全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2012 

Understanding Heat Stress Tolerance of Suspended Cells in the Model Plant Populus euphratica

DOI: 10.5402/2012/243694

Full-Text   Cite this paper   Add to My Lib

Abstract:

A comprehensive understanding of the physiological responses of plants to extreme temperatures is essential for future strategies for plant improvement. Obvious advantages can result from the study of highly adapted plant species, such as the model tree Populus euphratica Olivier that naturally thrives under extreme temperatures, saline soils, and drought. The present paper addresses the issue of P. euphratica thermotolerance using a cell suspension model system. P. euphratica suspended cells were subjected to a range of temperatures (from 5 up to 75°C) for 20 min, and cultures were evaluated for cell viability and biomass content at specific time points. The results have shown that cell viability was only affected after a temperature stress higher than 40°C, although in these conditions it was observed that a cell growth increases after the recovery period. In contrast, a total decline in cell viability was observed in suspended cells treated at 50°C or higher temperatures, which did not show growth recovery capacity. Therefore, the known natural tolerance of P. euphratica to thermal stress was not observable at the cellular level. The greater susceptibility to high temperatures in suspended cells as compared to field plants suggests that high thermotolerance can only be achieved when cells are integrated into a tissue. 1. Introduction Plants often grow under unfavorable conditions that extensively alter their development and productivity. One such environmental challenge is exposure to adverse temperatures, which can significantly affect many essential metabolic processes and disrupt an extensive range of cellular components. Heat stress can vary in severity, depending upon the intensity and extent of the stress as well as the rate of temperature variation. As sessile organisms, plants have developed several metabolic responses that minimize injuries caused by the constant exposure of plants to daily temperature fluctuations and their association with other abiotic factors [1]. The deeper knowledge on plant abiotic stress resistance has been fundamental in the development of effective engineering strategies leading to enhanced stress tolerance. Plant transformation with genes conferring thermal tolerance has been successfully achieved [2, 3]. However, many molecular mechanisms involved in thermotolerance are likely still unknown. A successful strategy for the assignment of gene function has been the study of species that are naturally adapted to survive in extreme environments. The advantages of using members of the poplar genus (Populus) as genomic

References

[1]  W. Wang, B. Vinocur, and A. Altman, “Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance,” Planta, vol. 218, no. 1, pp. 1–14, 2003.
[2]  K. Iba, “Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance,” Annual Review of Plant Biology, vol. 53, pp. 225–245, 2002.
[3]  P. Bhatnagar-Mathur, V. Vadez, and K. K. Sharma, “Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects,” Plant Cell Reports, vol. 27, no. 3, pp. 411–424, 2008.
[4]  A. M. Brunner, V. B. Busov, and S. H. Strauss, “Poplar genome sequence: functional genomics in an ecologically dominant plant species,” Trends in Plant Science, vol. 9, no. 1, pp. 49–56, 2004.
[5]  S. Jansson and C. J. Douglas, “Populus: A model system for plant biology,” Annual Review of Plant Biology, vol. 58, pp. 435–458, 2007.
[6]  R. Gu and D. Pei, “Populus euphratica, a tolerant model but endangered arborescent species,” Science Foundation in China, vol. 13, pp. 51–54, 2005.
[7]  S. Wang, B. Chena, and H. Li, Euphrates Poplar Florest, China Environmental Science Press, Beijing, China, 1996.
[8]  D. Y. Sung, F. Kaplan, K. J. Lee, and C. L. Guy, “Acquired tolerance to temperature extremes,” Trends in Plant Science, vol. 8, no. 4, pp. 179–187, 2003.
[9]  P. F. McCabe and C. J. Leaver, “Programmed cell death in cell cultures,” Plant Molecular Biology, vol. 44, no. 3, pp. 359–368, 2000.
[10]  T. Ma, Q. Liu, Z. Li, and X. Zhang, “Tonoplast H+-ATPase in response to salt stress in Populus euphratica cell suspensions,” Plant Science, vol. 163, no. 3, pp. 499–505, 2002.
[11]  R. Gu, Q. Liu, D. Pei, and X. Jiang, “Understanding saline and osmotic tolerance of Populus euphratica suspended cells,” Plant Cell, Tissue and Organ Culture, vol. 78, no. 3, pp. 261–265, 2004.
[12]  R. S. Gu, X. N. Jiang, and Z. C. Guo, “Organogenesis and plantlet regeneration in vitro of Populus euphratica,” Acta Botanica Sinica, vol. 41, no. 1, pp. 29–33, 1999.
[13]  T. Murashige and F. Skoog, “A revised medium for rapid growth and bioassay with tobacco issue cultures,” Physiologia Plantarum, vol. 15, no. 3, pp. 473–497, 1962.
[14]  G. Godoy-Hernández and F. Vázquez-Flota, “Growth measurements: estimation of cell division and cell expansion,” in Methods in Molecular Biology—Plant Cell Culture Protocols, V. M. Loyola-Vargas and F. Vázquez-Flota, Eds., pp. 51–58, Humana Press, Totowa, NJ, USA, 2005.
[15]  B. H. Hou and C. G. Lin, “Rapid optimization of electroporation conditions for soybean and tomato suspension cultured cells,” Plant Physiology, vol. 111, p. 166, 1996.
[16]  S. Ferreira, K. Hjern?, M. Larsen et al., “Proteome profiling of Populus euphratica Oliv. upon heat stress,” Annals of Botany, vol. 98, no. 2, pp. 361–377, 2006.
[17]  E. Burbridge, M. Diamond, P. J. Dix, and P. F. McCabe, “Use of cell morphology to evaluate the effect of a peroxidase gene on cell death induction thresholds in tobacco,” Plant Science, vol. 172, no. 4, pp. 853–860, 2007.
[18]  P. F. McCabe, A. Levine, P. J. Meijer, N. A. Tapon, and R. I. Pennell, “A programmed cell death pathway activated in carrot cells cultured at low cell density,” Plant Journal, vol. 12, no. 2, pp. 267–280, 1997.
[19]  R. A. Vacca, M. C. De Pinto, D. Valenti, S. Passarella, E. Marra, and L. De Gara, “Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells,” Plant Physiology, vol. 134, no. 3, pp. 1100–1112, 2004.
[20]  D. Gries, F. Zeng, A. Foetzki et al., “Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table,” Plant, Cell and Environment, vol. 26, no. 5, pp. 725–736, 2003.
[21]  H. Knight and M. R. Knight, “Abiotic stress signalling pathways: specificity and cross-talk,” Trends in Plant Science, vol. 6, no. 6, pp. 262–267, 2001.
[22]  R. Mittler, “Abiotic stress, the field environment and stress combination,” Trends in Plant Science, vol. 11, no. 1, pp. 15–19, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133