全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2013 

Simple Method of Forest Type Inventory by Joining Low Resolution Remote Sensing of Vegetation Indices with Spatial Information from the Corine Land Cover Database

DOI: 10.1155/2013/529193

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper presents a simple, inexpensive, and effective method allowing for frequent classification of the forest type coniferous, deciduous, and mixed using medium and low resolution remote sensing images. The proposed method is based on the set of vegetation indices such as NDVI, LAI, FAPAR, and LAIxCab calculated from MODIS and MERIS satellite data. The method uses seasonal changes of the above-mentioned vegetation indices within annual cycle. The main idea was to collect and carefully analyse seasonal changes in vegetation indices in a given ecosystem type proven by a Corine Land Cover, 2006 database, and to compare them afterwards with those of a particular forest under study. Each type of a forest ecosystem has its own specific dynamics of development, thus enabling recognition of the type by comparing temporal changes of the proposed measures based on vegetation indices. Temporal measures of changes were created for selected reference stands by the ratios of particular indices determined in July and April, which are the middle and the beginning of a vegetation season in Poland, respectively. The analysed vegetation indices were additionally provided with chosen statistical measures. The statistical analyses were carried out for Poland’s main national parks which represent the natural stands of temperate climate. 1. Introduction Forests cover about 31% of the land [1], and their role in the natural environment and in human activities is essential. For example, forests have a significant influence on the composition of dust and atmospheric gases, air and soil temperature, the amount of water present, and forested areas, both in soil and in vegetation cover. Forests also play an important role in the exchange of water between the soil and the atmosphere. Forest management requires timely and accurate information on forests [2] and remote sensing methods have been used for forest inventory for decades [3–5]. A major problem in forest research is the diversity of ecosystems, which provides for the possible couplings of various physical and biological processes, especially when there is a need of mesoscale assessments. It is therefore essential how large areas can be represented by the data (satellite, terrestrial, and statistical assessment) and what time resolution measurements are performed with. For all these reasons, studies on forest ecosystem, have always required considerable effort and resources. In remote observations of forests, spectral analysis allows for the determination of various biophysical parameters such as NDVI, LAI (leaf area

References

[1]  Food and Agriculture Organization of the United Nations, http://www.fao.org/news/story/en/item/40893/icode/.
[2]  M. C. Hansen, S. V. Stehman, P. V. Potapov et al., “Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 27, pp. 9439–9444, 2008.
[3]  M. C. Hansen, S. V. Stehman, and P. V. Potapov, “Quantification of global gross forest cover loss,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 19, pp. 8650–8655, 2010.
[4]  M. C. Hansen, S. V. Stehman, and P. V. Potapov, “Reply to Wernick et al.: Global scale quantification of forest change,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 38, p. E148, 2010.
[5]  J. Zawadzki, C. J. Cieszewski, M. Zasada, and R. C. Lowe, “Applying geostatistics for investigations of forest ecosystems using remote sensing imagery,” Silva Fennica Monographs, vol. 39, no. 4, pp. 599–617, 2005.
[6]  F. Baret, K. Pavageau, Bacour, et al., “Algorithm Theoretical Basis Document for MERIS Top of Atmosphere Land Prod. (TOA-VEG),” INRA-Novelties, 2009, http://www.brockmann-consult.de/beam/plugins.html.
[7]  C. Bacour, F. Baret, D. Béal, M. Weiss, and K. Pavageau, “Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: principles and validation,” Remote Sensing of Environment, vol. 105, no. 4, pp. 313–325, 2006.
[8]  N. Gobron, B. Pinty, F. Mélin et al., “Evaluation of the MERIS/ENVISAT FAPAR product,” Advances in Space Research, vol. 39, no. 1, pp. 105–115, 2007.
[9]  R. B. Myneni, S. Hoffman, Y. Knyazikhin et al., “Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data,” Remote Sensing of Environment, vol. 83, no. 1-2, pp. 214–231, 2002.
[10]  J. W. Rouse, R. H. Haas, J. A. Schell, and D. W. Deering, “Monitoring vegetation systems in the great plains with ERTS,” in Proceedings of the 3rd ERTS Symposium. NASA SP-351, pp. 309–317, NASA, Washington, DC, USA, 1973.
[11]  R. Nemani, L. Pierce, S. Running, and L. Band, “Forest ecosystem processes at the watershed scale: sensitivity to remotely-sensed leaf area index estimates,” International Journal of Remote Sensing, vol. 14, no. 13, pp. 2519–2534, 1993.
[12]  A. H. Strahler, C. E. Woodcock, and J. A. Smith, “On the nature of models in remote sensing,” Remote Sensing of Environment, vol. 20, no. 2, pp. 121–139, 1986.
[13]  P. Treitz and P. Howarth, “High spatial resolution remote sensing data for forest ecosystem classification: an examination of spatial scale,” Remote Sensing of Environment, vol. 72, no. 3, pp. 268–289, 2000.
[14]  ESA—SMOS Earth Explorers, http://www.esa.int/esaLP/ESAS7C2VMOC_LPsmos_0.html.
[15]  M. Bossard, J. Feranec, and J. Otahel, “Corine land cover technical guide—Addendum,” Technical Report 40, EEA, Copenhagen, Denmark, 2000.
[16]  A. M. J?nsson, L. Eklundh, M. Hellstr?m, L. B?rring, and P. J?nsson, “Annual changes in MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics and tree phenology,” Remote Sensing of Environment, vol. 114, no. 11, pp. 2719–2730, 2010.
[17]  Q. Zhang, X. Xiao, B. Braswell et al., “Characterization of seasonal variation of forest canopy in a temperate deciduous broadleaf forest, using daily MODIS data,” Remote Sensing of Environment, vol. 105, no. 3, pp. 189–203, 2006.
[18]  S. Lewiński, “Object based classification of middle resolution MODIS satellite image, first results,” Archiwum Fotogrametrii, Kartografii i Teledetekcji, vol. 21, pp. 211–219, 2010.
[19]  S. Lewiński, “Applying fused multispectral and panchromatic data of Landsat ETM+ to object oriented classification,” in New Developments and Challenges in Remote Sensing, Millpress, Rotterdam, The Netherlands, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133