全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2012 

Needle Damage Development in Norway Spruce Seedlings as Affected by Humidity, Temperature, and Gray Mold: A Preliminary Study

DOI: 10.5402/2012/810675

Full-Text   Cite this paper   Add to My Lib

Abstract:

Botrytis cinerea inoculation on 3- and 6-month-old Norway spruce seedlings was tested in combinations of temperature (15 and 25°C) and relative humidity (50 and 80%) in a growth chamber. Occurrence of needle damage was examined 11 days after the inoculation. Damage occurred more on inoculated than on control seedlings. Needle damage tended to occur proportionally more on the older seedlings and concentrating more on the tops of the shoot in the younger seedlings. The higher temperature suggested slightly more damage occurrence than the lower temperature did. The relative humidity did not appear to correlate with the damage outbreak. Surface wetness tended to increase the damage occurrence but so did also the vapour pressure deficit. At the lower relative humidity, the seedlings had to be irrigated more frequently, which increased the surface wetness. Thus, the results suggest that any irrigation method or other condition control that can provide low surface wetness on seedlings decreases needle damage by B. cinerea in forest nurseries. 1. Introduction The gray mold fungus (Botrytis cinerea Pers.:?Fr.) is a facultative parasite. It lives as a saprophyte on dead plant material and is also a plant pathogen. The temperature optimum for gray mold spore germination and infection is 9–21°C, but temperatures between 2–25°C are also suitable for the fungus [1–4]. Relative humidity greater than 98% and free water are optimal for spore germination and mycelia growth of the B. cinerea fungus, for example, [5]. In Finland, Norway spruce (Picea abies (L.) Karst.) is the predominant species in forest nursery seedling production. In recent decades, container seedling production has increased and there has also been a subsequent increase in damage caused by gray mold [6, 7]. This increase is partly due to higher seedling densities and to microclimatic conditions, which differ from those in bare root seedling production. The damage may occur only few days after inoculation on vital needles [8]. Visual symptoms are spots of discoloration usually in the middle of the needles or completely dead needles [8]. Numerous studies have been carried out on gray mold on agricultural crops, while fewer studies have dealt with gray mold on conifer seedlings, for example, Picea mariana (Mill.) B.S.P, [9, 10], Sequoiadendron giganteum (Lindl.) Dene [11], Pseudotsuga menziesii (Mirb.) Franco [5] 1988, and Larix occidentalis (Nuttall) [12]. In the nursery, gray mold development is known to be dependent on the growth phase of the seedlings [8] but also markedly on the ambient microclimate

References

[1]  Y. Elad, “Effect of abiotic conditions on development of gray mold of rose and scanning electron microscopy,” Phytopathologia Mediterranea, vol. 28, pp. 122–130, 1989.
[2]  W. R. Jarvis, Epidemiology. Biology of Botrytis, Academic Press, London, UK, 1980, Edited by: J. R. Coley-Smith, K. Verhoeff and W. R. Jarvis.
[3]  J. J. Marois, J. C. Redmond, and J. D. MacDonald, “Quantification of impact of environment on the susceptibility of Rosa hybrida flowers to Botrytis cinerea,” Journal of the American Society for Horticultural Science, vol. 113, pp. 842–845, 1988.
[4]  J. Salinas, D. C. M. Glandorf, F. D. Picavet, and K. Verhoeff, “Effects of temperature, relative humidity and age of conidia on the incidence of spotting on gerbera flowers caused by Botrytis cinerea,” Netherlands Journal of Plant Pathology, vol. 95, no. 1, pp. 51–64, 1989.
[5]  M. J. Peterson, J. R. Sutherland, and S. E. Tuller, “Greenhouse environment and epidemiology of grey mould of container-grown Douglas-fir seedlings,” Canadian Journal of Forest Research, vol. 18, pp. 974–980, 1988.
[6]  M.-L. Juntunen, “Weeds, diseases, insects and mites and use of pesticides in Finnish forest nurseries-result of a survey study,” in Proceedings of the 4th Meeting of IUFRO Working Party 7.03.04, A. Lilja and J. R. Sutherland, Eds., Diseases and Insects in Forest Nurseries, Finnish Forest Research Institute, 2000, Research Papers 781:189-200.
[7]  C. Nystr?m and M. Hannerz, “Svensk plantproduction under lupp,” Plantaktuell, vol. 1, pp. 4–5, 2002 (Swedish).
[8]  R.-L. Pet?ist?, J. Heiskanen, and A. Pulkkinen, “Susceptibility of Norway spruce seedlings to grey mould in the greenhouse during the first growing season,” Scandinavian Journal of Forest Research, vol. 19, no. 1, pp. 30–37, 2004.
[9]  P. G. Zhang, J. C. Sutton, B. He, and A. A. Hopkin, “Low light intensity predisposes black spruce seedlings to infection by Botrytis cinerea,” Canadian Journal of Plant Pathology, vol. 17, pp. 13–18, 1995.
[10]  P. G. Zhang and J. C. Sutton, “High temperature, darkness, and drought predispose black spruce seedlings to gray mold,” Canadian Journal of Botany, vol. 72, no. 2, pp. 135–142, 1994.
[11]  P. C. Smith, A. H. McCain, and M. D. Srago, “Control of Botrytis storage rot of giant sequoia seedlings,” Plant Disease Report, vol. 57, pp. 67–69, 1973.
[12]  F. Dugan and G. M. Blake, “Penetration and infection of western larch seedlings by Botrytis cinerea,” Canadian Journal of Botany, vol. 67, pp. 2596–2599, 1989.
[13]  R.-L. Pet?ist?, “Botrytis cinerea and Norway spruce seedlings in cold storage,” Baltic Forestry, vol. 11, no. 2, pp. 24–33, 2006.
[14]  J. Heiskanen, “Effects of compost additive in sphagnum peat growing medium on Norway spruce container seedlings,” New Forests. In press.
[15]  D. Shtienberg and Y. Elad, “Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea,” Phytopathology, vol. 87, no. 3, pp. 332–340, 1997.
[16]  H. Yunis, Y. Elad, and Y. Mahrer, “Effects of air temperature, relative humidity and canopy wetness on gray mold of cucumbers in unheated greenhouses,” Phytoparasitica, vol. 18, no. 3, pp. 203–215, 1990.
[17]  M. Peterson, “Botscan: a sampling system to forecast disease incidence of grey mould in container-grown conifer seedlings,” Nursery and Seed, vol. 1, pp. 9–10, 1995.
[18]  W. R. Jarvis, “The dispersal of spores of Botrytis cinerea Fr. In a raspberry plantation,” Transactions of the British Mycological Society, vol. 45, pp. 549–559, 1962.
[19]  W. R. Jarvis, “The infection of strawberry and raspberry fruits by Botrytis cinerea Fr.,” Annals of Applied Biology, vol. 50, no. 3, pp. 569–575, 1962.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133