全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2012 

Modelling Determinants of Tree Planting and Retention on Farm for Improvement of Forest Cover in Central Kenya

DOI: 10.5402/2012/867249

Full-Text   Cite this paper   Add to My Lib

Abstract:

Farm forestry has proved to be an important enterprise for small- and large-scale farmers worldwide. It has the potential of improving forest/tree cover across the globe. In Kenya, the forest cover is less than 2%. The country envisions achieving 10% forest cover over the next decade through promotion of farm forestry. However, the decision to plant trees on farmers’ land could be difficult. The study aimed to analyze the determinants of tree retention on farm for improvement of forest cover. Stratified and simple random sampling techniques were used in selecting 209 farmers. The results showed that sites, land size, age, education level, monthly income, tree management, extension services, availability of markets, harvesting regulation, and aesthetic and environmental motivation were significant determinants of tree retention. In particular, the chances of farmers who had gained technical skills in tree management were about 2.2 times higher to retain trees as compared to those who had not acquired such skills. Similarly, chances of farmers motivated to plant trees for environmental conservation were about 3.5 times higher to retain trees as compared to the group of farmers planting trees as a source of livelihood. These determinants would be instrumental in strengthening the current policies and reforms in forestry and agricultural sectors to enable Kenya to achieve 10% of forest cover. 1. Introduction Farm forestry in the context of evergreen agriculture is emerging as an affordable and accessible science-based solution to caring better for the land and increasing small-scale food production [1]. It combines trees and food crops with principles of conservation farming. It has proved to be an important enterprise for small and large-scale farmers in low, medium and high potential areas worldwide [2]. In particular, it offers multiple benefits to farmers. This includes sources of green fertilizer, livestock fodder, timber, and fuel wood. Farm forestry has also other environmental benefits such as greater resilience to climate change and carbon storage, shelter, erosion control, watershed protection, and increased biodiversity [1]. The success of farm forestry may be assessed in terms of effects of various determinants such as advanced use of farm labour, positive environmental changes, increased financial returns among others [3]. When attempting to judge whether farm forestry is successful, it is important to note that the people involved may change their objectives over the years. For instance, markets may alter and force changes to the products

References

[1]  World Agro-forestry Centre, “Creating an Evergreen Agriculture in Africa for food security and environmental resilience,” Tech. Rep., World Agro-forestry Centre, Nairobi, Kenya, 2009.
[2]  Teagasc Agriculture and Food Development Authority (TAFDA), “A road map for the Farm Forestry Sector to 2015,” Tech. Rep., Teagasc Agriculture and Food Development Authority (TAFDA), Dublin, Ireland, 2007.
[3]  I. Guijt and D. Race, Growing Successfully, Australian Experiences with Farm Forestry, Greening Australia, Canberra, Australia, 1998.
[4]  C. Valdivia and C. Poulos, “Factors affecting farm operators' interest in incorporating riparian buffers and forest farming practices in northeast and southeast Missouri,” Agroforestry Systems, vol. 75, no. 1, pp. 61–71, 2009.
[5]  J. G. Arbuckle Jr., C. Valdivia, A. Raedeke, J. Green, and J. S. Rikoon, “Non-operator landowner interest in agroforestry practices in two Missouri watersheds,” Agroforestry Systems, vol. 75, no. 1, pp. 73–82, 2009.
[6]  W. K. Moser, E. C. Leatherberry, M. H. Hansen, and B. J. Butler, “Farmers' objectives toward their woodlands in the upper Midwest of the United States: implications for woodland volumes and diversity,” Agroforestry Systems, vol. 75, no. 1, pp. 49–60, 2009.
[7]  K. Konyar and C. T. Osborn, “A national-level economic analysis of Conservation Reserve Program participation: a discrete choice approach,” Journal of Agricultural Economics Research, vol. 42, no. 2, pp. 5–12, 1990.
[8]  K. Mahapatr and S. Kant, “Tropical deforestation: a multinomial logistic model and some country-specific policy prescriptions,” Forest Policy and Economics, vol. 7, no. 1, pp. 1–24, 2005.
[9]  F. Dolisca, J. M. McDaniel, L. D. Teeter, and C. M. Jolly, “Land tenure, population pressure, and deforestation in Haiti: the case of Forêt des Pins Reserve,” Journal of Forest Economics, vol. 13, no. 4, pp. 277–289, 2007.
[10]  P. Krishna, S. Murai, and Y. Yasuoka, “Sustainability analysis for human population in relation with global deforestation using remote sensing and GIS in international archives of photogrammetry and remote sensing,” in Proceedings of 19th Congress of International Society for Photogrammetry and Remote Sensing, vol. 33, Part B3, pp. 800–804, Amsterdam, Netherlands, 2000.
[11]  Kenya Forestry Research Institute, Kenya Forestry Research Institute Strategic Plan 2008–2012, Kenya Forestry Research Institute, Nairobi, Kenya, 2008.
[12]  Government of the Republic of Kenya (a), Kenya Vision 2030 Sector Plan For Environment, Water and Sanitation 2008–2012, Government Printers, Nairobi, Kenya, 2008.
[13]  D. Rocheleau and D. Edmunds, “Women, men and trees: gender, power and property in forest and agrarian landscapes,” World Development, vol. 25, no. 8, pp. 1351–1371, 1997.
[14]  S. J. Scherr, “Economic factors in farmer adoption of agroforestry: patterns observed in Western Kenya,” World Development, vol. 23, no. 5, pp. 787–804, 1995.
[15]  Government of the Republic of Kenya (b), The Constitution of Kenya, Laws of Kenya 2010, National Council for Law Reporting with the Authority of the Attorney General, 2010.
[16]  J. Ralph, S. Helmut, H. Berthold, and S. Chris, Farm Management Handbook of: Natural Conditions and Farm Management Information, vol. 2, Part B. Central Kenya, Subpart B2. Central Province, Ministry of Agriculture, Nairobi, Kenya, 2nd edition, 2006.
[17]  D. Zhang and E. Aboagye Owiredu, “Land tenure, market, and the establishment of forest plantations in Ghana,” Forest Policy and Economics, vol. 9, no. 6, pp. 602–610, 2007.
[18]  U. J. Siregar, A. Rachmi, M. Y. Massijaya, N. Ishibashi, and K. Ando, “Economic analysis of sengon (Paraserianthes falcataria) community forest plantation, a fast growing species in East Java, Indonesia,” Forest Policy and Economics, vol. 9, no. 7, pp. 822–829, 2007.
[19]  M. V?lker and H. Waibel, “Do rural households extract more forest products in times of crisis? Evidence from the mountainous uplands of Vietnam,” Forest Policy and Economics, vol. 12, no. 6, pp. 407–414, 2010.
[20]  A. G. Adedayo, M. B. Oyun, and O. Kadeba, “Access of rural women to forest resources and its impact on rural household welfare in North Central Nigeria,” Forest Policy and Economics, vol. 12, no. 6, pp. 439–450, 2010.
[21]  R. K. Nuggehalli and L. S. Prokopy, “Motivating factors and facilitating conditions explaining women's participation in co-management of Sri Lankan forests,” Forest Policy and Economics, vol. 11, no. 4, pp. 288–293, 2009.
[22]  V. Maskey, T. G. Gebremedhin, and T. J. Dalton, “Social and cultural determinants of collective management of community forest in Nepal,” Journal of Forest Economics, vol. 11, no. 4, pp. 261–274, 2006.
[23]  G. Janse and A. Ottitsch, “Factors influencing the role of non-wood forest products and services,” Forest Policy and Economics, vol. 7, no. 3, pp. 309–319, 2005.
[24]  B. Odoemena, E. Eboh, P. Okoli et al., “Econometric analysis of the micro-level determinants of woodland conversion to arable cropping and implications to policy in Eastern Nigeria,” African Journal of Agricultural Research, vol. 5, no. 11, pp. 1168–1178, 2010.
[25]  A. N. Dhubháin, K. Maguire, and N. Farrelly, “The harvesting behaviour of Irish private forest owners,” Forest Policy and Economics, vol. 12, no. 7, pp. 513–517, 2010.
[26]  V. Rodríguez-Vicente and M. F. Marey-Pérez, “Land-use and land-base patterns in non-industrial private forests: factors affecting forest management in Northern Spain,” Forest Policy and Economics, vol. 11, no. 7, pp. 475–490, 2009.
[27]  E. Kuntashula and P. L. Mafongoya, “Farmer participatory evaluation of agroforestry trees in eastern Zambia,” Agricultural Systems, vol. 84, no. 1, pp. 39–53, 2005.
[28]  K. J. Githiomi, Micro level wood energy planning for Kiambu, Thika and Maragwa districts. A case study of decentralized energy plan in Kenya [Ph.D. thesis], Kenyatta University, Nairobi, Kenya, 2010.
[29]  M. Polyakov and L. Teeter, “The influence of regulatory forest policy tools on biodiversity measures for forests in Ukraine,” Forest Policy and Economics, vol. 7, no. 6, pp. 848–856, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133