全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2012 

Silver Fir Defoliation Likelihood Is Related to Negative Growth Trends and High Warming Sensitivity at Their Southernmost Distribution Limit

DOI: 10.5402/2012/437690

Full-Text   Cite this paper   Add to My Lib

Abstract:

Changes in radial growth have been used to estimate tree decline probability since they may indicate tree responses to long- and short-term stressors. We used visual assessments of crown defoliation, an indicator of decline, and retrospective tree-ring analyses to determine whether climate-growth sensitivity and tree growth rates may be used as predictors of tree die-off probability in Abies alba (silver fir) at the Spanish Pyrenees. We used climatic data to calculate standardized temperature and precipitation data and drought indexes. Basal area increment was measured for declining (defoliation > 50%) and nondeclining (defoliation < 50%) silver firs in stands with contrasting defoliation. Logistic regressions were applied to predict tree die-off. Since the early 1980s, a synchronised reduction in basal area increment was observed in declining trees. The basal area increment trend correctly classified 64% of declining trees and 94% of nondeclining trees. The growth sensitivity to water deficit, temperature, and a drought index also significantly predicted silver fir decline, but providing underestimated predictions. Our findings underscore the idea that long-term climatic warming seems to be a major driver of growth decline in silver fir. Ongoing growth reduction and enhanced mortality may promote vegetation shifts in declining Pyrenean A. alba forests. 1. Introduction Declining trends of tree radial growth are considered as reliable indicators of long-term stress and may be an additional risk factor for drought-induced mortality [1–3]. Individual tree decline and death often occur as a result of the combined effects of different long-and short-term stressors [4, 5]. Radial growth, used here as a proxy of whole plant carbon gain [6], may be used to identify those trees with the highest probabilities of death [3, 7]. Indeed, several studies have shown that mortality rates are to some extent inversely related to radial growth trends [8–11]. However, the potential use of both growth trends and climate sensitivity, as surrogates for evaluating the vulnerability of tree species to climate change, has received less attention [3, 12–14]. Dendrochronological assessments of changing trends of radial growth may be useful to understand decline processes [15, 16]. Usually, reduced wood formation occurs prior to visual symptoms of decline such as crown defoliation. Thus, dendrochronology may be useful to forecast the impending decline of particular trees and forests [3, 16]. Moreover, tree decline may result of the combined effects of several stressors acting at

References

[1]  C. Bigler, D. G. Gavin, C. Gunning, and T. T. Veblen, “Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains,” Oikos, vol. 116, no. 12, pp. 1983–1994, 2007.
[2]  D. L. Greenwood and P. J. Weisberg, “Density-dependent tree mortality in pinyon-juniper woodlands,” Forest Ecology and Management, vol. 255, no. 7, pp. 2129–2137, 2008.
[3]  M. Dobbertin, “Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review,” European Journal of Forest Research, vol. 124, no. 4, pp. 319–333, 2005.
[4]  P. D. Manion, Tree Disease Concepts, Prentice-Hall, Englewood Cliffs, NJ, USA, 1991.
[5]  B. S. Pedersen, “Modeling tree mortality in response to short- and long-term environmental stresses,” Ecological Modelling, vol. 105, no. 2-3, pp. 347–351, 1998.
[6]  C. M. Litton, J. W. Raich, and M. G. Ryan, “Carbon allocation in forest ecosystems,” Global Change Biology, vol. 13, no. 10, pp. 2089–2109, 2007.
[7]  J. Wunder, B. Reineking, C. Bigler, and H. Bugmann, “Predicting tree mortality from growth data: how virtual ecologists can help real ecologists,” Journal of Ecology, vol. 96, no. 1, pp. 174–187, 2008.
[8]  P. J. Van Mantgem, N. L. Stephenson, L. S. Mutch, V. G. Johnson, A. M. Esperanza, and D. J. Parsons, “Growth rate predicts mortality of Abies concolor in both burned and unburned stands,” Canadian Journal of Forest Research, vol. 33, no. 6, pp. 1029–1038, 2003.
[9]  P. H. Wyckoff and J. S. Clark, “Predicting tree mortality from diameter growth: a comparison of maximum likelihood and Bayesian approaches,” Canadian Journal of Forest Research, vol. 30, no. 1, pp. 156–167, 2000.
[10]  R. G. Buchman, S. P. Pederson, and N. R. Walters, “A tree survival model with application to species of the Great Lakes region,” Canadian Journal of Forest Research, vol. 13, pp. 601–608, 1983.
[11]  R. K. Kobe and K. D. Coates, “Models of sapling mortality as a function of growth to characterize interspecific variation in shade tolerance of eight tree species of northwestern British Columbia,” Canadian Journal of Forest Research, vol. 27, no. 2, pp. 227–236, 1997.
[12]  A. J. Das, J. J. Battles, N. L. Stephenson, and P. J. Van Mantgem, “The relationship between tree growth patterns and likelihood of mortality: a study of two tree species in the Sierra Nevada,” Canadian Journal of Forest Research, vol. 37, no. 3, pp. 580–597, 2007.
[13]  J. C. Linares, J. J. Camarero, and J. A. Carreira, “Competition modulates the adaptation capacity of forests to climatic stress: insights from recent growth decline and death in relict stands of the Mediterranean fir Abies pinsapo,” Journal of Ecology, vol. 98, no. 3, pp. 592–603, 2010.
[14]  B. S. Phdersen, “The role of stress in the mortality of Midwestern oaks as indicated by growth prior to death,” Ecology, vol. 79, no. 1, pp. 79–93, 1998.
[15]  K. Ogle, T. G. Whitham, and N. S. Cobb, “Tree-ring variation in pinyon predicts likelihood of death following severe drought,” Ecology, vol. 81, no. 11, pp. 3237–3243, 2000.
[16]  C. Bigler, J. Gri?ar, H. Bugmann, and K. ?ufar, “Growth patterns as indicators of impending tree death in silver fir,” Forest Ecology and Management, vol. 199, no. 2-3, pp. 183–190, 2004.
[17]  J. J. Camarero, “El decaimiento del abeto en los Pirineos,” Medio Ambiente Aragón, vol. 4, pp. 18–20, 2000.
[18]  J. Linares and J. J. Camarero, “Growth patterns and sensitivity to climate predict silver fir decline in the Spanish Pyrenees,” European Journal of Forest Research, vol. 131, pp. 1001–1012, 2012.
[19]  S. Chauchard, F. Beilhe, N. Denis, and C. Carcaillet, “An increase in the upper tree-limit of silver fir (Abies alba Mill.) in the Alps since the mid-20th century: a land-use change phenomenon,” Forest Ecology and Management, vol. 259, no. 8, pp. 1406–1415, 2010.
[20]  M. Cabrera, “Evolución de abetares del Pirineo aragonés,” Cuadernos de la Sociedad Espa?ola de Ciencias Forestales, vol. 11, pp. 43–52, 2001.
[21]  J. J. Camarero, A. Padró, E. Martín-Bernal, and E. Gil-Pelegrín, “Aproximación dendroecológica al decaimiento del abeto (Abies alba Mill.) en el pirineo Aragonés,” Montes, vol. 70, pp. 26–33, 2002.
[22]  E. H. R. Müller and H. R. Stierlin, Sanasilva Tree Crown Photos With Percentages of Foliage Loss WSL, Birmensdorf, 1990.
[23]  J. J. Camarero, C. Bigler, J. C. Linares, and E. Gil-Pelegrín, “Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests,” Forest Ecology and Management, vol. 262, no. 5, pp. 759–769, 2011.
[24]  R. L. Holmes, Dendrochronology Program Library Laboratory of Tree-Ring Research,, University of Arizona, Tucson, Ariz, USA, 1992.
[25]  C. J. Willmott, C. M. Rowe, and Y. Mintz, “Climatology of the terrestrial seasonal water cycle,” Journal of Climatology, vol. 5, no. 6, pp. 589–606, 1985.
[26]  T. B. McKee, N. J. Doesken, and J. Kleist, “Drought monitoring with multiple timescales Paper presented at the Preprints,” in Proceedings of the 8th Conference on Applied Climatology, Anaheim, Calif, USA, 1993.
[27]  D. C. Edwards and T. B. McKee, Characteristics of 20th Century Drought in the United States at Multiple Time Scales, Department of Atmospheric Science, Colorado State University, Fort Collins, Colo, USA, 1997.
[28]  I. Bordi, S. Frigio, P. Parenti, A. Speranza, and A. Sutera, “The analysis of the Standardized Precipitation Index in the Mediterranean area: large-scale patterns,” Annals of Geophysics, vol. 44, no. 5-6, pp. 965–978, 2001.
[29]  H. C. Fritts, Rings and Climate, Academic Press, London, UK, 1976.
[30]  R. L. Holmes, “Computer-assisted quality control in tree-ring dating and measurement,” Tree-Ring Bulletin, pp. 68–78, 1983.
[31]  F. Biondi and F. Qeadan, “A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment,” Tree-Ring Research, vol. 64, no. 2, pp. 81–96, 2008.
[32]  C. Bigler and H. Bugmann, “Predicting the time of tree death using dendrochronological data,” Ecological Applications, vol. 14, no. 3, pp. 902–914, 2004.
[33]  R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2011, http://www.R-project.org.
[34]  D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, Wiley Interscience, New York, NY, USA, 1989.
[35]  D. Collett, Modelling Binary Data, Chapman and Hall, London, UK, 1991.
[36]  Y. Miyamoto, H. P. Griesbauer, and D. Scott Green, “Growth responses of three coexisting conifer species to climate across wide geographic and climate ranges in Yukon and British Columbia,” Forest Ecology and Management, vol. 259, no. 3, pp. 514–523, 2010.
[37]  L. Galiano, J. Martínez-Vilalta, and F. Lloret, “Drought-induced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species,” Ecosystems, vol. 13, no. 7, pp. 978–991, 2010.
[38]  J. C. Linares, A. Delgado-Huertas, and J. A. Carreira, “Climatic trends and different drought adaptive capacity and vulnerability in a mixed Abies pinsapo-Pinus halepensis forest,” Climatic Change, vol. 105, no. 1, pp. 67–90, 2011.
[39]  C. Bigler, O. U. Br?ker, H. Bugmann, M. Dobbertin, and A. Rigling, “Drought as an inciting mortality factor in scots pine stands of the Valais, Switzerland,” Ecosystems, vol. 9, no. 3, pp. 330–343, 2006.
[40]  R. H. Waring, “Characteristics of trees predisposed to die,” BioScience, vol. 37, pp. 569–574, 1987.
[41]  R. Villalba and T. T. Veblen, “Influences of large-scale climatic variability on episodic tree mortality in northern Patagonia,” Ecology, vol. 79, no. 8, pp. 2624–2640, 1998.
[42]  J. F. Franklin, H. H. Shugart, and M. E. Harmon, “Tree death as an ecological process,” BioScience, vol. 37, pp. 550–556, 1987.
[43]  P. J. Van Mantgem, N. L. Stephenson, J. C. Byrne et al., “Widespread increase of tree mortality rates in the Western United States,” Science, vol. 323, no. 5913, pp. 521–524, 2009.
[44]  C. Bigler and H. Bugmann, “Assessing the performance of theoretical and empirical tree mortality models using tree-ring series of Norway spruce,” Ecological Modelling, vol. 174, no. 3, pp. 225–239, 2004.
[45]  J. C. Linares and P. A. Tíscar, “Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii,” Tree Physiology, vol. 30, no. 7, pp. 795–806, 2010.
[46]  N. Torelli, W. C. Shortle, K. Cufar, F. Ferlin, and K. T. Smith, “Detecting changes in tree health and productivity of silver fir in Slovenia,” European Journal of Forest Pathology, vol. 29, no. 3, pp. 189–197, 1999.
[47]  M. Carrer, P. Nola, R. Motta, and C. Urbinati, “Contrasting tree-ring growth to climate responses of Abies alba toward the southern limit of its distribution area,” Oikos, vol. 119, no. 9, pp. 1515–1525, 2010.
[48]  M. Macias, L. Andreu, O. Bosch, J. J. Camarero, and E. Gutiérrez, “Increasing aridity is enhancing silver fir (Abies alba Mill.) water stress in its south-western distribution limit,” Climatic Change, vol. 79, no. 3-4, pp. 289–313, 2006.
[49]  G. Aussenac, “Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change,” Annals of Forest Science, vol. 59, no. 8, pp. 823–832, 2002.
[50]  O. K. Atkin, D. Bruhn, V. M. Hurry, and M. G. Tjoelker, “The hot and the cold: unravelling the variable response of plant respiration to temperature,” Functional Plant Biology, vol. 32, no. 2, pp. 87–105, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133