全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
ISRN Forestry  2014 

Foliar Litter Decomposition: A Conceptual Model with Focus on Pine (Pinus) Litter—A Genus with Global Distribution

DOI: 10.1155/2014/838169

Full-Text   Cite this paper   Add to My Lib

Abstract:

The genus Pinus encompasses c 120 species and has a global distribution. Today we know more about the decomposition of pine needle litter than litter from any other genus. This paper presents a developed conceptual three-phase model for decomposition, based on pine needle litter, starting with newly shed litter and following the process until a humus-near stable residue. The paper focuses on the mass-loss dynamics and factors regulating the process in the early phase, the late one, and the humus-near phase. For the late phase, the hampering influence of N and the rate-enhancing effect of Mn on the decomposition are given extra attention. Empirical factors related to the limit value/stable residue are discussed as well as the decomposition patterns and functions for calculating limit values. The climate-related litter concentrations of N and Mn are discussed as well as their possible influence on the size of the stable residue, which may accumulate and sequester carbon, for example, in humus layers. The sequestration of carbon in humus layers is discussed as well as the effect of tree species on the process. Although the paper focuses on litter of pine species, there are comparisons to studies on other litter genera and similarities and differences are discussed. 1. Introduction The process “plant litter decomposition” is quantitatively as large as the photosynthesis. The process is necessary for the recirculation of nutrients and a continued buildup of plant biomass as well as for the maintenance of food webs through the energy released by the degradation of organic compounds. The main process which we, a bit simplified, call “plant litter decomposition” is extremely complex and can be subdivided into a multitude of subprocesses. These include not only release of nutrients but also a stepwise degradation of the main chemical compounds present in the shed litter. Also, synthesis processes are included in the concept, resulting in new compounds, which in turn may recombine, often creating a recalcitrance of the remaining litter mass. In spite of its importance, this system of subprocesses is mainly unknown. The concept “plant litter” is wide both regarding components and their chemical composition and foliar litter appears to be the litter fraction that has been most studied. Still, with foliar litter of different species having very different chemical composition (e.g., DELILA III data base; http://www.eko.uj.edu.pl/deco/) we may expect different decomposition patterns among species or at least among genera. Also, bark, twig, branch, root, and foliar

References

[1]  C. E. Prescott, “Do rates of litter decomposition tell us anything we really need to know?” Forest Ecology and Management, vol. 220, pp. 66–74, 2005.
[2]  V. Meentemeyer, “Macroclimate and lignin control of litter decomposition rates,” Ecology, vol. 59, pp. 465–472, 1978.
[3]  B. Berg, M. P. Berg, P. Bottner et al., “Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality,” Biogeochemistry, vol. 20, no. 3, pp. 127–153, 1993.
[4]  H. Kang, B. Berg, C. Liu, and C. J. Westman, “Variation in mass-loss rate of foliar litter in relation to climate and litter quality in eurasian forests: differences among functional groups of litter,” Silva Fennica, vol. 43, no. 4, pp. 549–575, 2009.
[5]  B. Berg, M.-B. Johansson, and V. Meentemeyer, “Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control,” Canadian Journal of Forest Research, vol. 30, no. 7, pp. 1136–1147, 2000.
[6]  M. P. Davey, B. Berg, B. A. Emmett, and P. Rowland, “Decomposition of oak leaf litter is related to initial litter Mn concentrations,” Canadian Journal of Botany, vol. 85, no. 1, pp. 16–24, 2007.
[7]  M. B. Johansson, B. Berg, and V. Meentemeyer, “Litter mass-loss rates in late stages of decomposition in a climatic transect of pine forests. Long-term decomposition in a Scots pine forest. IX,” Canadian Journal of Botany, vol. 73, no. 10, pp. 1509–1521, 1995.
[8]  R. Fogel and K. Cromack, “Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon,” Canadian Journal of Botany, vol. 55, pp. 1632–1640, 1977.
[9]  C. M. Preston, J. R. Nault, J. A. Trofymow, C. Smyth, and The CIDET Working Group, “Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1: elemental composition, tannins, phenolics, and proximate fractions,” Ecosystems, vol. 12, no. 7, pp. 1053–1077, 2009.
[10]  C. M. Preston, J. R. Nault, J. A. Trofymow, and The CIDET Working Group, “Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2: 13C abundance, solid-state 13C NMR spectroscopy and the meaning of ‘lignin’,” Ecosystems, vol. 12, no. 7, pp. 1078–1102, 2009.
[11]  T. Persson, E. B??th, M. Clarholm, et al., “Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest,” Ecological Bulletins, vol. 32, pp. 419–462, 1980.
[12]  P. J. A. Howard and D. M. Howard, “Microbial decomposition of tree and shrub leaf litter. I. Weight loss and chemical composition of decomposing litter,” Oikos, vol. 25, no. 3, pp. 341–352, 1974.
[13]  R. K. Wieder and G. E. Lang, “A critique of the analytical methods used in examining decomposition data obtained from litter bags,” Ecology, vol. 63, no. 6, pp. 1636–1642, 1982.
[14]  B. Berg and G. Ekbohm, “Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest. VII,” Canadian Journal of Botany, vol. 69, no. 7, pp. 1449–1456, 1991.
[15]  B. Berg and G. Ekbohm, “Decomposing needle litter in Pinus contorta (lodgepole pine) and Pinus sylvestris (Scots pine) monocultural systems—is there a maximum mass loss?” Scandinavian Journal of Forest Research, vol. 8, no. 4, pp. 457–465, 1993.
[16]  W. S. Currie, M. E. Harmon, I. C. Burke, S. C. Hart, W. J. Parton, and W. Silver, “Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale,” Global Change Biology, vol. 16, no. 6, pp. 1744–1761, 2010.
[17]  M. E. Harmon, W. L. Silver, B. Fasth et al., “Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison,” Global Change Biology, vol. 15, no. 5, pp. 1320–1338, 2009.
[18]  B. Berg, R. Laskowski, and A. Virzo De Santo, “Estimated nitrogen concentrations in humus based on initial nitrogen concentrations in foliar litter: a synthesis. XII. Long-term decomposition in a Scots pine forest,” Canadian Journal of Botany, vol. 77, no. 12, pp. 1712–1722, 1999.
[19]  B. Berg, “Litter decomposition and organic matter turnover in northern forest soils,” Forest Ecology and Management, vol. 133, no. 1-2, pp. 13–22, 2000.
[20]  B. Berg, G. Ekbohm, M. Johansson, C. McClaugherty, F. Rutigliano, and A. V. De Santo, “Maximum decomposition limits of forest litter types: a synthesis,” Canadian Journal of Botany, vol. 74, no. 5, pp. 659–672, 1996.
[21]  B. Berg, A. De Marco, M. P. Davey et al., “Limit values for foliar litter decomposition—pine forests,” Biogeochemistry, vol. 100, no. 1, pp. 57–73, 2010.
[22]  B. Berg, “Scots pine needle litter—can it give a mechanism for carbon sequestration?” Geografia Polonica, vol. 85, no. 2, pp. 13–23, 2012.
[23]  D. A. Wardle, O. Zackrisson, G. H?rnberg, and C. Gallet, “The influence of island area on ecosystem properties,” Science, vol. 277, no. 5330, pp. 1296–1299, 1997.
[24]  B. Berg, C. McClaugherty, A. Virzo De Santo, and D. Johnson, “Humus buildup in boreal forests: effects of litter fall and its N concentration,” Canadian Journal of Forest Research, vol. 31, no. 6, pp. 988–998, 2001.
[25]  K. E. Rehfüss, Waldb?den, Entwicklung, Eigenschaften und Nutzung, vol. 29 of Pareys Studientexte, Parey, Hamburg, Germany, 2nd edition, 1990, (German).
[26]  B. Berg and N. Dise, “Calculating the long-term stable nitrogen sink in northern European forests,” Acta Oecologica, vol. 26, no. 1, pp. 15–21, 2004.
[27]  B. Berg and N. Dise, “Validating a new model for N sequestration in forest soil organic matter,” Water, Air, and Soil Pollution, vol. 4, no. 2-3, pp. 343–358, 2004.
[28]  B. Berg and E. Matzner, “Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems,” Environmental Reviews, vol. 5, no. 1, pp. 1–25, 1997.
[29]  E. Bringmark and L. Bringmark, “Large-scale pattern of mor layer degradation in Sweden measured as standardized respiration,” in Humic Substances in the Aquatic and Terrestrial Environments. Proceedings of an International Symposium, Link?ping, Sweden, August 1989, vol. 33 of Lecture notes in earth sciences, pp. 255–259, Springer, Berlin, Germany, 1991.
[30]  G. Guggenberger, “Acidification effects on dissolved organic matter mobility in spruce forest ecosystems,” Environment International, vol. 20, no. 1, pp. 31–41, 1994.
[31]  B. Berg, K. Hannus, T. Popoff, and O. Theander, “Changes in organic chemical components of needle litter during decomposition. Long-term decomposition in a Scots pine forest: I,” Canadian Journal of Botany, vol. 60, no. 8, pp. 1310–1319, 1982.
[32]  B. Berg and C. McClaugherty, Plant Litter. Decomposition. Humus Formation. Carbon Sequestration, Springer, Berlin, Germany, 2nd edition, 2008.
[33]  H. Kang, Z. Xin, B. Berg, et al., “Global patterns of leaf litter nitrogen and phosphorus stoichiometry in woody plants with latitude and climatic factors,” Annals of Forest Science, vol. 67, pp. 811–818, 2010.
[34]  B. Berg and C. A. McClaugherty, Plant Litter. Decomposition. Humus Formation. Carbon Sequestration, Springer, Berlin, Germany, 3rd edition, 2014.
[35]  B. Berg, A. Virzo De Santo, F. A. Rutigliano, A. Fierro, and G. Ekbohm, “Limit values for plant litter decomposing in two contrasting soils—influence of litter elemental composition,” Acta Oecologica, vol. 24, no. 5-6, pp. 295–302, 2003.
[36]  B. Wessén and B. Berg, “Long-term decomposition of barley straw: chemical changes and ingrowth of fungal mycelium,” Soil Biology and Biochemistry, vol. 18, no. 1, pp. 53–59, 1986.
[37]  L. Vesterdal and K. Raulund-Rasmussen, “Forest floor chemistry under seven tree species along a soil fertility gradient,” Canadian Journal of Forest Research, vol. 28, no. 11, pp. 1636–1647, 1998.
[38]  J. D. Ovington, “Studies on the development of woodland conditions under different trees. II. The forest floor,” The Journal of Ecology, vol. 42, pp. 71–80, 1954.
[39]  B. Berg, C. Liu, R. Laskowski, et al., “Relationships between nitrogen, AUR, and climate among tree foliar litters,” Canadian Journal of Forest Research, vol. 43, pp. 103–107, 2013.
[40]  B. Berg and H. Staaf, “Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition,” in Structure and Function of Northern Coniferous Forests. An Ecosystem Study, T. Persson, Ed., vol. 32, pp. 373–390, Ecological Bulletins, Stockholm, Sweden, 1980.
[41]  B. Berg and C. O. Tamm, “Decomposition and nutrient dynamics of litter in long-term optimum nutrition experiments. II.Nutrient concentrations in decomposing Picea abies needle litter,” Scandinavian Journal of Forest Research, vol. 9, no. 2, pp. 99–105, 1994.
[42]  B. Erhagen, M. ?quist, T. Sparrman, et al., “Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material,” Global Change Biology, 2013.
[43]  A. De Marco, R. Spaccini, P. Vittozzi, et al., “Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy,” Soil Biology and Biochemistry, vol. 51, pp. 1–15, 2012.
[44]  B. Berg, H. G. W. Booltink, A. Breymeyer, et al., “Data on needle litter decomposition and soil climate as well as site characteristics for some coniferous forest sites. 2nd ed. Section 2. Data on needle litter decomposition,” Report 42, Departments of Ecology and Environmental Research. Swedish University of Agricultural Sciences, 1991.
[45]  K. A. Thorn and M. A. Mikita, “Ammonia fixation by humic substances: a nitrogen-15 and carbon-13 NMR study,” Science of the Total Environment, vol. 113, no. 1-2, pp. 67–87, 1992.
[46]  B. Berg, C. McClaugherty, and A. Virzo De Santo, “Practicalities of estimating carbon sequestration,” CAB Reviews, vol. 3, no. 84, pp. 1–15, 2008.
[47]  G. Tyler, “Changes in the concentrations of major, minor and rare-earth elements during leaf senescence and decomposition in a Fagus sylvatica forest,” Forest Ecology and Management, vol. 206, pp. 167–177, 2005.
[48]  B. Berg, R. Calvo de Anta, A. Escudero et al., “The chemical composition of newly shed needle litter of Scots pine and some other pine species in a climatic transect. X. Long-term decomposition in a Scots pine forest,” Canadian Journal of Botany, vol. 73, no. 9, pp. 1423–1435, 1995.
[49]  C. Liu, B. Berg, W. Kutsch et al., “Leaf litter nitrogen concentration as related to climatic factors in Eurasian forests,” Global Ecology and Biogeography, vol. 15, no. 5, pp. 438–444, 2006.
[50]  B. Berg and V. Meentemeyer, “Litter fall in some European coniferous forests as dependent on climate: a synthesis,” Canadian Journal of Forest Research, vol. 31, no. 2, pp. 292–301, 2001.
[51]  C. Liu, C. J. Westman, B. Berg et al., “Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia,” Global Ecology and Biogeography, vol. 13, no. 2, pp. 105–114, 2004.
[52]  B. Berg and J. E. Lundmark, “Decomposition of needle litter in Pinus contorta and Pinus sylvestris monocultures—a comparison,” Scandinavian Journal of Forest Research, vol. 2, pp. 3–12, 1987.
[53]  B. Berg and C. O. Tamm, “Decomposition and nutrient dynamics of Norway spruce needle litter in a long-term optimum nutrition experiment. I. Organic matter decomposition,” Tech. Rep. 39, Department of Ecology and Environmental Sciences. Swedish University of Agricultural Sciences, 1991.
[54]  C. A. McClaugherty, “Soluble polyphenols and carbohydrates in throughfall and leaf litter decomposition,” Acta Oecologia, vol. 4, pp. 375–385, 1983.
[55]  L. Bogatyrev, B. Berg, and H. Staaf, “Leaching of plant nutrients and total phenolic substances from some foliage litters. A laboratory study,” Tech. Rep. 33, Swedish Coniferous Forest Project, 1983.
[56]  K. Ono, S. Hiradate, S. Morita, K. Ohse, and K. Hirai, “Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan,” Plant and Soil, vol. 338, no. 1, pp. 171–181, 2011.
[57]  J. D. Aber, C. A. McClaugherty, and J. M. Melillo, Litter Decomposition in Wisconsin Forests-Mass Loss, Organic-Chemical Constituents and Nitrogen, vol. R3284 of University of Wisconsin Research Bulletins, University of Wisconsin, Madison, Wis, USA, 1984.
[58]  M. Y. Faituri, “Soil organic matter in Mediterranean and Scandinavian forest ecosystems and dynamics of nutrients and monomeric phenolic compounds,” Silvestra, vol. 236, 136 pages, 2002.
[59]  B. Berg, G. Ekbohm, and C. McClaugherty, “Lignin and holocellulose relations during long-term decomposition of some forest litters. Long-term decomposition in a Scots pine forest. IV,” Canadian Journal of Botany, vol. 62, no. 12, pp. 2540–2550, 1984.
[60]  J. M. Melillo, J. D. Aber, A. E. Linkins, et al., “Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter,” in Ecology of Arable Lands, M. Clarholm and L. Bergstr?m, Eds., pp. 53–62, Kluwer, Dordrecht, The Netherlands, 1989.
[61]  T. Klotzbücher, T. R. Filley, K. Kaiser, and K. Kalbitz, “A study of lignin degradation in leaf and needle litter using 13C-labelled tetramethylammonium hydroxide (TMAH) thermochemolysis: comparison with CuO oxidation and van Soest methods,” Organic Geochemistry, vol. 42, no. 10, pp. 1271–1278, 2011.
[62]  S. Güsewell and J. T. A. Verhoeven, “Litter N?:?P ratios indicate whether N or P limits the decomposability of graminoid leaf litter,” Plant and Soil, vol. 287, no. 1-2, pp. 131–143, 2006.
[63]  B. Berg and H. Staaf, “Leaching, accumulation and release of nitrogen in decomposing forest litter,” in Terrestrial Nitrogen Cycles. Processes, Ecosystem Strategies and Management Impacts, F. E. Clark and T. Rosswall, Eds., vol. 33, pp. 163–178, Ecological Bulletins, Stockholm, Sweden, 1981.
[64]  S. Manzoni, R. B. Jackson, J. A. Trofymow, and A. Porporato, “The global stoichiometry of litter nitrogen mineralization,” Science, vol. 321, no. 5889, pp. 684–686, 2008.
[65]  J. D. Aber and J. M. Melillo, Terrestrial Ecosystems, Cengage Learning. Emea, 1991.
[66]  B. Berg and R. Laskowski, Litter Decomposition: A Guide to Carbon and Nutrient Turnover, vol. 38 of Advances in Ecological Research, Elsevier, San Diego, Calif, USA, 2006.
[67]  B. Berg, C. McClaugherty, and M. B. Johansson, “Chemical changes in decomposing plant litter can be systemized with respect to the litter's initial chemical composition,” Reports from the Departments in Forest Ecology and Forest Soils, Swedish University of Agricultural Sciences. Report 74, 1997.
[68]  J. D. Aber and J. M. Melillo, “Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content,” Canadian Journal of Botany, vol. 60, no. 11, pp. 2263–2269, 1982.
[69]  B. Berg and J. Cortina, “Nutrient dynamics in some decomposing leaf and needle litter types in a Pinus sylvestris forest,” Scandinavian Journal of Forest Research, vol. 10, no. 1, pp. 1–11, 1995.
[70]  H. Staaf and B. Berg, “Accumulation and release of plant nutrients in decomposing Scots pine needle litter. Long-term decomposition in a Scots pine forest: II,” Canadian Journal of Botany, vol. 60, no. 8, pp. 1561–1568, 1982.
[71]  B. Berg, “Dynamics of nitrogen (15N) in decomposing Scots pine (Pinus sylvestris) needle litter. Long-term decomposition in a Scots pine forest. VI,” Canadian Journal of Botany, vol. 66, no. 8, pp. 1539–1546, 1988.
[72]  H. N?mmik and K. Vahtras, “Retention and fixation of ammonium and ammonia in soils,” in Nitrogen in Agricultural Soils, F. J. Stevenson, Ed., vol. 22 of Agronomy Monographs, pp. 123–171, Agronomy Society of America, Madison, Wis, USA, 1982.
[73]  G. Axelsson and B. Berg, “Fixation of ammonia (15N) to Scots pine needle litter in different stages of decomposition,” Scandinavian Journal of Forest Research, vol. 3, pp. 273–280, 1988.
[74]  M. R. Lindbeck and J. I. Young, “Polarography of intermediates in the fixation of nitrogen by p-quinone-aqueous ammonia systems,” Analytica Chimica Acta, vol. 32, pp. 73–80, 1965.
[75]  H. Knicker, “Stabilization of N-compounds in soil and organic-matter-rich sediments—what is the difference?” Marine Chemistry, vol. 92, pp. 167–195, 2004.
[76]  B. Berg, B. Erhagen, M. B. Johansson, et al., “Manganese dynamics in decomposing foliar litter,” Canadian Journal of Forest Research, vol. 43, pp. 1–10, 2013.
[77]  S. Hobbie, W. C. Eddy, C. R. Buyarski, et al., “Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment,” Ecological Monographs, vol. 82, pp. 389–405, 2012.
[78]  M. M. Carreiro, R. L. Sinsabaugh, D. A. Repert, and D. F. Parkhurst, “Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition,” Ecology, vol. 81, no. 9, pp. 2359–2365, 2000.
[79]  M. Kaspari, S. P. Yanoviak, R. Dudley, M. Yuan, and N. A. Clay, “Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 46, pp. 19405–19409, 2009.
[80]  S. Perakis, J. J. Matekis, and D. E. Hibbs, “Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich litter,” Ecosphere, vol. 3, no. 6, article 54, 2012.
[81]  T. Klotzbücher, K. Kaiser, G. Guggenberger, C. Gatzek, and K. Kalbitz, “A new conceptual model for the fate of lignin in decomposing plant litter,” Ecology, vol. 95, no. 5, pp. 1052–1062, 2011.
[82]  M. M. Co?teaux, K. B. McTiernan, B. Berg, D. Szuberla, P. Dardenne, and P. Bottner, “Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition,” Soil Biology and Biochemistry, vol. 30, no. 5, pp. 583–595, 1998.
[83]  J. Perez and T. W. Jeffries, “Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 58, no. 8, pp. 2402–2409, 1992.
[84]  A. Hatakka, “Biodegradation of lignin,” in Biopolymers, Volume 1: Lignin, Humic Substances and Coal, M. Hofman and A. Stein, Eds., pp. 129–180, Wiley, Weinheim, Germany, 2001.
[85]  B. Berg, K. T. Steffen, and C. McClaugherty, “Litter decomposition rate is dependent on litter Mn concentrations,” Biogeochemistry, vol. 82, no. 1, pp. 29–39, 2007.
[86]  B. Berg, “Initial rates and limit values for decomposition of Scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands,” Canadian Journal of Forest Research, vol. 30, no. 1, pp. 122–135, 2000.
[87]  B. Berg, “Decomposition patterns for foliar litter—a theory for influencing factors,” manuscript submitted.
[88]  J. S. Olson, “Energy storage and the balance of producers and decomposers in ecological systems,” Ecology, vol. 44, pp. 322–331, 1963.
[89]  H. Jenny, S. P. Gessel, and F. T. Bingham, “Comparative study of decomposition rates of organic matter in temperate and tropical regions,” Soil Science, vol. 68, pp. 419–432, 1949.
[90]  K. T. Steffen, A. Hatakka, and M. Hofrichter, “Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila,” Applied and Environmental Microbiology, vol. 68, no. 7, pp. 3442–3448, 2002.
[91]  K. E. Eriksson, R. A. Blanchette, and P. Ander, Microbial and Enzymatic Degradation of Wood and Wood Components, Springer, Berlin, Germany, 1990.
[92]  J. D. Ovington, “The circulation of minerals in plantations of Pinus sylvestris L,” Annals of Botany, vol. 23, no. 2, pp. 229–239, 1959.
[93]  E. Holmsgaard and C. Bang, “Et traeartsfors?g med n?letraeer, b?g og eg. De F?rste 10 ?r,” Forstlig Fors?gsvaesen, no. 35, pp. 159–196, 1977 (Danish).
[94]  B. Berg, “Sequestration rates for C and N in humus at four N-polluted temperate forest stands,” in Biogeochemistry of Forested Catchments in a Changing Environment. A German Case Study, E. Matzner, Ed., vol. 172 of Ecological Studies, pp. 361–376, Springer, Berlin, Germany, 2004.
[95]  H. Meesenburg, K. J. Meiwes, and H. Bartens, “Ver?nderung der Elementvorr?te im Boden von Buchen- und Fichten?kosystemen in Solling,” Berichte Freiburger Forstliche Forschung, vol. 7, pp. 109–114, 1999 (German).
[96]  K. J. Meiwes, H. Meesenburg, H. Bartens, et al., “Accumulation of humus in the litter layer of forest stands at Solling. Possible causes and significance for the nutrient cycling,” Forst und Holz, vol. 13-14, pp. 428–433, 2002 (German), English summary.
[97]  C. Akselsson, B. Berg, V. Meentemeyer, and O. Westling, “Carbon sequestration rates in organic layers of boreal and temperate forest soils—Sweden as a case study,” Global Ecology and Biogeography, vol. 14, no. 1, pp. 77–84, 2005.
[98]  B. Berg, M. Johansson, á. Nilsson, P. Gundersen, and L. Norell, “Sequestration of carbon in the humus layer of Swedish forests—direct measurements,” Canadian Journal of Forest Research, vol. 39, no. 5, pp. 962–975, 2009.
[99]  B. Berg, P. Gundersen, C. Akselsson, M. Johansson, ?. Nilsson, and L. Vesterdal, “Carbon sequestration rates in Swedish forest soils—a comparison of three approaches,” Silva Fennica, vol. 41, no. 3, pp. 541–558, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133