR-181, 2002.
[347]  B. G. Marcot, “Snag use by birds in Douglas-fir clearcuts,” in Proceedings of the Symposium in Snag Habitat Management, J. W. Davis, G. A. Goodwin, and R. A. Ockenfels, Eds., pp. 134–139, USDA Forest Service General Technical Report RM-99, 1983.
[348]  L. J. Bate, E. O. Garton, and M. J. Wisdom, Estimating Snag and Large Tree Densities and Distributions on a Landscape for Wildlife Management, USDA Forest Service General Technical Report PNW-GTR-425, Portland, Ore, USA, 1999.
[349]  D. R. Petit, K. E. Petit, T. C. Grubb Jr., et al., “Habitat and snag selection by woodpeckers in a clear-cut: an analysis using artificial snags,” The Wilson Bulletin, vol. 97, no. 4, pp. 525–533, 1985.
[350]  W. Walankiewicz, “Do secondary cavity-nesting birds suffer more from competition for cavities or from predation in a primeval deciduous forest,” Natural Areas Journal, vol. 11, no. 4, pp. 203–212, 1991.
[351]  C. J. E. Welsh and D. E. Capen, “Availability of nesting sites as a limit to woodpecker populations,” Forest Ecology and Management, vol. 48, no. 1-2, pp. 31–41, 1992.
[352]  J. G. Dickson, R. N. Conner, and J. H. Williamson, “Snag retention increases bird use of clear-cut,” Journal of Wildlife Management, vol. 47, no. 3, pp. 799–804, 1983.
[353]  V. E. Scott, “Bird responses to snag removal in ponderosa pine,” Journal of Forestry, vol. 77, no. 1, pp. 26–28, 1979.
[354]  J. L. Ohmann, W. C. McComb, and A. A. Zumrawi, “Snag abundance for primary cavity-nesting birds on nonfederal forest lands in Oregon and Washington,” Wildlife Society Bulletin, vol. 22, no. 4, pp. 607–619, 1994.
[355]  F. L. Bunnell and G. B. Dunsworth, Eds., Forestry and Biodiversity. Learning How to Sustain Biodiversity in Managed Forests, University of British Columbia Press, Vancouver, Canada, 2009.
[356]  B. S?derstr?m, “Effects of different levels of green- and dead-tree retention on hemi-boreal forest bird communities in Sweden,” Forest Ecology and Management, vol. 257, no. 1, pp. 215–222, 2009.
[357]  K. Mellen, B. G. Marcot, J. L. Ohmann, et al., “DecAID: a decaying wood advisory model for Oregon and Washington,” in Proceedings of the Symposium on the Ecology and Management of Dead Wood in Western Forests, W. F. Laudenslayer Jr., P. J. Shea, B. E. Valentine, C. P. Weatherspoon, and T. E. Lisle, Eds., pp. 527–533, USDA Forest Service, General Technical Report PSW-GTR-181, 2002.
[358]  A. J. Erskine, Birds in Boreal Canada: Communities, Densities and Adaptations, Canadian Wildlife Service Report Series 41, Ottawa, Canada, 1977.
[359]  M. E. Harmon, J. F. Franklin, F. J. Swanson et al., “Ecology of coarse woody debris in temperate ecosystems,” Advances in Ecological Research, vol. 15, pp. 133–302, 1986.
[360]  M. C. Vanderwel, J. R. Malcolm, and S. M. Smith, “Long-term snag and downed woody debris dynamics under periodic surface fire, fire suppression, and shelterwood management,” Canadian Journal of Forest Research, vol. 39, no. 9, pp. 1709–1721, 2009.
[361]  R. L. L. Graham, Biomass dynamics of dead Douglas-fir and western hemlock boles in mid- elevation forests of the Cascade Range [Ph.D. thesis], Oregon State University, Corvallis, Ore, USA, 1981.
[362]  USDA Forest Service, Ecological Characteristics of Fishers (Martes Pennanti) in the Southern Oregon Cascade Range, USDA Forest Service, Pacific Northwest Research Station, Olympia, Wash, USA, 2006.
[363]  C. S. Binkley, “Preserving nature through intensive plantation forestry: the case for forestland allocation with illustrations from British Columbia,” Forestry Chronicle, vol. 73, no. 5, pp. 553–559, 1997.
[364]  F. L. Bunnell, R. W. Wells, J. D. Nelson, et al., “Effects of harvest policy on landscape pattern, timber supply and vertebrates in an East Kootenay watershed,” in Forest Fragmentation: Wildlife and Management Implications, J. A. Rochelle, L. A. Lehmann, and J. Wisniewski, Eds., pp. 271–293, Brill, Leiden, The Netherlands, 1999.
[365]  E. C. Lofroth, Scale dependent analyses of habitat selection by marten in the sub-boreal spruce biogeoclimatic zone, British Columbia [M.S. thesis], Simon Fraser University, Burnaby, Canada, 1993.
[366]  K. D. Coates, “Windthrow damage 2 years after partial cutting at the Date Creek silvicultural systems study in the interior Cedar-Hemlock forests of northwestern British Columbia,” Canadian Journal of Forest Research, vol. 27, no. 10, pp. 1695–1701, 1997.
[367]  J. F. Franklin, D. R. Berg, D. A. Thornburgh, et al., “Alternative silvicultural approaches to timber harvesting: variable retention harvest systems,” in Creating a Forestry for the 21st Century: The Science of Ecosystem Management, K. A. Kohm and J. F. Franklin, Eds., pp. 111–139, Island Press, Washington, DC, USA, 1997.
[368]  R. M. S. Vega, Bird communities in managed conifer stands in the Oregon Cascades: habitat associations and nest predation [M.S. thesis], Oregon State University, Corvallis, Ore, USA, 1993.
[369]  F. L. Bunnell, L. L. Kremsater, and I. Houde, “Mountain pine beetle: a synthesis of the ecological .consequences of large-scale disturbances on sustainable forest management, with emphasis on biodiversity,” Information Report BC-X-426, Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, Canada, 2011.
[370]  J. D. McIver and L. Starr, “A literature review on the environmental effects of postfire logging,” Western Journal of Applied Forestry, vol. 16, no. 4, pp. 159–168, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133