全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2012 

The Functional Ecology and Diversity of Tropical Tree Assemblages through Space and Time: From Local to Regional and from Traits to Transcriptomes

DOI: 10.5402/2012/743617

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tropical tree biodiversity motivates an extremely large amount of research and some of the most passionate debates in ecology and evolution. Research into tropical tree biodiversity generally has been very biased towards one axis of biodiversity-species diversity. Less work has focused on the functional diversity of tropical trees and I argue that this has greatly limited our ability to not only understand the species diversity in tropical tree assemblages, but their distributions through space and time. Increasingly plant ecologists have turned to measuring plant functional traits to estimate functional diversity and to uncover the ecological and evolutionary mechanisms underlying the distribution and dynamics of tropical trees. Here I review much of the recent work on functional traits in tropical tree community ecology. I will highlight what I believe are the most important findings and which research directions are not likely to progress in the future. I also argue that functionally based investigations of tropical trees are likely to be revolutionized in the coming years through the incorporation of functional genomic approaches. The paper ends with a discussion of three major research areas or areas in need of focus that could lead to rapid advances in functionally based investigations of tropical trees. 1. Introduction Tropical forests are among the most awe-inspiring ecosystems on the planet. Tropical communities and their biological diversity have presented one of the great persistent challenges to ecologists and evolutionary biologists [1–13]. How can so many species coexist? How was so much diversity generated? Is there any underlying deterministic process structuring these communities or are they an intractable and stochastic compilation? These are the fundamental questions that biologists routinely ask when confronted with tropical tree biodiversity. Critical to answering these questions is our understanding of how tropical tree species functionally interact with their abiotic and biotic environments through space and time and how tropical tree functional diversity has evolved [14]. Over the past decade functional biology has played an increasingly important role in tropical tree ecology. For years the majority of this work focused on a handful of species at a time and how they functionally interact with the environment [15–18]. Recent research has focused more on the linkages between tree demography and organismal function and how species-level functional similarity or dissimilarity dictates the distribution and coexistence of tropical

References

[1]  A. R. Wallace, Tropical Nature and Other Essays, Macmillan, London, UK, 1878.
[2]  T. Dobzhansky, “Evolution in the tropics,” American Scientist, vol. 38, pp. 208–221, 1950.
[3]  A. G. Fischer, “Latitudinal variation in organic diversity,” Evolution, vol. 14, pp. 61–81, 1960.
[4]  E. R. Pianka, “Latitudinal gradients in species diversity: a review of concepts,” American Naturalist, vol. 100, pp. 33–46, 1966.
[5]  H. G. Baker, “Evolution in the tropics,” Biotropica, vol. 2, pp. 101–111, 1970.
[6]  A. H. Gentry, “Patterns of neotropical plant species diversity,” in Evolutionary Biology, M. K. Hecht, B. Wallace, and E. T. Prance, Eds., vol. 15, pp. 1–84, Plenum Press, New York, NY, USA, 1982.
[7]  A. H. Gentry, “Changes in community diversity and floristic composition on environmental and geographical gradients,” Annals of the Missouri Botanical Gardens, vol. 75, pp. 1–34, 1988.
[8]  G. C. Stevens, “The latitudinal gradient in geographical range: how so many species coexist in the tropics,” American Naturalist, vol. 133, no. 2, pp. 240–256, 1989.
[9]  E. C. Losos and E. G. Leigh, Tropical Forest Diversity and Dynamism: Findings from a Large-Scale Plot Network, University of Chicago Press, Chicago, Ill, USA, 2004.
[10]  S. P. Hubbell, The Unified Neutral Theory of Biodiversity and Biogeography, Princeton University Press, Princeton, NJ, USA, 2001.
[11]  S. J. Wright, “Plant diversity in tropical forests: a review of mechanisms of species coexistence,” Oecologia, vol. 130, no. 1, pp. 1–14, 2002.
[12]  G. G. Mittelbach, D. W. Schemske, H. V. Cornell et al., “Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography,” Ecology Letters, vol. 10, no. 4, pp. 315–331, 2007.
[13]  D. W. Schemske, G. G. Mittelbach, H. V. Cornell, J. M. Sobel, and K. Roy, “Is there a latitudinal gradient in the importance of biotic interactions?” Annual Review of Ecology, Evolution, and Systematics, vol. 40, pp. 245–269, 2009.
[14]  N. G. Swenson, “The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity,” American Journal of Botany, vol. 98, no. 3, pp. 472–480, 2011.
[15]  S. S. Mulkey, R. L. Chazdon, and A. P. Smith, Tropical Forest Plant Ecophysiology, Chapman & Hall, New York, NY, USA, 1996.
[16]  E. Medina, H. A. Mooney, and C. Vazquez-Yanes, Physiological Ecology of Plants of the Wet Tropics, Dr. Junk Pubishers, The Hague, The Netherlands, 1984.
[17]  H. A. Mooney, O. Bjorkman, A. E. Hall, E. Medina, and P. B. Tomlinson, “The study of the physiological ecology of tropical plants—current status and needs,” Bioscience, vol. 30, pp. 22–26, 1980.
[18]  U. Luttge, Physiological Ecology of Tropical Plants, Springer, Berlin, Germany, 2008.
[19]  S. Lavorel and E. Garnier, “Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail,” Functional Ecology, vol. 16, no. 5, pp. 545–556, 2002.
[20]  M. Westoby, “A leaf-height-seed (LHS) plant ecology strategy scheme,” Plant and Soil, vol. 199, no. 2, pp. 213–227, 1998.
[21]  E. Weiher, A. van der Werf, K. Thompson, M. Roderick, E. Garnier, and O. Eriksson, “Challenging Theophrastus: a common core list of plant traits for functional ecology,” Journal of Vegetation Science, vol. 10, no. 5, pp. 609–620, 1999.
[22]  M. Westoby, D. S. Falster, A. T. Moles, P. A. Vesk, and I. J. Wright, “Plant ecological strategies: some leading dimensions of variation between species,” Annual Review of Ecology and Systematics, vol. 33, pp. 125–159, 2002.
[23]  J. H. C. Cornelissen, S. Lavorel, E. Garnier et al., “A handbook of protocols for standardised and easy measurement of plant functional traits worldwide,” Australian Journal of Botany, vol. 51, no. 4, pp. 335–380, 2003.
[24]  M. Westoby and I. J. Wright, “Land-plant ecology on the basis of functional traits,” Trends in Ecology and Evolution, vol. 21, no. 5, pp. 261–268, 2006.
[25]  T. C. Whitmore, Tropical Rain Forests of the Far East, Clarendon Press, Oxford, UK, 1975.
[26]  I. M. Turner, The Ecology of Trees in the Tropical Rain Forest, Cambridge University Press, Cambridge, UK, 2001.
[27]  F. E. Putz, P. D. Coley, K. Lu, A. Montalvo, and A. Aiello, “Uprooting and snapping of trees: structural determinants and ecological consequences,” Canadian Journal of Forest Research, vol. 13, no. 5, pp. 1011–1020, 1983.
[28]  J. K. Zimmerman, E. M. Everham, R. B. Waide, D. J. Lodge, C. M. Taylor, and N. V. L. Brokaw, “Responses of tree species to hurricane winds in subtropical wet forest in Puerto Rico: implications for tropical tree life histories,” Journal of Ecology, vol. 82, no. 4, pp. 911–922, 1994.
[29]  B. J. Enquist, G. B. West, E. L. Charnov, and J. H. Brown, “Allometric scaling of production and life-history variation in vascular plants,” Nature, vol. 401, no. 6756, pp. 907–911, 1999.
[30]  H. C. Muller-Landau, “Interspecific and inter-site variation in wood specific gravity of tropical trees,” Biotropica, vol. 36, no. 1, pp. 20–32, 2004.
[31]  L. Poorter, S. J. Wright, H. Paz et al., “Are functional traits good predictors of demographic rates? Evidence from five neotropical forests,” Ecology, vol. 89, no. 7, pp. 1908–1920, 2008.
[32]  S. J. Wright, K. Kitajima, N. J. B. Kraft et al., “Functional traits and the growth-mortality trade-off in tropical trees,” Ecology, vol. 91, no. 12, pp. 3664–3674, 2010.
[33]  J. Chave, D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson, and A. E. Zanne, “Towards a worldwide wood economics spectrum,” Ecology Letters, vol. 12, no. 4, pp. 351–366, 2009.
[34]  H. E. M. Nascimento, W. F. Laurance, R. Condit, S. G. Laurance, S. D'Angelo, and A. C. Andrade, “Demographic and life-history correlates for Amazonian trees,” Journal of Vegetation Science, vol. 16, no. 6, pp. 625–634, 2005.
[35]  K. J. Chao, O. L. Phillips, E. Gloor, A. Monteagudo, A. Torres-Lezama, and R. Vasquez Martínez, “Growth and wood density predict tree mortality in Amazon forests,” Journal of Ecology, vol. 96, no. 2, pp. 281–292, 2008.
[36]  N. J. B. Kraft, M. R. Metz, R. S. Condit, and J. Chave, “The relationship between wood density and mortality in a global tropical forest data set,” New Phytologist, vol. 188, no. 4, pp. 1124–1136, 2010.
[37]  U. G. Hacke, J. S. Sperry, W. T. Pockman, S. D. Davis, and K. A. McCulloh, “Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure,” Oecologia, vol. 126, no. 4, pp. 457–461, 2001.
[38]  G. B. Williamson, “Gradients in wood specific gravity of trees,” Bulletin of the Torrey Botanical Club, vol. 111, pp. 51–55, 1984.
[39]  N. G. Swenson and B. J. Enquist, “The relationship between stem and branch wood specific gravity and the ability of each measure to predict leaf area,” American Journal of Botany, vol. 95, no. 4, pp. 516–519, 2008.
[40]  G. B. Williamson and M. C. Wiemann, “Measuring wood specific gravity...correctly,” American Journal of Botany, vol. 97, no. 3, pp. 519–524, 2010.
[41]  P. J. Grubb, “The maintenance of species richness in plant communities: the regeneration niche,” Biological Reviews, vol. 52, pp. 107–145, 1977.
[42]  S. A. Foster and C. H. Janson, “The relationship between seed size and establishment conditions in tropical woody plants,” Ecology, vol. 66, no. 3, pp. 773–780, 1985.
[43]  D. J. Metcalfe and P. J. Grubb, “Seed mass and light requirements for regeneration in Southeast Asian rain forest,” Canadian Journal of Botany, vol. 73, no. 6, pp. 817–826, 1995.
[44]  P. B. Reich, M. B. Walters, and D. S. Ellsworth, “From tropics to tundra: global convergence in plant functioning,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 25, pp. 13730–13734, 1997.
[45]  I. J. Wright, P. B. Reich, M. Westoby et al., “The worldwide leaf economics spectrum,” Nature, vol. 428, no. 6985, pp. 821–827, 2004.
[46]  B. Shipley, “Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance,” Functional Ecology, vol. 16, no. 5, pp. 682–689, 2002.
[47]  K. Kitajima, “Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees,” Oecologia, vol. 98, no. 3-4, pp. 419–428, 1994.
[48]  L. Poorter and F. Bongers, “Leaf traits are good predictors of plant performance across 53 rain forest species,” Ecology, vol. 87, no. 7, pp. 1733–1743, 2006.
[49]  B. J. Enquist, A. J. Kerkhoff, S. C. Stark, N. G. Swenson, M. C. McCarthy, and C. A. Price, “A general integrative model for scaling plant growth, carbon flux, and functional trait spectra,” Nature, vol. 449, no. 7159, pp. 218–222, 2007.
[50]  D. Tilman, Resource Competition and Community Structure, Monographs in Population Biology, Princeton University Press, Princeton, NJ, USA, 1982.
[51]  P. A. Keddy, “Assembly and response rules: two goals for predictive community ecology,” Journal of Vegetation Science, vol. 3, pp. 157–164, 1992.
[52]  S. P. Hubbell, “Tree dispersion, abundance, and diversity in a tropical dry forest,” Science, vol. 203, no. 4387, pp. 1299–1309, 1979.
[53]  N. G. Swenson, “The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity,” American Journal of Botany, vol. 98, no. 3, pp. 472–480, 2011.
[54]  T. Fukami, T. M. Bezemer, S. R. Mortimer, and W. H. van der Putten, “Species divergence and trait convergence in experimental plant community assembly,” Ecology Letters, vol. 8, no. 12, pp. 1283–1290, 2005.
[55]  N. G. Swenson, P. Anglada-Cordero, and J. A. Barone, “Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient,” Proceedings of the Royal Society B, vol. 278, no. 1707, pp. 877–884, 2011.
[56]  N. G. Swenson, D. L. Erickson, X. Mi et al., “Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities,” Ecology, vol. 93, pp. S112–S125, 2012.
[57]  N. G. Swenson, J. C. Stegen, S. J. Davies et al., “Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity,” Ecology, vol. 93, pp. 490–499, 2012.
[58]  S. P. Hubbell and R. B. Foster, “Biology, chance and history and the structure of tropical rain forest tree communities,” in Community Ecology, J. M. Diamond and T. J. Case, Eds., pp. 314–329, Harper and Row, New York, NY, USA, 1986.
[59]  M. J. Anderson, T. O. Crist, J. M. Chase et al., “Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist,” Ecology Letters, vol. 14, no. 1, pp. 19–28, 2011.
[60]  N. C. A. Pitman, J. W. Terborgh, M. R. Silman et al., “Dominance and distribution of tree species in upper Amazonian terra firme forests,” Ecology, vol. 82, no. 8, pp. 2101–2117, 2001.
[61]  P. Jaccard, “La chorologie selective et sa signification pour la sociologie vegetale,” Mémoires de la Société Vaudoise des Sciences Naturelles, vol. 2, pp. 81–107, 1922.
[62]  P. Jaccard, “Le coefficient generique et le coefficient de communaute dans la flore marocaine,” Mémoires de la Société Vaudoise des Sciences Naturelles, vol. 2, pp. 385–403, 1926.
[63]  O. Jarvinen, “Species-to-genus ratios in biogeography: a historical note,” Journal of Biogeography, vol. 9, no. 4, pp. 363–370, 1982.
[64]  C. O. Webb, “Exploring the phylogenetic structure of ecological communities: an example for rain forest trees,” American Naturalist, vol. 156, no. 2, pp. 145–155, 2000.
[65]  C. O. Webb, D. D. Ackerly, M. A. McPeek, and M. J. Donoghue, “Phylogenies and community ecology,” Annual Review of Ecology and Systematics, vol. 33, pp. 475–505, 2002.
[66]  N. G. Swenson, B. J. Enquist, J. Pither, J. Thompson, and J. K. Zimmerman, “The problem and promise of scale dependency in community phylogenetics,” Ecology, vol. 87, no. 10, pp. 2418–2424, 2006.
[67]  N. G. Swenson, B. J. Enquist, J. Thompson, and J. K. Zimmerman, “The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities,” Ecology, vol. 88, no. 7, pp. 1770–1780, 2007.
[68]  N. G. Swenson and B. J. Enquist, “Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology,” Ecology, vol. 90, no. 8, pp. 2161–2170, 2009.
[69]  W. J. Kress, D. L. Erickson, F. A. Jones et al., “Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 44, pp. 18621–18626, 2009.
[70]  W. J. Kress, D. L. Erickson, N. G. Swenson, J. Thompson, M. Uriarte, and J. K. Zimmerman, “Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot,” PLoS One, vol. 5, no. 11, article e15409, 2010.
[71]  M. A. Gonzalez, A. Roger, E. A. Courtois et al., “Shifts in species and phylogenetic diversity between sapling and tree communities indicate negative density dependence in a lowland rain forest,” Journal of Ecology, vol. 98, no. 1, pp. 137–146, 2010.
[72]  N. Pei, J. Y. Lian, D. L. Erickson et al., “Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci,” PLoS One, vol. 6, no. 6, article e21273, 2011.
[73]  J. Zhang, N. G. Swenson, S. Chen et al., “Phylogenetic beta diversity in tropical forests: implications for the roles of geographical and environmental distance,” Journal of Systematics and Evolution. In Press.
[74]  C. O. Webb, C. H. Cannon, and S. J. Davies, “Ecological organization, biogeography, and the phylogenetic structure of tropical forest communities,” in Tropical Forest Community Ecology, W. P. Carson and S. S. Schnitzer, Eds., pp. 79–97, Blackwell, Hoboken, NJ, USA, 2008.
[75]  J. B. Losos, “Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species,” Ecology Letters, vol. 11, no. 10, pp. 995–1003, 2008.
[76]  R. Gillespie, “Community assembly through adaptive radiation in Hawaiian spiders,” Science, vol. 303, no. 5656, pp. 356–359, 2004.
[77]  J. Cavender-Bares, D. D. Ackerly, D. A. Baum, and F. A. Bazzaz, “Phylogenetic overdispersion in Floridian oak communities,” American Naturalist, vol. 163, no. 6, pp. 823–843, 2004.
[78]  N. G. Swenson and B. J. Enquist, “Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation,” American Journal of Botany, vol. 94, no. 3, pp. 451–459, 2007.
[79]  N. J. B. Kraft, R. Valencia, and D. D. Ackerly, “Functional traits and niche-based tree community assembly in an Amazonian forest,” Science, vol. 322, no. 5901, pp. 580–582, 2008.
[80]  H. Lambers, F. S. Chapin, and T. L. Pons, Plant Physiological Ecology, Springer, Berlin, Germany, 2000.
[81]  C. E. T. Paine, C. Baraloto, J. Chave, and B. Herault, “Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests,” Oikos, vol. 120, pp. 720–727, 2011.
[82]  X. Liu, N. G. Swenson, S. J. Wright et al., “Covariation in plant functional traits and soil fertility within two species-rich forests,” PLoS One, vol. 7, article e34767, 2012.
[83]  X. Liu, N. G. Swenson, J. Zhang, and K. Ma, “The environment and space, not phylogeny, determine trait dispersion in a subtropical forest,” Functional Ecology. In Press.
[84]  M. Katabuchi, H. Kurokawa, S. J. Davies, S. Tan, and T. Nakashizuka, “Soil resource availability shapes community trait structure in a species-rich dipterocarp forest,” Journal of Ecology, vol. 100, pp. 643–651, 2012.
[85]  B. E. Sedio, S. J. Wright, and C. W. Dick, “Trait evolution and the coexistence of a species swarm in the tropical forest understorey,” Journal of Ecology, vol. 100, pp. 1183–1193, 2012.
[86]  J. X. Becerra, “The impact of herbivore-plant coevolution on plant community structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7483–7488, 2007.
[87]  T. A. Kursar, K. G. Dexter, J. Lokvam et al., “The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 43, pp. 18073–18078, 2009.
[88]  J. Messier, B. J. McGill, and M. J. Lechowicz, “How do traits vary across ecological scales? A case for trait-based ecology,” Ecology Letters, vol. 13, no. 7, pp. 838–848, 2010.
[89]  C. M. Hulshof and N. G. Swenson, “Variation in leaf functional trait values within and across individuals and species: an example from a Costa Rican dry forest,” Functional Ecology, vol. 24, no. 1, pp. 217–223, 2010.
[90]  M. Uriarte, N. G. Swenson, R. L. Chazdon et al., “Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: implications for community assembly,” Ecology Letters, vol. 13, no. 12, pp. 1503–1514, 2010.
[91]  J. E. Bella, “A new competition model for individual trees,” Forest Science, vol. 17, pp. 364–372, 1971.
[92]  C. G. Lorimer, “Tests of age-independent competition indices for individual trees in natural hardwood stands,” Forest Ecology and Management, vol. 6, no. 4, pp. 343–360, 1983.
[93]  C. D. Canham, P. T. LePage, and K. D. Coates, “A neighborhood analysis of canopy tree competition: effects of shading versus crowding,” Canadian Journal of Forest Research, vol. 34, no. 4, pp. 778–787, 2004.
[94]  M. Uriarte, C. D. Canham, J. Thompson, and J. K. Zimmerman, “A neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest,” Ecological Monographs, vol. 74, no. 4, pp. 591–614, 2004.
[95]  M. Uriarte, R. Condit, C. D. Canham, and S. P. Hubbell, “A spatially explicit model of sapling growth in a tropical forest: does the identity of neighbours matter?” Journal of Ecology, vol. 92, no. 2, pp. 348–360, 2004.
[96]  C. D. Canham, M. J. Papaik, M. Uriarte, W. H. McWilliams, J. C. Jenkins, and M. Twery, “Neighborhood analyses of canopy tree competition along environmental gradients in New England forests,” Ecological Applications, vol. 16, no. 2, pp. 540–554, 2006.
[97]  M. Uriarte, “Neighborhood effects on sapling growth and survival in a neotropical forest and the ecological equivalence hypothesis,” in Biotic Interactions in the Tropics: Their Role in the Maintenance of Species Diversity, D. F. R. Burslem, M. A. Pinard, and S. E. Hartley, Eds., Cambridge University Press, Cambridge, UK, 2005.
[98]  C. E. T. Paine, N. Norden, J. Chave et al., “Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest,” Ecology Letters, vol. 15, pp. 34–41, 2011.
[99]  D. H. Janzen, “Herbivores and the number of tree species in tropical forests,” American Naturalist, vol. 104, pp. 501–528, 1970.
[100]  J. H. Connell, “On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees,” in Dynamics of Population, P. J. Den Boer and G. R. Gradwell, Eds., Pudoc, Wageningen, The Netherlands, 1970.
[101]  G. S. Gilbert and C. O. Webb, “Phylogenetic signal in plant pathogen-host range,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 12, pp. 4979–4983, 2007.
[102]  G. S. Gilbert, R. Magarey, K. Suiter, and C. O. Webb, “Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens,” Evolutionary Applications. In Press.
[103]  G. D. Weiblen, C. O. Webb, V. Novotny, Y. Basset, and S. E. Miller, “Phylogenetic dispersion of host use in a tropical insect herbivore community,” Ecology, vol. 87, no. 7, pp. S62–S75, 2006.
[104]  S. P. Hubbell, “Neutral theory and the theory of island biogeography,” in The Theory of Island Biogeography Revisited, J. B. Losos and R. E. Ricklefs, Eds., Princeton University Press, Princeton, NJ, USA, 2010.
[105]  F. A. Bazzaz, “The physiological ecology of plant succession,” Annual Review of Ecology and Systematics, vol. 10, pp. 351–371, 1979.
[106]  F. A. Bazzaz and S. T. A. Pickett, “Physiological ecology of tropical succession: a comparative review,” Annual Review of Ecology and Systematics, vol. 11, pp. 287–310, 1980.
[107]  Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for transcriptomics,” Nature Reviews Genetics, vol. 10, no. 1, pp. 57–63, 2009.
[108]  E. K. Lee, A. C. Jaramillo, S. O. Kolokotronis et al., “A functional phylogenomic view of seed plants,” PLoS Genetics, vol. 7, article e1002411, 2011.
[109]  M. R. McKain, N. Wickett, Y. Zhang et al., “Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyoptypes in Agavoideae (Asparagaceae),” American Journal of Botany, vol. 99, pp. 397–406, 2012.
[110]  R. He, M. J. Kim, W. Nelson et al., “Next-generation sequencing-based transcriptomic and proteomic analysis of the common reed, Phragmites australis (Poaceae), reveals genes involved in invasiveness and rhizome specificity,” American Journal of Botany, vol. 99, pp. 232–247, 2012.
[111]  S. R. Strickler, A. Bombarely, and L. A. Mueller, “Designing a transcriptome next-generation sequencing project for a nonmodel plant species,” American Journal of Botany, vol. 99, pp. 257–266, 2012.
[112]  J. A. Ward, L. Ponnala, and C. A. Weber, “Strategies for transcriptome analysis in nonmodel plants,” American Journal of Botany, vol. 99, pp. 267–276, 2012.
[113]  R. E. Ricklefs and J. Travis, “A morphological approach to the study of avian community organization,” The Auk, vol. 97, pp. 321–338, 1980.
[114]  R. E. Ricklefs and K. O. O’Rourke, “Aspect diversity in moths: a temperate-tropical comparison,” Evolution, vol. 29, pp. 313–324, 1975.
[115]  U. L. Shepherd, “A comparison of species diversity and morphological diversity across the North American latitudinal gradient,” Journal of Biogeography, vol. 25, no. 1, pp. 19–29, 1998.
[116]  N. G. Swenson, B. J. Enquist, J. Pither et al., “The biogeography and filtering of woody plant functional diversity in North and South America,” Global Ecology and Biogeography, vol. 21, pp. 798–808, 2012.
[117]  D. H. Janzen, M. Hajibabaei, J. M. Burns, W. Hallwachs, E. Remigio, and P. D. N. Hebert, “Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding,” Philosophical Transactions of the Royal Society B, vol. 360, no. 1462, pp. 1835–1845, 2005.
[118]  Y. Basset, V. Novotny, S. E. Miller, G. D. Weiblen, O. Missa, and A. J. A. Stewart, “Conservation and biological monitoring of tropical forests: the role of parataxonomists,” Journal of Applied Ecology, vol. 41, no. 1, pp. 163–174, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133