全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of Heavy Metals Concentration in Arsenic Contaminated Groundwater of the Chaco Plain, Argentina

DOI: 10.1155/2013/930207

Full-Text   Cite this paper   Add to My Lib

Abstract:

The occurrence and distribution of arsenic and 23 other trace elements have been investigated in groundwater from Comandante Fernández Department in the Central region of Chaco Province, Northern Argentine. The arsenic concentrations samples ranged between 0.7 to 1990?μg?L?1; 91% ( ) exceeds the 10?μg?L?1 World Health Organization (WHO) provisional standard limits for drinking water. Fluorine was detected in 31% of groundwater samples. Furthermore, there was found a significant correlation between As and F ( ), indicating an association in the prevalence of both elements. In addition, about 78%, 31%, 16%, 13%, and 4.5% of groundwater samples had, respectively, B, Fe, Al, Mn, and Sb exceeding Código Alimentario Argentino (CAA) guideline values. In contrast of the previously values descript, the corresponding to Cr, Be, Ni, Pb, Ag, Se, and Zn were found below the quantification limit. The presence of As and trace elements in groundwater represents an important issue because it can cause a public health problem. 1. Introduction Among known pollutants, trace elements are widely recognized as being potentially toxic to living organisms. Water contamination with heavy metal (HM) are mainly determined by natural (i.e., weathering, erosion of bed rocks, and ore deposits) [1] and anthropogenic (i.e., mining, industries, and agriculture) processes [2]. Soils and water containing high levels of arsenic and other toxic trace elements can easily contaminate plants, animals, and human beings in contact with them, as they either produce toxic effects or accumulate in plants and thereby enter animal and human food chains [3]. Certain elements like sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), cobalt (Co), and zinc (Zn) are essentially required by living organisms in specific concentrations but may produce toxic effects in high concentrations [2]. The main threats to human health from HM are associated with exposure to lead (Pb), mercury (Hg), cadmium (Cd) and arsenic (As), which are extremely prejudicial owing to their toxicity, long persistence, and bioaccumulative nature [4]. Their toxic effects include headache, hypertension, irritability, abdominal pain, nerve damages, liver and kidney problems, sideroblastic anemia, intellectual disabilities, fatal cardiac arrest, and carcinogenesis. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO [5]. Long-term drinking of arsenic contaminated water can cause severe skin diseases including

References

[1]  P. L. Smedley, H. B. Nicolli, D. M. J. Macdonald, A. J. Barros, and J. O. Tullio, “Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina,” Applied Geochemistry, vol. 17, no. 3, pp. 259–284, 2002.
[2]  S. Muhammad, M. T. Shah, and S. Khan, “Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan,” Microchemical Journal, vol. 98, no. 2, pp. 334–343, 2011.
[3]  S. S. Farías, V. A. Casa, C. Vázquez, L. Ferpozzi, G. N. Pucci, and I. M. Cohen, “Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean Plain,” Science of the Total Environment, vol. 309, no. 1–3, pp. 187–199, 2003.
[4]  L. J?rup, “Hazards of heavy metal contamination,” British Medical Bulletin, vol. 68, pp. 167–182, 2003.
[5]  World Health Organization (WHO), “Recommendations,” in Guidelines for Drinking Water Quality, vol. 1, Geneva, Switzerland, 4th edition, 2011.
[6]  C. Hopenhayn, “Arsenic in drinking water: impact on human health,” Elements, vol. 2, no. 2, pp. 103–107, 2006.
[7]  S. H. Lamm and M. B. Kruse, “Arsenic ingestion and bladder cancer mortality—what do the dose-response relationships suggest about mechanism?” Human and Ecological Risk Assessment, vol. 11, no. 2, pp. 433–450, 2005.
[8]  C.-H. Wang, C. K. Hsiao, C.-L. Chen et al., “A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular diseases,” Toxicology and Applied Pharmacology, vol. 222, no. 3, pp. 315–326, 2007.
[9]  J. Bundschuh, M. I. Litter, F. Parvez et al., “One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries,” Science of the Total Environment, vol. 429, pp. 2–35, 2012.
[10]  M. T. Alarcón-Herrera, J. Bundschuh, B. Nath et al., “Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: genesis, mobility and remediation,” Journal of Hazardous Materials, 2012.
[11]  E. E. Buchhamer, P. S. Blanes, R. M. Osicka, and M. C. Giménez, “Environmental risk assessment of arsenic and fluoride in the chaco province, argentina: research advances,” Journal of Toxicology and Environmental Health A, vol. 75, no. 22-23, pp. 1437–1450, 2012.
[12]  A. Cabrera, M. Blarasin, E. Matteoda, G. Villalva, and M. L. Gómez, “Composición química del agua subterránea en el sur de Córdoba: línea de base hidroquímica o fondo natural en referencia a arsénico y flúor,” in Aguas Superficiales y Subterráneas en el sur ae Córdoba: Una Perspectiva Geoambiental, M. Blarasin, S. Degiovanni, A. Cabera, and M. Villegas, Eds., pp. 81–90, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina, 2005.
[13]  P. Bhattacharya, M. Claesson, J. Bundschuh et al., “Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina,” Science of the Total Environment, vol. 358, no. 1–3, pp. 97–120, 2006.
[14]  B. Nicolli, O. C. Tujchneider, M. C. Paris, M. Blanco, and A. J. Barros, “Movilidad del arsénico y oligoelementos asociados en aguas subterráneas del centro-norte de la provincia de Santa Fe, Argentina,” in Proceedings of the Presencia de Flúor y Arsénico en Aguas Subterráneas, VI Congreso Hidrogeológico Argentino, G. Galindo, J. L. Fernández Turiel, and A. Storniolo, Eds., pp. 81–90, Santa Rosa La Pampa, Argentina, 2009.
[15]  H. B. Nicolli, A. Tineo, J. W. García, C. M. Falcón, and P. L. Smedley, “Mobilization of arsenic and other trace element of health concern in groundwater from the Salí River Basin, Tucumán Province, Argentina,” Environmental Geochemistry and Health, vol. 34, no. 2, pp. 251–262, 2012.
[16]  R. M. Osicka, N. Agulló, C. Herrera Ahuad, and M. C. Giménez, “Evaluación de las concentraciones de fluoruro y arsénico en las aguas subterráneas del Domo Central de la provincia del Chaco,” Comunicaciones Científicas y Tecnológicas. Universidad Nacional del Nordeste, 2002, http://www.unne.edu.ar/unnevieja/Web/cyt/cyt/2002/08-Exactas/E-049.pdf.
[17]  C. E. Fiorentino, J. D. Paoloni, M. E. Sequeira, and P. Arosteguy, “The presence of vanadium in groundwater of southeastern extreme the pampean region Argentina. Relationship with other chemical elements,” Journal of Contaminant Hydrology, vol. 93, no. 1–4, pp. 122–129, 2007.
[18]  P. Sprechmann, F. G. Ace?aloza, C. Gaucher, A. C. R. Nogueira, and M. J. Perez, “Trasgresión Paranaense: paleoestuario del tethys del mioceno medio y/o superior en Sudamérica,” in Congreso Latinoamericano de Geología, Montevideo-Uruguay, Abstracts, 1 CDRoom, pp. 10–15, Sociedad Latinoamericana de Geología, 2001.
[19]  F. Larroza and L. S. Fari?a, “Caracterización hidrogeológica del sistema acuífero Yrenda (SAY) en Paraguay: recurso compartido con y Bolivia,” in Proceedings of the IV Congreso Argentino de Hidrogeología, TOMO II, Argentinarío Cuarto, Córdoba, Argentina, 2005.
[20]  E. Popolizio, P. Y. Serra, and G. O. Hort, “La clasificación taxonómica del Chaco,” Centro de Geociencia Aplicada, vol. 3, no. 1, pp. 11–32, 1980.
[21]  INTA, “Instituto Nacional de Tecnología Agropecuaria,” Agrometeorología, http://www.inta.gov.ar/saenzpe/meteorologia/meteorologia.htm.
[22]  M. G. García, O. Sracek, D. S. Fernández, and M. D. V. Hidalgo, “Factors affecting arsenic concentration in groundwaters from Northwestern Chaco-Pampean Plain, Argentina,” Environmental Geology, vol. 52, no. 7, pp. 1261–1275, 2007.
[23]  US Environmental Protection Agency ( EPA), “Arsenic, Inorganic. United States Environmental Protection Agency, Integrated Risk Information System (IRIS), (CASRN, 7440-38-2),” 1998, http://www.epa.gov/iris/subst/0278.htm.
[24]  Comisión Nacional de Alimentos (CONAL) Acta No 93, Reunión Ordinaria 30/11 y 01/12-/2011 (Prórroga Art. 982 y 983 del CAA).
[25]  CAA, (Código Alimentario Argentino). Cap XII: Bebidas hídricas, agua y agua gasificada. In Código Alimentario Argentino, modificatoria del Art. 982. (Res. 68/2007 y 196/2007) Ley 18. 284, Buenos Aires, Argentina, 2007, http://www.anmat.gov.ar/CODIGOA/Capitulo_XII_Agua_2007-05.pdf.
[26]  J. L. Fernández Turiel, G. Galindo, M. A. Parada, D. Gimeno, M. García-Vallés, and J. Saavedra, “Estado actual del conocimiento sobre el arsénico en el agua de Argentina y Chile: origen, movilidad y transporte,” in Arsénico en Agua: Origen, movilidad y tratamiento, II Seminario Hispano-Latinoamericano sobre Temas Actuales de Hidrología Subterránea y IV Congreso Hidrogeológico Argentino, pp. 1–22, Río Cuarto, Argentina, 2005.
[27]  M. L. Gomez, M. T. Blarasin, and D. E. Martínez, “Arsenic and fluoride in a loess aquifer in the central area of Argentina,” Environmental Geology, vol. 57, no. 1, pp. 143–155, 2009.
[28]  P. L. Smedley, D. G. Kinniburgh, D. M. J. Macdonald et al., “Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina,” Applied Geochemistry, vol. 20, no. 5, pp. 989–1016, 2005.
[29]  D. L. Ozsvath, “Fluoride and environmental health: a review,” Reviews in Environmental Science and Biotechnology, vol. 8, no. 1, pp. 59–79, 2009.
[30]  E. M. Farfán Torres, P. M. Naranjo, A. Boemo, I. Lomniczi, and L. Lorenzo, “Distribution of arsenic in groundwater in the Chaco Salte?o, Argentina,” in Workshop on as Distribution in Ibero-America, M. I. Litter, Ed., CyTED IBEROARSEN Abstract Book, pp. 57–60, 2006.
[31]  http://www.jctonic.com/include/minerals/boron.htm.
[32]  M. A. Halim, R. K. Majumder, S. A. Nessa et al., “Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: spatial variability on arsenic and boron enrichment,” Journal of Hazardous Materials, vol. 180, no. 1–3, pp. 50–62, 2010.
[33]  J. Buschmann, M. Berg, C. Stengel, and M. L. Sampson, “Arsenic and manganese contamination of drinking water resources in Cambodia: coincidence of risk areas with low relief topography,” Environmental Science and Technology, vol. 41, no. 7, pp. 2146–2152, 2007.
[34]  R. A. Beckman, A. S. Mildvan, and L. A. Loeb, “On the fidelity of DNA replication: manganese mutagenesis in vitro,” Biochemistry, vol. 24, no. 21, pp. 5810–5817, 1985.
[35]  S.-H. Kim, K. Kim, K.-S. Ko, Y. Kim, and K.-S. Lee, “Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments,” Chemosphere, vol. 87, no. 8, pp. 851–856, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133